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ABSTRACT. We consider germs of smooth maps f : (R),0) — (R",c), ¢ € C where C is the
standard nondegenerate cone of some signature and classify their singularities under the actions
of two natural groups of diffeomorphisms preserving C. Occuring singularities are subdivided into
3 classes: regular, semiregular and irregular. In the regular case the classification of singularities
is reduced to the classification of the usual singularities of germs of functions. We present the
list of simple semiregular singularities and also analyze some irregular singularities.

§0. PRELIMINARIES AND RESULTS

The singularities of maps f : (R%,0) — (R",s),s € S to a target space with some fixed
stratified variety S were considered by several authors, see e.g. [AVG],[A1], [L],[Si]. In the
case when S is a hyperplane they are called boundary singularities and were investigated in
details in [A1]. In particular, it was shown that the simple boundary singularities correspond
to the A-, B-, C-, D-, E-series and F} in the classification of simple Lie algebras. A much
more general class of actions (including all actions on source and target with a stratified S
used in this note) was studied by J. Damon [Dal-2]. He proved the existence of the versal
unfoldings and finite determinacy of germs of maps in this situation. (Therefore, the normal
forms we present can be achieved in formal, analytic and smooth categories.) In what follows
we will always assume that the dimension of the source is less than the dimension of the
target.

MAIN NOTATION.

Let s € S be a point on a stratified variety S and let Ag denote the product of the group
of local diffeomorphisms (R!,0) — (R!,0) of the source by the group of local diffeomorphisms
(R",s) — (R™,s) of the target preserving S.

By K we denote the group of contact transformations, i.e. elements of I are diffeomor-
phisms of (R! x R",0) preserving a) projection on R! (inducing diffeomorphisms of R) and
b) the subspace (R! x 0). Thus two germs f; and f5 : (R!,0) — (R",0) are K-equivalent
if there exists a diffeomorphism of the source and a germ M : (R!,0) — GL(R™) such
that fi1(z) = M(x)f2(g9(x)). (Another standard notation for K-equivalence introduced by
J. Martinet and used in [AVG] is V-equivalence.)

Let Kg denote the subgroup of I consisting of all diffeomorphisms H € K such that
H(R!'x S8) cR! x S.
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Let O; denote the ring of germs of analytic functions on (R}, 0) and m; C O; denote the
minimal ideal of functions vanishing at the origin. The space of germs of maps (R!,0) — R"
is denoted by Ol(") and the space of germs of maps (R!,0) — (R",0) sending the origin of
the source to the origin of the target is denoted by 91}'. Obviously, Ol(") =0 x---x0O (n
factors) and M =my x -+ x my.

SOME STANDARD NOTIONS OF THE SINGULARITY THEORY.

An arbitrary germ ¥(z,\) = (U, (z),A) : (R! x R",0 x 0) — (R™ x R", s x 0) such that
U(z,0) = f(x) is called an unfolding of the map f : (R, 0) — (R™,s). The additional
space of parameters R" is called the base of the unfolding. If additionally, for all A one has
U(0,\) = s x A then such a W is called an origin-preserving unfolding of f.

Let us consider the action of a group G (G equals Ags or Ks) on the space of germs
f: (RY0) = (R" 5). Two unfoldings of f with the same base ¥’ : (R! x R",0 x 0) —
(R" x R",s x 0) and ¥" : (R! x R",0 x 0) — (R™ x R", s x 0) are called G-equivalent if
the exists a germ of smooth map ¢ : (R",0) — (G, e) where e is the identical diffeomorphism
such that ¥'(z,\) = g(A\)¥”(z, ). Consider a smooth map © : (R™,0) — (R"™,0). The
deformation induced by © from ¥, : (R! x R™,0 x 0) — (R™ x R",s x 0) is defined as
Oy = Uy00 : (REx R™,0 x 0) — (R™ x R™, s x 0). A G-versal unfolding of a map
f: (RY,0) — (R",s) is an unfolding ® such that any other unfolding is G-equivalent to
some unfolding induced from ® by an appropriate map of bases, see [AVG]|,p.142. If the
dimension of the base of @ is the minimal possible then ® is called a miniversal unfolding.
(We will always work with miniversal unfoldings and omit the prefix 'mini’.) A bifurcation
diagram is a subset Bif C A of the base A such that for any A € Bif the corresponding map
fr € ® is not in general position w.r.t. S, i.e. either f) is not an immersion or the image
fr(RY) is nontransversal to S. Two unfoldings of a germ f : (R!,0) — (R"™,S) are called
equivalent if each of them can be induced from the other by an appropriate map of their
bases. Bifurcation diagrams Bif; C A; and Bify C A of two unfoldings with the bases A
and Ay resp. are called coinciding if there exists a diffeomorphism of the pairs (A, Bify)
and (Ag, Bify). Exactly the same definitions as above work if we restrict our considerations
to the class of origin-preserving unfoldings. Corresponding versal unfoldings will be called
origin-preserving or restricted versal unfoldings. Recall that two germs of functions on the
same number of variables are called equivalent if there exists a local diffeomorphism sending
one to the other. Two functions on a different number of variables are called stably equivalent
if they become equivalent after addition of nondegenerate quadratic forms of extra variables.

By the modality of a singularity of a germ f : (R!,0) — (R"™,s) (under the action of a
chosen group () we call the minimal number m of parameters such that a sufficiently small
neighborhood of the orbit of f can be covered by a finite number of m-parameter families of
orbits.

A singularity of a germ f : (R,0) — (R™,C) is called simple (under the action of the
chosen group) if its modality is zero.

A germ f : (R,0) — (R™,C) is called stable if for any germ f close to f there exists a
point (x,y) close to (0,0) such that f considered as f : (R', ) — (R",y) is A-equivalent to
I

THE MAIN DEFINITION. A germ f : (R%,0) — (R",s), s € S is called regular if the
following 2 conditions are satified

a) f is an embedding; b) s belongs to one of the top-dimensional strata of S. (In this case
S can be replaced by a germ of a smooth submanifold.)

If only a) is satisfied the germ f is called semiregular and finally if a) is violated such an
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f is called wrreqular.

0.1. REGULAR SINGULARITIES.

REMARK. If f is (semi)regular then its Ags- and Kg-versal unfoldings are equivalent (see
lemma 1.1) and in this case we just call either of them a versal unfolding. Analogously, its
restricted Ag- and Kg-versal unfoldings are equivalent and we call either of them a restricted
versal unfolding.

Let S C R™ be a germ of a smooth manifold of codimension & and s € § be some point.
Let us fix k functions hy, ..., hy defining S as a germ of complete intersection S : {h; = 0;i =
1,...,k} in some neighborhood of s. For any germ f : (R!,0) — (R",s), s € S we call by
the induced germ fs the germ ho f : (R!,0) — R",s), i.e. the pullback of the functions
hi,...,h by f(R') in the neighborhood of s.

ProPOSITION A. A versal unfolding and the bifurcation diagram of a regular germ f :
(R}, 0) — (R™,S) is equivalent to a K-versal unfolding and bifurcation diagram of its induced
germ fg.

REMARK. As was pointed put by the referee Proposition A also holds for Kg-unfoldings
without the requirement that f is an embedding, see [Da 3] but is virtually always false if s
is not a regular point of S.

If S: {Q = 0} is a germ of hypersurface in R™ and f : (R!,0) — (R",s) is a map then
Qs : (R',0) — (R,0) will denote the germ of the induced function Qo f = f*Q.

COROLLARY. If §: {Q = 0} is a germ of a hypersurface then a versal deformation of a
germ of a regular map f : (R!,0) — (R",s) is equivalent to a K-versal deformation of the
induced fuction Q; : (R!,0) — (R, 0). Therefore, if S is a hypersurface then the classification
of singularities of regular maps coincides with the K-classification of germs of functions. In
particular, they have the same list of simple singularities.

