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Abstract. In this paper, motivated by the classical notion of a Strebel quadratic
differential on a compact Riemann surface without boundary, we introduce several

more general classes of quadratic differentials (called non-chaotic, gradient, and

positive gradient) which possess certain properties of Strebel differentials and often

appear in applications. We discuss the relation between gradient differentials and

special signed measures supported on their set of critical trajectories. We provide a

characterization of gradient differentials for which there exists a positive measure

in the latter class.

1 Introduction

The theory of quadratic differentials was pioneered in the late 1930’s by O. Te-

ichmüller as a useful tool to study conformal and quasi-conformal maps. Since

then it has been substantially extended and found numerous applications. (For

a general survey on quadratic differentials, consult [11, 24, 26].) One important

class of quadratic differentials with especially nice properties was introduced by

J. A. Jenkins and K. Strebel in the 1950’s; these differentials are called Strebel or

Jenkins–Strebel, see [5, 11, 26] and §3 below.

In several areas where quadratic differentials naturally appear—such as po-

tential theory, asymptotics of orthogonal polynomials, WKB-methods in spectral

theory of Schrödinger equations in the complex domain etc.—one often encounters

quadratic differentials which are not Strebel, but share some of their properties; see,

e.g., [1, 4, 15, 14, 21, 23] and references therein. A large class of examples of such

non-Strebel differentials that have many interesting properties is provided by the

polynomial quadratic differentials on the complex plane, with critical trajectories

connecting pairs of their zeros.

Motivated by the above examples we present below several natural classes of

quadratic differentials containing the class of Strebel differentials and possessing

certain nice properties. The most general class we introduce is characterized by

the property that the closure of any horizontal trajectory of such a differential is
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2 Y. BARYSHNIKOV AND B. SHAPIRO

nowhere dense (we refer to such quadratic differentials as non-chaotic). Further,

we introduce a natural subclass of non-chaotic differentials which we call gra-

dient. They are characterized by the existence of a continuous function that is

equal (up to an additive constant) to ±ℑ
√
9, the imaginary part of (a branch of)

the square root of the differential at its points of smoothness. Finally, we discuss

a relevant notion of positivity for such gradient differentials.

The main result of the present paper is Theorem 3, which gives necessary and

sufficient conditions for positivity of a gradient differential in terms of its so-called

Reeb graph and the fat graphs associated to its edges; see §5.

The structure of the paper is as follows. In §2 we recall basic facts about

quadratic and Strebel differentials. In §3 we introduce and discuss non-chaotic

differentials and describe some of their properties. In §4 we define and characterize

gradient differentials. In §5 we study positive gradient differentials. Finally, in

Appendix I we briefly recall our earlier motivating results which relate some

relevant classes of quadratic differentials to the Heine–Stieltjes theory; see [23].
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2 Crash course on quadratic differentials

2.1 Basic notions. Recall the following key definitions from [11] and [26].

Definition 1. A (meromorphic) quadratic differential 9 on a compact ori-

entable Riemann surface Y without boundary is a (meromorphic) section of the

tensor square (T∗
C

Y)⊗2 of the holomorphic cotangent bundle T∗
C

Y . The zeros and

the poles of 9 form the set of critical points of 9 denoted by Cr9. Non-critical

points of 9 are called regular. Zeros and simple poles are called finite critical

points while poles of order at least 2 are called infinite critical points. The set

of finite critical points of 9 will be denoted by Crf9.

The next statement can be found in, e.g., Lemma 3.2 of [11].

Lemma 1. The Euler characteristic of (T∗
C

Y)⊗2 equals −2χ(Y), where χ(Y)

is the topological Euler characteristic of the underlying Riemannian surface Y.

Therefore, the difference between the number of poles and zeros (counted with
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multiplicity) of a meromorphic differential 9 on Y of order k equals 2χ(Y). In

particular, the number of poles minus the number of zeros of any quadratic differ-

ential 9 on CP
1 equals 4. Such examples can be found in, e.g., [4, Chap. 3].

Obviously, if 9 is locally represented in two overlapping charts by f (z)dz2 and

by f̃ (z̃)dz̃2 resp. with a transition function z̃(z), then f (z) = f̃ (z̃) (dz̃/dz)2. Any

quadratic differential induces a metric on its Riemann surface Y punctured at the

poles of 9, whose length element in local coordinates is given by

|dw| = |f (z)|
1
2 |dz|.

The metric |dw| = |f (z)|
1
2 |dz| on Y canonically associated to9 is closely related

to two distinguished line fields spanned by the vectors ξ ∈ TzY such that f (z)ξ2

is either positive or negative. The integral curves of the field given by f (z)ξ2 > 0

are called horizontal trajectories of 9, while the integral curves of the other

field given by f (z)ξ2 < 0 are called vertical trajectories of 9. Trajectories of

9 can be naturally parameterized by their arclength. In fact, in a neighborhood of

a regular point z0 on Y, one can introduce a local coordinate w called canonical

(despite being defined up to a sign) which is given by

w(z) :=

∫ z

z0

√

f (ξ)dξ.

Obviously, in this coordinate the quadratic differential itself is given by

dw2 = f (z)dz2 implying that horizontal trajectories on Y correspond to horizon-

tal straight lines in the w-plane.