COROLLARY B. If C is a nondegenerate cone then for any fixed k£ the list of bifurcation
diagrams in versal unfoldings of regular maps f : (R',0) — (R™,C) occuring in generic k-
parameter families of maps stabilize as soon as n > k +[. This means that for any such map
regular f; to the space of dimension n; > k + [ there exists a regular map f5 to the space of
dimension ny < k 4 [ with the coinciding bifurcation diagram.

0.2. SEMIREGULAR SINGULARITIES.

ProOPOSITION C. A versal unfolding of a semiregular germ f : (R!,0) — (R™,¢),c € C
can be obtained by extending its reduced versal unfolding by a (n — [)-dimensional space of
parallel shifts of f in the directions transversal to the image f(R!) at the origin of the target.

ProrosiTiON D. Taking the induced functions one defines a mapping from origin-preserving
unfoldings of f to unfoldings of Q¢ in m? with the following properties. Let ®(z,)\) =
(®x(z), A) be some origin-preserving unfolding then

a) If @5, () and @y, () lie in a single Ac-orbit then Q¢, and Qg,, lie in a single KC-orbit.

b) any unfolding of @ in m? can be induced from an origin-preserving unfolding of f.

In particular, the deformation of @ induced from any reduced versal unfolding ®,4(z, A)
of a semiregular germ f : (R!,0) — (R",C) is equivalent to reduced K-versal unfold-
ing of Qf. (Recall that in its turn any reduced K-versal unfolding of @y is equivalent
to Qf + > Aje; where e; € ml2 are representatives of any basis of the quotient module
m? /(G- et Q).)

COROLLARY E. The modality of a semiregular germ is not less than the -modality of the
induced function @) ¢. Therefore, the necessary condition for a semiregular germ f : (R}, 0) —
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(R™,C) to be simple is that the induced @ is stably equivalent to one of the germs of the
KC-simple singularities, i.e. belongs to one of the A-, D- or F-series.

REMARK F. A (n — [)-dimensional family of parallel shifts of a semiregular f which is
included in its versal unfolding in addition to its reduced versal unfolding (see Proposition
C) induces the subdeformation of )y which can be normalized as

cr n—I
Qr+ > Nmi+ > £\
i=1

j=cr+1

where z;, i = 1,...,cr are coordinates in the kernel of the quadratic part of Q.

Therefore, bifurcation diagrams of a versal unfolding and of a reduced versal unfolding are
given as the zero sets of the stably equivalent functions.

THEOREM G. A germ of a semiregular map f : (R!,0) — (R",¢),c € C, | < nsuch that the
quadratic part of () has corank 1 and Q¢ = az¥+..., a # 0 along the kernel can be reduced
by the Ac-action to the normal form fi : (w1, 2%, z2,...,21,0,...,0), where Q = £(y1y> +
S o +y?) and C : {Q = 0}. Its reduced versal unfolding depends on k — 1 parameters and
can be chosen as

Brea(T1, oy Ty Ay ey M) 2 {yr = 21,00 = 2 F X2 4 A, y3 = 2,

Yir1 =21, Y142 = 0,...,y, = 0}.

The bifurcation diagram of this unfolding has two irreducible components. The first com-
ponent consists of all sets A such that the induced function Q 5 at the origin has a more
complicated singularity than Morse singularity. The second component consists of all sets A
such that Q. has only singular points different from the origin. Thus the considered bifur-
cation diagram coincides with the bifurcation diagram of the singularity Bx_1, i.e. consists
of all (k — 1)-tuples (Aq,..., Ax—1) such that x’f_l + Axh +--- 4+ Ap_1 as a polynomial in z;
has a multiple or zero root. Recall that By is a boundary singularity described for the first
time in [A1].

COROLLARY H. Under the same assumptions as in Theorem G, a versal unfolding of f
depends on k +n — [ — 1 parameters and can be chosen in the form

B(T1, ey Tl Ay e ey Megnot—1) {1 = @1, 92 = ¥ + X" o Ny = 2,

Yi+1 = T, Yi+2 = >\k+17 ceeyYn — )\k—i-n—l—l}'

The bifurcation diagram of this unfolding consists of all (k+n—{—1)-tuples (A1, ..., Agtn—i—1)
such that the hypersurface £¥ T 4 A\ z¥ +- - 4 Az 23+ - - kP EN A =0
is singular. If [ = k — 1 then the bifurcation diagram coincides with that of the singularity
By and if | = k — 2 with that of Dy

By a trivial (r, s)-extension of a germ f : (R?,0) — (RY,0) we mean the map f : (RP x
R” x R*,0) = (R? x R” x R*,0) which is equal to (f,id,0).

THEOREM I. The normal forms of simple f are the trivial (r, s)-extensions of the following
normal forms. (Below Q = +(y1y2 + 2?23 j:yjz) for the A-series and @ = +(y1y2 + ysys +
> i—s Ty7) in the rest of the cases.)

1) Qf = Ag;  f = (m1,2%), see its reduced versal unfolding in theorem G;
2) Qf = D,irl; (4 forms are different only if k is odd)
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the normal form: f = (x1, 25", o, £2125), its reduced versal unfolding is
Dpreq(x1, T2, A1,y Ag) = {xl,xlf_l + Alx’f_2 + o 4 A1, T, 21T + Ag—171 + A2 };
3) Qs 2 EF;  f = (1,23, 22, +3), its reduced versal unfolding is
PBreg(T1, 22, A1y .. A5) = {1, 2% + A1z, 2o, 25 + Aoz + A3z122 + Aay + As22);

4) Qy = E;
the normal form: f = (xy,x}, 22, 7123), its reduced versal unfolding is

Breg(T1, T2, ALy -y Ag) = {1, 23 + A1, T2, 2105 + AoxT + N33 4+ A\gZ1T9 + AsT1 + AgTa )
5) Qs 2 Eg;  f = (z1,73, 22, 13), its reduced versal unfolding is

Brea(T1, T2, ALy - .-, A7) = {B1, 22HAN1T1, To, T3+ Ao s+ X325+ A aTo+ A5 L1025+ A6 T1 T2+ A721 ).

The adjacency of simple semiregular singularities coincides with the usual adjacency of the
A — D — FE-series, see Fig.1, compare [A3].

REMARK. In all the cases 1)-5) the number of parameters in a reduced versal unfolding
of f equals p — 1, where p is the Milnor number of Q¢ and the induced deformation of Q)
is equivalent to Q5 + > A;e;, where e; € ml2 are representatives of any basis of the quotient

module mf/m,(aaglf ye s %%f) = mf/ml(aailf ey 86%",Qf), compare [A3]. The last identity
holds in all these cases since ()¢ is quasihomogeneous. The bifurcation diagram is reducible
and consists of two components one of which is a cylinder over the usual cone in R? in the
cases 2-5 and is a smooth in the case 1. This component correponds to the case when )¢ has
at the origin a more complicated singularity than just Morse singularity.

REMARK. When [ = n — 1 the only type of singularities which occurs is Q¢ = Aj. Other
simple singularities are realized only if n — [ is at least 2 while in the regular case (i.e. when
f(0) is a smooth point of the cone) one can realize all the simple boundary singularities. Yet
another difference is that in the semiregular case not all the simple boundary singularities
are realized due to the fact that @) is a nondegenerate quadratic form in the ambient space.

A1<— A2<— A3<— A4<— Ast— A6<—A7<—

- N -
D =—D;*/ D=/~ D

E8
7

Fig.1. Adjacency of complex simple semiregular singularities.

PropPOSITION B’. Consider the space 9} of all germs of maps sending the origin to the
vertex of the cone. For any fixed k the list of versal unfoldings and bifurcation diagrams of
a semiregular germs f : (R!,0) — (R",C) occuring in generic k-parameter families of germs
from 9} stabilize as soon as n > k + [, compare B.
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0.3. IRREGULAR SINGULARITIES.
y 2_ 2
3 =
A Y5y,

handle

tanggnt plane

S~ |fvertex  ~“ -

Yy

Fig. 2. The standard Whitney umbrella.

The standard Whitney umbrella is a hypersurface in R3 given by y3 = 2129,y = 72, y1 =
x? in the parametric form or by the equation y3 = y1y3. A Whitney umbrella is a hypersurface
diffeomorphic to the standard one. A Whitney umbrella defines a cross in the tangent plane
at its vertex consisting of the tangent line to its handle and the tangent space to a Whitney
umbrella considered as the image of a map. (On Fig.2. these lines are y;- and y-axis resp.)

The first nontrivial irregular germ f : (R?,0) — (R3,C) occurs when f(R?) is a standard
Whitney umbrella and f(0) is a smooth point of the cone C. In this case we can substitute C
by R2. Moreover instead of normalizing a Whitney umbrella in a space with a hyperplane R?
one can normalize an imbedding of a smooth hypersurface in a space with the fixed Whitney
umbrella, see lemma 3.1.

THEOREM J. The above nontrivial irregular case leads to the following singularities.

a) If C is transversal to the tangent plane at the vertex of the Whitney umbrella then
the Whitney umbrella and a germ of C in the neighborhood of f(0) can be normalized as
{y3 = n1y3, 11 = 2}

b) There are 2 cases of codimension 1 when the tangent plane to C is given by either y; = 0
or yo = 0, see Fig.2. In both cases one gets families of singularities with the bifurcation
diagrams coincides with that of the singularity Bj for some k > 2.

¢) in the most complicated case y3 = 0 any map is equivalent to one of the following
O : (z2,21,25) which has a versal deformation ®g(x1, T, Xo,..., k) = {y1 = T2,y =
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T1,Y3 = Aox1 +$’2" —l—/\kxlg_l +---+ A1} and its bifurcation diagram consists of three irreducible
components, namely, i) A\; = 0, i) p(z2) = 2§ + A\pab™' + -+ + A\; has a multiple zero and
iii) p(A3) = 0. These components correspond to nontransversality of a smooth hypersurface
to the vertex, the handle and to the smooth part of the Whitney umbrella resp.

Recently D. Mond has informed the author that the same problem in the case when the
smooth germ and the germ of Whitney umbrella meet transversally was studied by him in
[Mo].

We consider the real case which is more complicated than the complex one. All the results
hold in the complex case as well if one drops the signs in theorem I. Some preliminary results
in this direction were obtained by the author in 1989. The original motivation to consider the
special case of the cone came from the hyperbolic systems with variable coefficients, compare
[A2]. Sincere thanks are due to V. I. Arnold for his constant support and encouragement and
to V. V. Goryunov for the assistance and explanation of the papers [Dal-2]. The considered
problem is closely related to the more complicated results by V. V. Goryunov on simple
projections, see [G1-2] although (to the best of the author’s knowledge) the above results do
not follow from [G1-2]. The author is very obliged to the referee for the constructive criticism
which enabled to improve substantially the quality of the original version. The author is very
greatful to IHES for the hospitality in January 94 which allowed him not only to accomplish
the present article but also to enjoy the beauty of Paris.

§1. REGULAR CASE

1.1. LEMMA, SEE [Da2]. Let f: (R!,0) — (R™,S) be a germ of a map then:
a) a Ag-versal unfolding ®(z, A) of f is equivalent to f + A;e; where e; € O} are represen-
tatives of any basis of the quotient module

(1) O J{O(0f)0xy,...,0f/0x;) + f*Op(vio f,...,v.0 f)}.

Here

v;, (i =1,...7) is a basis of the module of vector fields tangent to S, i.e. preserving the ideal
of §;

v; o f is the restriction of the vector field v; to the image f(RY').

The denominator in the r.h.s. presents the so-called extended tangent space T..Ag(f) to
the action of the group of Ag-unfoldings on f calculated at the 0 values of parameters, see
[Da2].

b) analogously, a Kg-versal unfolding &D(a:, A) of f is equivalent to f + \;e; where e; € O
are representatives of any basis of the quotient module

(2) 07 /J{01(0f)0x1,...,0f 0z, v10 f,...,v.0 f)},

Analogously, the denominator in the r.h.s. presents the extended tangent space T.Ks(f)
to the action of the group of Kg-unfoldings on f calculated at the 0 values of parameters.

¢) a reduced Ag-versal unfolding ®@,..4(z, A) of the map f is equivalent to f + \;e; where
e; € M} are representatives of any basis of the quotient module

(3) M /{m(0f /0x1,...,0f/0x)) + f*On(v10 f,..., 0,0 f)},

where v1,...,7, is a basis of the module of vector fields tangent to S and preserving the
origin in the target;
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The denominator in the r.h.s. presents the usual tangent space T'Ag(f) to the Ag-action
on f.

d) analogously, a reduced Kg-versal unfolding @red(x, A) is equivalent to f + A;e; where
e; € M} are representatives of any basis of the quotient module

(4) Sﬁ?/{ml(ﬁf/axl, cey 8f/8$l) + Ol(’ljl o f, .. .,f)p o f)}

The denominator in the r.h.s. presents the usual tangent space TKg(f) to the Kg-action
on f.

The proof of this statement is standard and analogous to the proofs of the corresponding
statements about the R-, RL- and K-equivalences, see [AVG], p.122.

1.2. PrROOF OF ProproOSITION A. We start with the following reformulation. Let f :
(R',0) — (R™*,R" %) be a germ of a regular map. (Recall that in the regular case any strat-
ified S can be substituted by R"~*.) Denote by ® 7 a complement to the extended tangent
space TeAgrn-«(f); denote by @f a complement to the extended tangent space ToKCrn-«(f)
and, finally, denote by @, s a complement to the extended tangent space T.(mo f), where 7
is the projection of R" along R™~ ¥ on R¥ and the composition 7o f maps (R',0) to (R*¥,0).
These complements @, P s and Do ¢ are versal unfoldings of the germs f and 7o f resp.
relative to the corresponding group of diffeomorphisms Ag.-#, Kr»-+ and I, see [Da2].

PRrROPOSITION A’. Versal unfoldings ®¢, &Df and émf are equivalent, i.e. each of them
can be induced from any other, see [AVG], p.147 and above.

Proof. The equivalence of ®; and ®; follows directly from the formulas (1) — (2) and the
fact that f*Q,, is isomorphic to O; since f is an embedding. Let us show the equivalence of
&Df and @Wof, i.e. that they can be induced from each other. Note that any map from &Df is
defined by the inverse image of R"~* in the space R’ w.r.t. the group of all diffeomorphisms
of R! (under the assumption that the inverse image of R"~* in R’ has positive codimension).
Analogously, any map from @, 7 is defined by the inverse image of the origin in R! w.r.t.
the same group. Thus we must show that for any map from P s there exists a map from
@m s with the diffeomorphic inverse image of the origin and, conversely, for any map from
Do s there exists a map from P ¢ with the diffeomorphic inverse image of R"~ k. The last
statement is obvious in one direction. And conversely, let us for any h € Do # construct a
map ¢ the inverse image of R™ % of which coincides with the inverse image of the origin for h.
Let f1,..., fn_r be coordinate functions of the map f which are ’forgotten’ by the projection
7. Then, obviously, one can take the map g = {f1,..., fa—x; h}. O

REMARK. As was pointed out by the referee a more general 'invariance of Ky -equivalence
under suspension’ was proved in [Da3].

COROLLARY. Versal unfoldings ®; and ®; of a regular germ f : (R}, 0) — (R™,C) are
equivalent to a K-versal unfolding of the function @) ¢, where () is the quadratic form defining
the cone C and Q; is the pullback of @ in the space R!.

Proof. Apply the previous proposition in the neighorhhood of a smooth (by the definition of
regularity) point on the cone.

REMARK. If f is the germ of a smooth curve with the order k of tangency to a germ
of a smooth hypersurface then its Kg-versal unfolding of the is equivalent to a K-versal
unfolding of the map z* : (R,0) — (R, 0). (In this case K-versal and R-versal unfoldings are
equivalent.)
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1.3. PrOOF OF COROLLARY B. Corollary B follows directly from the above corollary and
the following count of parameters.

If f is a regular germ f : (R!,0) — (R™, C) occuring in a generic k-parameter family then
the corank cr of the quadratic part of Qs satisfies the inequality cr(cr —1)/2 < k and thus

Q) is stably equivalent to a function on at most (k) = [ﬂ] variables. Indeed the
codimension of the stratum of all quadratic forms on R* of corank cr equals to w and by
weak transversality a generic (k — 1)-parameter family of quadratic parts of the zero levels of
functions can intersect such a stratum only if & > w The parametrized Morse lemma

provides that such a germ () is stably equivalent to a germ of function on cr variables. The

14148k
2

assumption cr < (k) = completes the proof.

§2. SEMIREGULAR SINGULARITIES

2.1. PROOF OF PROPOSITION C.

The tangent space T'A¢ of a semiregular germ f lies in the extended tangent space T Ac(f).
Moreover, the latter is obtained from the former by adding the [-dimensional vector space
of parallel shifts of coordinates in the source since all vector fields preserving C vanish at
the vertex of the cone and the linear part of f is nondegenerate, compare denominators in
the formulas (1)-(3). Thus the A¢-versal unfolding of f differs from its reduced Ac-versal
unfolding only by some subspace of parallel shifts of the target. The deformation induced
by the [-dimensional space of those shifts of the target which preserve the tangent space to
f(R}) at the origin is cancelled by the I-dimensional space of the parallel shifts of the source.
Therefore, the (n — [)-dimensional quotient space belongs to the versal unfolding. O

2.2. PROOF OF PROPOSITION D. We start with the following simple statement.

Consider the group O, , of all linear transformations preserving some nondegenerate
quadratic form @ in R™ the index of which (i.e. the number of negative squares) is equal to
m. The group O, , acts in the obvious way on the Grassmanian Gy, .

2.2.1. LEMMA. An orbit of Oy, »-action on the Grassmanian G ,, consists of all [-dimensional

subspaces L with a given corank and index of the restriction of () | L. Moreover, any such

subspace L. C R" of dimension [ with the corank cr and the index « there always exists a
: +

basis (y1, .. s Yn) such that Q = Zf;l Y2i—1Y2i — Z?:;é:“ y]2 + Y mterit y2 where the

subspace L is spanned by the coordinates yi,ys,...,Y2cr—1,Y2er+1; Y2er+2; - - - » Y2er+a and

Ym+cer+1s- -y Ym+l—a-
Proof. Use the reduction of the degenerate quadratic form Q7 to its normal form. O

2.2.2. THEOREM. Let f : (R!,0) — (R",0) (0 is the vertex of C) be a semiregular map
such that the corank of the quadratic part of Qf equals cr. Then the map f can be re-
duced to the form (1, ¢1(x1, ..., 21), o, P2(T1, .oy T1)y e ooy Tory Per (T1+ ooy T1)y Teraty e - -y T,
0,...,0), where ¢1,...,¢, € m? in an appropriate system of coordinates (x1,...,z;) and
(y1,.-.,Yn) in which the cone C is given by Q@ = y1y2 + - - + Yocr—1Y2er + Z?Z%TH j:yjz =
0. Moreover, a reduced versal unfolding of f can be chosen as (z1,®q(z1,...,7,\), To,

Oy (z1, ... 21, ),y s Tepy, Per(T1, -+ o, T, A)y Zepg1y - - -y X1, 0,...,0), where @y, ..., P, € m for

all values of parameters \.
Proof of theorem 2.2.2 is based on Mather’s homotopy method in its usual form, i.e. if

ft, t € [0,1] is a family of maps such that % € TAc(ft) for all t € [0,1] then fy is Ac-

equivalent to f;. In order to present the tangent spaces T A¢ (f;) more explicitly, using lemma
1.1 we need the following proposition.
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PROPOSITION. A basis of the module of vector fields tangent to a homogeneous surface
H with an isolated singularity at the origin can be chosen in the following way, see [L]. One

of the generators is the standard linear field (yla%l, e yn%) while the rest are all (2 x 2)-
0 0

determinants of the (2 x n)-matrix < ?)yl o ]33% , where P is the polynomial defining
s e Py,

the hypersurface and P,, = g—i.

REMARK.Applying this statement to C given by Q = y1y2 +- - - + Y2er—1Y2er + Z;CTH j:yjz
one gets the basis of vector fields tangent to C consisting of the Euler vector field: Y., y;0/9y;
and 3 groups of generators:

a) y;@/ayi — y;0/0y;, i < j < 2cr where i=1i—1ifiis even and ¢ = i + 1 if i is odd (the
same rule applies to j and j);

b) £2y;0/0y; — y;0/0y;; i < 2cr,2er < j < n;

c) +y;0/0y; F y;0/0y;, 2cr <i < j < n.

Proof. Applying lemma 2.2.1. to the image of the nondegenerate linear part of f one re-
duces it by a linear transformation to (21,0, z2,0,...,Z¢, 0, Zerg1, Tert2, - - -, 21, 0,...,0) and,
therefore, reduces f itself to (z1, ¢1, T2, P2, .o\ Tery Gery Tert1s Terts - vy Tly Pertts - s Prui)s
where all ¢; € m?. Let us get rid of ¢¢ry1, ..., Pn—i by a C-preserving diffeomorphism. First
we remove all terms in ¢ey41,. .., ¢p—;) divisible by any =; where j < er. Namely, for any cr+

1 <k <n—landj < cr there exists a vector field of the form (0,0, ..., +¢%,0,...,0,2;,0,...,0)
with £¢;, standing at the position 25 and z; standing at the position cr 4+ k. According to
[AVG] using the homotopy method with this vector field we can remove all terms in ¢y, divisi-
ble by z;. Insuch a way we reduce f to the form (z1, ¢1, T2, P2, ..., Zery Gers Terg1, Torg2, - - -5 T,
QNSCTH, e qz~$n_l) where all q;k depend only on Zcp41,...,z;. Here we use Mather’s homotopy
method again. Denote by f;, ¢ € [0, 1] the family (x1, ¢1, T2, P2, . - ., Tery Pery Tert1s Tert2y - - - Tl
thersts- - stdn_t). Then %t = (0,...,0,ecri1,...,Hn_t). Denote by M;_.. the Op_-
submodule consisting of all maps of the form (0,...,0,Ceri1,- -, Cnt), G € ME . (Tertt1y- .-, T1).
Let us show using the above basis that M;_.. belongs to T A¢(f;) for all ¢ and thus fy

is Ac-equivalent to f;. By lemma 1.1 the tangent space to T Ac¢(f:) is the O;-module
{my(0ft/0x1,...,0ft/0x;) + Oi(v10 ft,...,0,0 ft)} where 9; belongs to the above basis. As
above among the vector fields of the basis there exist all vector fields of the form (0,0, ..., bre,
0,...,0,2;,0,...,0),cr+1 <k <n—1land cr+1 < j <[ where qgk stands at the position
cr+7j and z; stands at the position cr+ k. This means that M;_, is contained in the tangent
space to all f; and the homotopy method gives the necessary reduction. O

Using lemma 2.2.2 one gets Proposition D directly. Indeed, the reduced versal unfolding
of a semiregular f consists of the semiregular maps and, therefore, their induced functions
belong to m?. Taking the induced functions one maps the whole orbit A¢f onto the whole
orbit £Q¢. Indeed, one can cover the whole R(Q s-orbit by changing coordinates in the source
and one can multiply the induced function @y by an arbitrary nonvanishing function by using
the diffeomorphisms of the target which preserve the cone C. Since the tangent space TKQ s

to the orbit KQ at @y is identified with m,{an 99 Q}. We now show that any un-

oxy ? ’ Oy, ?
folding Qx = Q¢ + €(x1, ..., 21, A1, ..., Ag) in the1 class ml2 can be covered by an appropriate
origin-preserving unfolding ¥y = f(x1,...,2;) + ¥(z1,..., 2, A1, ..., Ax). By lemma 2.2.2
one has @ can be reduced to Qx = Y ir | Tidi(w1,. .., Ty, A1y. oy Ag) +Z;:CT+1 23, ¢ € My
for all values of parameters Ay, ..., A;. The difference Q) — Qs = e(x1,..., 2, A1,..., Ag) can
be expanded as Z1§i§j§l zixj€; i (T1,. .., 2, A1y, Ag). To obtain e(x1,..., 2, A1,. .., A)
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we first deform the original map f = (1, d1,-..,ZTer, Gery Tertt,---,21,0...,0) by adding
Y- €ijxjto ¢ foralli < cr. It is left to compensate € = zcr+1<i<j<l i€ 5 (T1,. .o, Ty Aty

by deforming (z¢-11,-..,21,0,...,0). Since € is a small deformation of a nondegenerate qua-

dratic form Zlcr 41 j:a:? then the parametrized Morse lemma provides the existence of the

necessary deformation. [

Proof of Corollary E. 1t follows immediately from the fact that taking induced functions one
maps the orbit A¢ f submersively onto Q) ¢, proposition D and the fact that the K-modality
of any function ¢ with a singularity at the origin equals the -modality of ¢ in the space
m?. The last statement is proved along the same lines as the corresponding statement for the
R-equivalence, see [Gal.

Proof of Remark F. By the proposition C and lemma 2.2.1 the family of parallel shifts can be
written in the form («I'la ¢1 + )\17 T2, ¢2 + )\27 sy Tery ¢CT + >\c7“7 Ler41y -5 Ll >\c7“+17 SRR An—l)v
where cr is the corank of Q. This directly gives the necessary answer.

2.3. PROOF OF THEOREM G. We start with the easiest case f : (R,0) — (R"™,C), where f
is the germ of a smooth curve passing through the origin tangent to some ruling of the cone
C:H{Q=wwyaty3+---+ys =0} ;

By lemma 2.2.2 it suffices to consider the case of plane curves images of which lie in the
plane spanned by y; and y2. Let us denote by fi(z) the parameterized curve (y; = x,y2 =
x¥, y; = 0, i > 3) and show that any other germ of a smooth curve passing through the origin
is diffemorphic to one of those. The extended tangent space To Ac(fx) of fi is presented as

1 (/[ x x 0 0 )

fek—1 ok gk 0 0

0 0 0 0 0
TeAC(fk):Om : +Om< : ) . 90y ) 7>

: : : —xk o

: 0 0

0 L\ 0 0 )
for all 3 <z <mn.

It is convenient to choose the reduced versal unfolding ®,cq(z, A1, ..., A\p_1) : {y1 = 2,92 =
oF A A1, y3 =0, ..., ¥, = 0} using (3)-(4). The inverse image of the cone in
the extended space of parameters (z, A1, ..., Ag—1) has the form gty b4+ 122 = 0.
The bifurcation diagram in the space of parameters (A1,...,Ax—1) is the hypersurface of the
singularities of projection or, in other words, the set of all (k — 1)-tuples (Ay,...,Ax_1) for

which 2*~t + X\12¥ 4+ .-+ \;_1 as a polynomial in the variable = has a multiple or zero root.
Since for any h consisting of terms of degree > k the tangent space T'Ac(fr + h) contains
all monomials of degree > k it follows that the Ag-orbit of fi contains all fi + h (probably
after multiplying @@ by —1) according to [Da2]. Therefore, these cases do not require separate
consideration.

Let us now mention the necessary changes to adjust the above proof to the case of a
semiregular map f : (R!,0) — (R™,C) such that the quadratic part of the restriction @ of
Q = y1y2 T y3+- - -£y2 defining C has a one-dimensional kernel. One can assume without loss
of generality that the 1-jet of f is (z1,0,22,...,2,0,...,0). The quadratic part of Q) has the
form +23+- .-+ 27 by lemma 2.2.1. After analogous considerations of the 1-jets of the vector
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fields one gets that the only family of germs to be considered is (zq,x%, 2o,...,1,0,...,0).
Now the consideration of the corresponding vector fields gives that its reduced versal unfolding
can be chosen in the form (1, x’f—l—/\lx’f_l +---+Ag—171, T2, ..., x,0,...,0). The restriction
of the cone C has the form z(z§ + X2+ + Ny_12y) £ 23+ -+ 27 =0, i.e. is stably
equivalent to the same restriction as in the previous case.

Proof of Corollary H. The Ac-versal unfolding of the map (xy,2%, zs,..., 27, 0,...,0) can
be chosen as (zq, 2% + )\1:(:’{’_1 + o4 Ak, T2y e Ty A1y -y Aptk—i—1) by proposition C.
The rest follows immediately. On Fig.3 one can see the monomials included in this versal
unfolding of fi; the arrow shows competing monomials, i.e. either of them but not both must
be included in the versal unfolding. When [ = n — 1 then, rather obviously, the above versal
unfolding and its bifurcation diagram are equivalent to that of the singularity Bg. Let us
show that when [ = n — 2 the bifurcation diagram coincides with the bifurcation diagram for
the singularity Dy41. This follows from the form of the standard versal unfolding of Dy 1,
see [AVG]. Namely, taking the standard versal unfolding of Dy11 as ®(x1, 22, A\1,. .., Agy1 =
x’f + xlxg + Alxlf_l + -+ Mg + Ap+12 one gets that its bifurcation diagram is defined by the
system

®=0
22 — w4k (k- DA T 4+ XNem = 0
g_g = 22179 + 2\p41 = O.
Using the expression 7 = _);’“2“ from the last equation one gets that the first two equation

are equivalent to the condition that the polynomial x’f“ + Ak 4 Ay — /\iJrl has a
multiple zero. Unfortunately the direct relation between the above semiregular singularity
and Dy is still unclear.

Q
O
Q
O
O
Q

Fig.3. Circled monomials are included in the versal unfolding of fk
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2.4. PROOF OF THEOREM I.

Using corollary E one gets that the corank of the induced function @)y of a simple semireg-
ular f is at most 2 since all simple singularities of functions have the corank < 2. The case of
corank 1 is covered by theorem G. In order to classify the simple singularities of corank 2 it
suffices to consider only the case f : (R2 0) — (R*,C) where C given by Q = y1y> + y3y4 and
the 1-jet of f equal to (x1,0, z2,0) by lemmas 2.2.1 and 2.2.2. Any semiregular map satisfying
the above conditions will be called an adjusted 2 — 4-map. Consideration of simple adjusted
2 — 4-maps splits into a series a lemmas. Since we are only interested in the cone C we allow
to multiply its defining form @) by —1 while finding the normal forms of f.

2.4.1. LEMMA. Any adjusted 2 — 4-map can be reduced to one of the following two forms:
i) (21,25, 22, 229(x1,22)), k > 2 and g € my;
11) (.Tl,o,a?z, h(l’l,l'g)), h e m%

Proof. Obviously, any adjusted 2 — 4-map f reduces to (z1, ¢1(z1,x2), T2, p2(x1, x2)) where
¢1, P2 € m. The vector field V = (0, z2,0, —z1) is tangent to the Ac-orbit of any such f, see
2.3. Therefore one can remove either of all the terms of ¢; which are divisible by x5 or of all
the terms of ¢ divisible by x;. Namely, we apply the homotopy method in the form: if f;
satisfies % € TAc(f;) for all 0 < ¢ <1 then fy is Ac-equivalent to fi. Since v € T Ac(f;)
all fy = f+t(0, hxo,0, —hzy) then f is equivalent to f + (z1, ¢1 + hxe, T2, po — haxy). Thus, if
either ¢, itself is divisible by x5 or ¢4 is divisible by x; one can remove of the corresponding
function completely and obtain the case ii) up to renumbering of components. Let ax’fl be
the smallest power of z1 in ¢ (z1,z2) and ﬁxlll be the smallest power of 21 in ¢2(x1,22). Let
us show that using the homotopy method and renumbering of components f can be reduced
to (x1, 2%, 29, o (21, 22)), where k = min(ky, ;). After some straightforward transformations
of the basis of the tangent vector fields one gets only two fields which preserve the first and the
third components and affect powers of 1 of the second component, namely, (0, ¢1,0, ¢2) and
(0, 92,0, xl%). Using them we can remove all powers of 1 of degree greater than min(ky, ;)
and multiplying the first component by a constant and dividing the second component by
the same constant we get that the only power of x; included in ¢; is =¥ (possibly after
multiplication of @) by —1). Finally, we remove of all powers of z2 in ¢; as described before.
Now we arrive at the form (xl,x’f,:vz,QNSQ(xl,xz)), where qNSZ(xl,:Uz) is not divisible by x;.
Let us assume that ax‘l, [ > k is the smallest power of z1 in qNSZ (x1,22). In this situation
considering the basis of tangent vector fields one gets the vector field (0,0, 0, (k+1)z%¥+, g%i).
We again apply the homotopy method using the last vector field and remove all powers of x;
in ng and get that the fourth component is divisible by x5. The statement is proved.

2.4.2. PROPOSITION. In the case i) of lemma 2.4.1 an adjusted 2 — 4-map is simple if and
only if one of the following possibilities holds.

If k > 4 then in order to be simple g must have a nondegenerate linear part oz + Sz, o+
B2 # 0. If a # 0 then g reduces either to g(x1,z2) = £ which gives

1) Qf = D,irz, k>3, f=(x1,2% w9, £2125). If k is even then the 4+ forms coincide and
one can drop signs of the last component.

If « = 0 then g reduces to g(r1,z2) = +xo which after renumeration of components
coincides with the case k = 2 below.

If £ = 2 and g has a nonvanishing linear part then g reduces to g(z1,x2) = +x; which
leads to

2) Qf = Dézlt? f = ($17$%7$27i$1$2)~
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If £ = 2 and g is a simple singularity with vanishing linear part and nonvanishing quadratic
part ax3 + Brizs + vri, o + 2 + 2 # 0 then one of the following options is possible.

If o # 0 then g reduces to £23 which gives

3) Qf = By, f = (w1,a3, 1, £3).

If « =0, 3 # 0 then g reduces to x1x2 which gives

4) Qy = Er, f = (x1,27, 72, 1123).

If « = 8 = 0 then using the homotopy method with the vector field V' from lemma 2.4.1
one can get rid of the whole quadratic part of g and obtain either the case 5) of this lemma
or the case ii) of lemma 2.4.1.

If k = 2 and g € m3 then in order to be simple g must have a nontrivial cubic part
containing a3 , o # 0 and in this case it reduces to g = 3 which gives

5) Qf = Eg, f= ($1,$%,$2,$§).

Proof. Case 1). If k > 3 then the induced function Q5 = x’f“%—x%g, g € my. Since any simple
germ of function has a nontrivial cubic form, (see e.g. [A3]) then g has a nonvanishing linear
part awy + Bre, o + 3% # 0. Let us present g = axy + B2 + g2, where go € mi. Working
with the basis one gets 4 vector fields with the first three components vanishing and the
following nontrivial quadratic parts of the last component, (0,0, 0, kaxizs+ (k+1)Br3+...);
(0,0,0,az3+...); (0,0,0,2az122 + 3823 +...) and (0,0,0, 2ax? + 3Bz122 + ... ), where . ..
denotes all terms of order at least 3. If & # 0 then using the second field we can remove of
Bx2 in the fourth component of f, i.e. of By in g. Finally, by multiplying the third and
the fourth components of f by an appropriate constant and its inverse we force a = +1.
If £ is even then changing the sign of x; one can force the last component to be xyxo. If
a = 0 then we can normalize the coefficient § by making § = +1. In this case one gets
f = (1,2}, 29, £2% + ...) which coincides with the case 2) below up to renumbering of
components.

Case 2) is similar to the case 1).

Case 3). If k = 2 one gets Q¢ = x} + x39. According to the classification of simple germs
of functions we conclude that g has at least a nontrivial 3-jet. Let us first assume that its
2-jet is nonvanishing, i.e. ¢ = ax3 + Br12s + vz} + g3, @ + 32 + v # 0. Working with the
basis of vector fields one gets the following 4 fields affecting only the fourth component of
f:(0,0,0,v23ws + Br123 + axd +...); (0,0,0,322 4+ 2yz123 + Bxs +...); (0,0,0,2y23xs +
3Br1z3+4ars+...) and (0,0,0, 2v23+ 3823 xo +4ax1 w5+ . .. ). We denote them by vy, ..., v4
resp. Since vy has the term 322 one can always get rid of the term yx? in g. Assuming that
v = 0 one gets vy — Pvy = 4a$1$§ + ..., where ... denotes all terms of order at least 4. If
a # 0 one can get rid of the term B2z, in g and moreover normalize it to g = +x2 + g3.

Case 4). If @ = 0 and 8 # 0 then g reduces to g = fz1x3 + g3. Multiplying x5 by an
appropriate constant one gets g = 122 + g3.

Case 5). Let us assume that f = (v1,23, 22, 22(P3 + g4)), where P3 denotes the cubic
part. One concludes that if )y is a simple germ of function with the 3-jet equal to 3
then its 5-jet must contain x3 + ax3 + ..., @ # 0 and therefore P3 = az3 + ..., see [A3],
p.13. Let us check that in this case P3 reduces to z3. At first we force o = 1 by the
usual trick. Let P3 = 3 + Bx113 + yx3wy + dx3. The appropriate basis of vector fields is
(0,0,0,3z3+2Bz175+vxix3+...); (0,0,0,322+B25+ 2y 03 +30x2223+. .. ); (0,0,0, 521235+
482322 + 3yardxe + 202t + .. ).

Using vz one removes yz1z3 and 623 in g. Taking v = § = 0 one gets vy — 32302 =
5r1r3 + ... and removes the term Bz122 in g. Thus, g = 23 + ga.
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In order to finish the proof of simplicity it suffices to check that all the jets of f presented
in the formulation of lemma 2.4.2 are sufficient and describe their adjacency. Sufficiency will
be discussed in the separate statement 2.4.5 and adjacency is postponed until 2.4.6. O

2.4.3. LEMMA. In the case ii) of lemma 2.4.1 an adjusted 2 — 4-map is simple if and only if
the function h has a nontrivial quadratic part h = ax? + Bz129 +v23 + hs, 2+ B2 +42 #0
and one of the following possibilities holds.
If o # 0 then A reduces either to 22 4+ 22 which gives
a) Qy = fo, f=(21,0,29, 22 + 22)
or h reduces to z? which gives
b) Q¢ = Dk+2, f = (21,0,22,22 + 2%), k > 3. Here the +-forms are different only if k is
even.
If & = 0 then h reduces to xix, which gives
c) Qf = D2k7 k>3, f=(x1,0,70, 2119 + z%).
If « = 8 =0 then h reduces to 23 which gives
d) Qs 2 Eq, [ = (21,0,22,23 + 173).
Proof. Considering the basis of the module of tangent vector fields one gets the follow-
ing 4-tuple of vector fields affecting only the fourth component (0,0,0,Bxixs + 2y13 +
2); (0,0,0, 2022 + Brixzs +...); (0,0,0, 20w + Bx2 +...) and (0,0,0, ax? + Brizs +
yx3 + ...). After some obvious linear transformations one gets (0,0,0,...); (0,0,0,2ax? +
Briza+...); (0,0,0,2ar 22+ Bx3+...) and (0,0,0, (2v— ) 2+ )denoted by v1,...,v4
resp. Case a). If & # 0 then one normalizes it by making a =1 (p0351b1y after multiplying ()
by —1). Then using v3 one cancels Bxixs in h. We arrive at h = 2% + 3 + hz. If v # 0 then
using the last field we can normalize it by making v = &1. Thus, h = 22 £ 22 + h3. In 2.4.5.
we will discuss the sufficiency of the presented 2-jet. Case b). If v = 0 then h = z? + hs.
Using the fields v2 and v3 one can remove of all terms in hg divisible by z1x5. Therefore
h =2 +(5a:'2“ 14 . ... Analogous arguments show that we can remove of all the terms denoted
by ... and obtain h = 23 £ 2571, Case ¢). If « = 0 and 8 # 0 then using vs one removes vz
in h and normalizes 3 = 1. Now using ve and vz one removes all the terms in hgz divisible by
r1x9 and by $2 Thus, h = z129 + a:c’f .... The same arguments show that h normalizes to
h = z1m9 + 2. Case d) If « = 3 =0 then h = yx3 + h3. The constant v normalizes to 1
and the arguments analogous to the case 4 of lemma 2.4.2 shows that if f is simple then hs
contains yx3 and reduces to hz = 3 + hy.

2.4.4. DIFFERENT NORMAL FORMS.
Lemmata 2.4.1-2.4.3 give us the unique normal forms for the singularities Ag, Fg and Ejg
and provide the following list of normal forms for D 41 and E7.

Qs = DE 15 (& forms are different only if & is odd)
a) the normal form: f = (z, x’f Lz, j:xla:z), its reduced versal unfolding is
Droq(T1, T2, A1y ooy Ag) = {a:l,arl + )\1;1: 2 o Ao, T, £ Ty + 121 + A2 };
b) the second normal form: f = (1,0, 2o, 23 = 2571), its reduced versal unfolding is
Bred(T1, Tas A1y .oy M) = {@1, M@, T, 22 £+ 2571+ Xowy + Agzg + - - + Mezh 2}

c¢) if £ > 3 then there exists the third normal form: D;k : f = (21,0, 20, 1129 + 2V), its
reduced versal unfolding is

Dpoa(21, o, A1, -5 Aak—1) = (1, ATy + Aom? + -+ Ap12h L 2,

r1x2 + :E’f + Ao + Ag171 + >\k+2$% NS )\Zk—w’f_l).
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Qs = Er;
a) the normal form: f = (1,22, z2, z123), its reduced versal unfolding is

Dpea(T1, T2, A1y - -, A6) = {01, 2] + MZ1, T, 2175 + Aas + A3x3 + A\am122 + AsT1 + AeT2};

b) the second normal form: f = (1,0, zs, 23 + z3), its reduced versal unfolding is

Dprea(T1, T2, A1y - -5 A6) = {01, A1 + A3, T2, 05 + 7 + X321 + Mas + AT + AT 122}

PRrROPOSITION. In each of the above subcases all the normal forms present 1 orbit.

Proof. In order to show that the first and the second normal forms belong to the same orbit
in all the subcases one should notice the following. Any change of coordinates of the form
U1 = Y1,Y2 = Y2 + ysh,ys = y3,ys = ya — y1h, where h is an arbitrary smooth function
preserves the cone C : {Q = y1y2 + ysys = 0}. For an adjusted 2 — 4-map f that means
that if one adds x2h to the second coordinate and simultaneously subtracts xzih from the
fourth coordinate then one obtains another map belonging to the orbit of f. This explains
why the first and the second normal forms belong to the same orbit. It is left to show that
the third normal form belongs to the same orbit as the second normal form of D;k, i.e.

why (21,0, 2o, 27 — £2872) 2 (21,0, 29, T129 + 2¥). The second normal form is equivalent to

(z1, 23+ 222", 29, 0) or after renumbering of coordinates to (1,0, zo, 3 +z125 1), Making
the coordinate change 11 = x1 — x’z"_l one transforms the last map into (z +x'§_1, 0,9, 21+
2x125 ). Multiplying x5 by a constant one gets (z; + azs 1,0, 29, 21 + 212571). Finally,
any change of coordinates of the form y; = y1 + hys, y2 = y2,Ys = y3, Yys = y4 — hys preserves
the cone. This transformation applied to (z; + azy 10,22, z1 + 2125~ ") with h = —azh ™2

. k—1
gives (r1,0,x2,x1 + 125 ). O

2.4.5. CRITERION OF SUFFICIENCY OF A GIVEN JET.

Recall that the k-jet is called sufficient under the action of a chosen group if any pertur-
bation of f by any terms of degree greater than k£ belongs to the orbit of f. Let us denote
by M7 (4) the O;-module of all germs (R!,0) — (R",0) all components of which have degree
> j. By general results of [Da2] one can apply Mazer’s homotopy method to check stability
of a given jet. Thus sufficiency of the k-jet of a germ f (under the action of A¢) is equivalent
to the fact that the A¢-tangent space to any f + ¢, ¢ € M} (j) contains the whole module
M7 (j). The last condition for semiregular germs f is equivalent to the following statement.

CRITERION OF SUFFICIENCY. The k-jet ofa semiregular germ f : (RY,0) — (R™,0), (0 is
the vertex of the cone C) is Ac-sufficient if and only if the Oj-module {m? (0 f/0z1,...,0f/0z;)+
my(v10f,...,0p0 f)} contains the submodule M} (k + 1), see notation in lemma 1.1.

PROOF. Let us sketch the proof of sufficiency of the above condition (the necessity is almost
obvious). Indeed, let us assume that {m?(0f/0x1,...,0f/0x)+my(v10f,...,0,0f)} contains
the submodule M7 (k + 1). Then since the vector fields vy, ..., v, are linear the same is true
for all f + ¢, ¢ € MP(k+ 1). Therefore for all ¢ the tangent space T Ac(f + ¢) contains
M7 (k +1). Thus, for the family f, = f +t¢, t € [0,1] the velocity vector % belongs to
T Ac(f:) and therefore f is Ac-equivalent to f + ¢. O

Using this criterion one can check that all the normal forms in Theorem I and section 2.4.4
are sufficient. Let us illustrate this in the most complicated case () ¢ = D;k (21,0, 29, 129+
o), k > 3, see 2.4.4. We must show that the k-jet is sufficient. The corresponding vector
fields are (1,0,0, zo4kz¥=1); (0,0, 1, 21); (21,0, 20, 2120 +2%); (21,0,0,0); (z122+2%,0,0,0);
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(£2,0,0,0); (0,25 + k¥, —21,0); (0, 22,0, —21) and (0,0, —z9, T122 + 2%). After some sim-

plifications one gets (1,0, 0, zy+kz¥™1): (0,0, 1, 21); (0,0,0,z%); (0,0,0,z125); (0,2%,0, 222);

(0,22,0,—x1) and (0,0,0,z3). We must represent any (k + 1)-jet, & > 3 by m3{(1,0,0, 2> +

kzh=1):(0,0,1,21)} +me{(0,0,0,2%); (0,0,0, z125); (0,2%,0,223); (0, 22,0, —x1); (0,0,0,z3)}.
Any perturbation of degree k + 1 of the first and the third components is cancelled by

m3{(1,0,0, 2+ kz¥"1); (0,0,1,21)}. Any perturbation of degree k -+ 1 of the second coordi-

nate is removed by mz{(O 0,0,z%); (0,0,0 xlxz)} Finally, any perturbation of degree k + 1

of the fourth coordinate is contained in mz{(O x%,0,222); (0,22,0,—z1); (0,0,0,23)}. O

2.4.6. ADJACENCY OF SIMPLE SEMIREGULAR GERMS.
PRrROPOSITION. The adjacency of the simple semiregular germs coincides with the adjacency
of the corresponding induced singularities (and, therefore, is presented on Fig.1).

Proof. The statement follows from the analysis of the reduced versal unfoldings given in
Theorem I together with lemmas 2.4.2-2.4.3. For Q; = A the statement is obvious. For
Qr = k 1 we will analyze the reduced versal unfolding of the first normal form. Nonvanish-
ing Ap—1 or A give nontrivial quadratic part of Q5 and thus lead to A;, | < k. Nonvanishing
A, -, Ak—2 lead to Dli, [ < k. In the case 3) Q5 = Egt nonvanishing A1, A4 or A5 lead to A;.
Nonvanishing Ay or A3 give Dy or Ds according to lemma 2.4.2. Analogous arguments for
E; and Ejy finish the proof. Recall that reduced versal unfoldings of the simple semiregular
singularities are equivalent as versal unfoldings to Qs+ A;e;, where e; € m? are representa-
tives of a basis of m?/ m,(aagf yenes 88? ) and thus reduced versal unfoldings are different from
the usual versal unfoldmgs of the mduced function Q. In particular, the bifucation diagram
of the former contains two irreducible components while the bifurcation diagram of the latter
is irreducible. [J

2.5. ProprosIiTION B’.

2.5.1. LEMMA. Fixing a nondegenerate quadratic form () in R™ with the number of negative
squares equal to m let us consider the stratification of Grassmanian Gj , into strata S, where
S, consists of all [-planes such that the corank of the restriction of () to any of these planes
equals ¢r < min(l,n,m — n). Then codim S, = ¢r(cr —1)/2.

This lemma is proved by the same argument as the analogous statement for the quadratic
forms.

PROOF OF B’. Any semiregular f : (R!,0) — (R", C) occuring in a family of semiregular
maps with & parameters has the corank cr of the quadratic part of Qs satisfying cr < {(k) =
[LVZHSI“] by lemma 2.5.1. Therefore, any such f can be reduced to (x1, ¢1, 22, @2, ..., Tew),
Pe(k)s Te(k)+1s--->21,0,...,0) and its reduced Ac-unfolding deforms only ¢1, ..., ¢¢). Thus
all such semiregular singularities are eqivalent to semiregular singularities on at most £(k)
variables. If the number of variables is restricted then the stabilization is obvious.

§3. IRREGULAR SINGULARITIES

Let us start proof of theorem J with the following statement, see [Da3].

3.1. LEMMA. Let f: R’ — R™ be a germ of embedding and ¢ : R¥ — R" be a germs of
a stable map (see the definition of the stability of germs in [AVG], page 115). Let ®;p,(5)(¢)
and @) (f) be an A;j,(5)-versal unfolding of ¢ and an A;,,(4)-versal unfolding of f resp.
Then ®;p,(4)(¢) is equivalent to ®;p,(4)(f) as versal unfoldings.

REMARK. Apparently the same statement holds if both f and g are stable germs.
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3.2. PROOF OF THEOREM J.

Proof. Now let f : (R%,0) — (R3,C) be a germ of Whitney umbrella tangent to the cone C at
some point different from the origin. In this case one can obviously substitute C by a germ of a
smooth hypersurface. Thus we can normalize a germ of smooth hypersurface in the presence of
the standard Whitney umbrella {y3 = y;y3} using the lemma 3.1. The natural basis of vector
fields tangent to the standard Whitney umbrella is vy = (0,y2,y3), v2 = (2y1,0,y3), wv3=
(2y3,0,94%), wvs = (0,y3,y1y2). At first we enumerate all cases of nontransversality of the
tangent plane to a smooth germ w.r.t. the standard Whitney umbrella, i.e. all orbits of
positive codimension of the action of 1-jets of vector fields preserving the Whitney umbrella
on the 1-jets of germs of smooth hypersurfaces.

One has to consider the following 3 types of 1-jets of f: a) (axy + Bz2,x2,21), b)
(x2, a1, 21) and ¢) (2, z1,0).

Case a). The 1-jets of vector fields have the form (a,0,1); (3,1,0); (0,z2,21); (2az1 +
2Px2,0,21); (x1,0,0); (0,21,0), or after reduction («,0,1); (8,1, 0); (ax1+Bz2,0,0); (B,
0,0); (21,0,0); (Bx1,0,0).

It splits into 2 subcases:

a’) The typical case of codimension 0 when § # 0; in this case the tangent plane can be
reduced to the form y; = yo = z2,y3 = 1.

a’") The special case of codimension 1 when 3 = 0; in this case the tangent hyperplane is
y1 = 0 and the 1-jet of f is reduced to the form y; = 0,y2 = x2,y3 = 1.

Case b). For the 1-jet (z2,ax1,x1) one gets (after some obvious simplifications) the fol-
lowing 1-jets of vector fields (0, a, 1); (1,0,0); (0,0,21); (0,x1,0).

Therefore the initial jet of the map f can be always reduced to the form (x3,0,21).

Let us now consider the subcases of positive codimension. The subcase a’) is generic.
In the subcase a’’) the 1-jet of f is (0,z2,21) and the 1-jets of vector fields have the form
(0,1,0); (0,0,1); (z1, 0,0).

This means that one can restrict consideration to the germs of maps of the form (g(z2), z2, z1)
according to results of [AVG] p.180.

Let us consider the series of maps Fy, : (2§, 22, 21). The corresponding basis of vector fields
has the form (0,0, 1); (kx’z"_l, 1,0); (0,22, 21); (225,0,21); (211,0,0); (0,21,0). The versal
unfolding of Fj is

Dp(w1, w2, A1, - M) s {yr = a5 + Aab ™ 4+ ALy = 30,3 = 21 )
The inverse image of the Whitney umbrella is given by the formula 2% — x3(z5 + )\k$’2"_1 +
s A)2 =2 — 23p(ns) = 0.

For a generic set of A the inverse image of Whitney umbrella has a point of transversal
selfintersection at the origin and is smooth at other points. Violation of genericity occurs
when p(z2) has the zero or multiple root. Thus one gets the bifurcation diagram of the
singularity By.

Case b). The 1-jet of the map f is (z2,0x;). The corresponding 1-jets of the vector
fields are (1,0,0); (0,0,1); (0,0,z2); (221,0,22); (222,0,0); (0,22,0) or after reduction
(1,0,0); (0,0, 1); (0,z2,0).

According to the general technique it suffices to consider the family of germs Wy, : (z2, 2%, x1).
The corresponding 1-jets of the vector fields are (1, kx’{’_l, 0); (0,0,1); (0, 2%, x9); (221,0, z2);
(223, 0, 22%); (0, 2, :E’{’Jrl) or after reduction (l,km’f_l,()); (0,0,1); (0,2%,0); (0,2,0).
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The versal unfolding is @y (z1, 2, A1, ..., Ak) = {y1 = 21,92 = x'f—l—)\kxlf_1+- N =
z5}. The inverse image of the Whitney umbrella is the curve given by 22 — 2y (2§ + A\pab ™1 +-
s+ A)2 =22 — 21p?(31) = 0.

This curve has transversal selfintersections which lie on the x{-axis which correspond to the
simple zeros of the polynomial p and is tangent to the xs-axis at the origin. Its degeneracies
are caused either by a multiple root of p or if p vanishes at the origin. Thus the bifurcation
diagram is the same as for the singularity By.

Case ¢). One has to consider the series of maps Oy, : (22,21, 25) and the corresponding ini-
tial jet of the vector fields are (0, 1,0); (1,0, kxlg_l); (0,71, 25); (22,0, 25); (25,0, 22); (0,5,
T1x9) or after reduction (0,1,0); (1,0, kz5™1); (0,0,25); (0,0,23); (0,0, z122).

The same argument as above shows that in the case ¢) considerations can be restricted
only to the cases Oy.

The versal unfolding of O is given by the formula ®y(z1,z2, Ao,..., A\k) : {y1 = T2, y2 =
T,Y3 = Aox1 +x’§ +)\kx’§_1 +---+ A1}. The inverse image of the Whitney umbrella is given by
(Mox1 +p(2))? — 22xy = 0, where p(zs) = 25 + Apah ™ + - + A1, Let us describe the cases
of nongeneric position. The natural stratification of Whitney umbrella consists of its vertex,
its handle and its smooth open 2-dimensional part, see Fig.1. If R denotes Aoz + p(z2) then
the nontransversality to the vertex implies R = x7; = x5 = 0. Therefore, it gives A\; = 0.
The nontransversality to the handle implies R = x; = 0 and therefore it gives that p has a
multiple root. Finally, it is easy to check that the nontransversality to the smooth part is
equivalent to p(A2) = 0.

§4. FINAL REMARKS.

The following questions are quite natural from the point of view of the singularity theory.

1) Extend the theory of vanishing cycles and the technique of Dynkin diagrams to the
considered case.

2) Compare modalities of the versal unfolding of f and its induced function Q.

3) Develop some method to calculate the dimension of the reduced versal unfolding of a
semiregular f (at least in the quasihomogeneous case) and compare it with the Milnor number
of Q f-

4) Study the semiregular singularities in the case when C is a generic (quasi)homogeneous
polynomial of some (multi)degree.
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