Since we will only consider horizontal trajectories of quadratic differentials,

we will refer to them simply as trajectories.

Definition 2. A trajectory of a meromorphic quadratic differential9 is called

critical, if its closure is one-dimensional and a finite critical point of 9 is an

end of that trajectory, i.e., it belongs to the closure of the trajectory. For a given

meromorphic differential9, denote by K9 ⊂ Y the closure of the union of critical

trajectories of 9.

By Jenkins’ Basic Structure Theorem [11, Theorem 3.5, pp. 38–39], up to a

few exceptions,1 the set Y \ (K9 ∪ Cr9) consists of a finite number of the so-called

circle, ring, strip and end domains. (For the detailed definitions and information

we refer to loc. cit.) The names circle, ring and strip domain are reflecting the

shapes of their images under the analytic continuation of the mapping given by the

canonical coordinate; an end domain (also referred to as half-plane domain) is

mapped by the canonical coordinate onto the half-plane.

1Such as elliptic curves with holomorphic differentials, or the genus 0 surfaces, with quadratic
differential having two poles of order two each.
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The interior of K9 can be non-empty, and can consist of finitely many compo-

nents, each bounded by a (finite) union of critical trajectories. These components

are referred to as the density domains.

The decomposition of Y \ (K9 ∪ Cr9) into circle, ring, strip, end and density

domains constitutes the so-called domain configuration of 9.

To provide more details about the domain configuration, let us give here the

descriptions of circle and strip domains since they will be most important in the

present text. For definitions of other domains, we refer to [11, Chap. 3].

We recall that a circle domain of 9 is a simply connected domain D ⊂ Y with

the following properties:

(1) D contains exactly one critical point z0 of 9, which is a second-order pole,

(2) the complement D \ z0 is foliated by trajectories of 9(z) each of which is a

closed Jordan curve separating z0 from the boundary ∂D,

(3) ∂D contains at least one finite critical point.

Similarly, a strip domain of 9 is a simply connected domain D with the

following properties:

(1) D contains no critical points of 9,

(2) ∂D contains exactly two boundary points z1 and z2 belonging to the set of

infinite critical points of 9 (these boundary points may be situated at the

same point of the Riemann surface Y),

(3) the points z1 and z2 divide ∂D into two boundary arcs each of which contains

at least one finite critical point,

(4) D is swept out by trajectories of 9 each of which is a Jordan arc connecting

points z1 and z2.

Remark 1. It is known that quadratic differentials on CP
1 with at most three

distinct poles do not have density domains; see Theorem 3.6 (three pole theorem)

of [11]. In particular, Example 1 fits this case having just one pole: there the

domain configuration consists only of strip and end domains; see, e.g., [1]. But

starting with 4 distinct poles in CP
1, the density domains become generic.

2.2 Strebel differentials.

Definition 3. A compact non-critical trajectory γ of a meromorphic 9 is

called closed. It is necessarily diffeomorphic to a circle.

Definition 4. A quadratic differential 9 on a compact Riemann surface Y

without boundary is called Strebel if the complement to the union of its closed

trajectories has vanishing area (in the standard Lebesgue measure on Y).
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Remark 1. In the nomenclature of Definition 2, the complement Y\(K9∪Cr9)

for an arbitrary Strebel differential9 on Y consists of (finitely many) circular and

ring domains, as can be easily deduced from the results of [26, Chap. 3].

Results of §23 of [26], in particular, imply the following.

Lemma 2. If a meromorphic quadratic differential 9 is Strebel, then it has

no poles of order greater than 2. If it has a pole of order 2, then the residue of
√
9

at this pole is purely imaginary.

These reasonings are summarized in the next statement. (By a cylinder

we mean an open Riemann surface conformally equivalent either to an annulus

0 < r < |z| < R < +∞ or to a punctured disk 0 < |z| < R < +∞.)

Lemma 3. For any Strebel differential 9 on Y, the following hold.

(i) K9 is the set of all non-closed horizontal trajectories of Y and Y \ (K9∪Cr9)

is a disjoint union of finitely many cylinders.

(ii) The metric |9| restricted to any of these cylinders gives the standard metric

of a cylinder with some perimeter p given by the length of the horizontal

trajectories and some length l given by the length of the vertical trajectories

joining the bases of the cylinder. (Notice that l can be infinite.) Moreover,

each such cylinder is conformally equivalent to the annulus e−l/p < |z| < 1,

or to a punctured disc if l = ∞.

Strebel differentials play an important role in the theory of univalent functions

and the moduli spaces of algebraic curves. They enjoy a large number of extremal

properties. Basic results on their existence and uniqueness can be found in Chap. VI

of [26]; see especially Theorem 21.1.

3 Non-chaotic quadratic differentials

Definition 5. Given a meromorphic quadratic differential 9 on a compact

Riemann surface Y , we say that 9 is non-chaotic if its domain configuration

contains no density domains, i.e., the interior of K9 is empty.

Example 1. By the “Three Pole Theorem” of Jenkins [11], any polynomial

quadratic differential9 = P(z)dz2 is non-chaotic on CP1. (Here P(z) is a univariate

polynomial.)

We now give an alternative characterization of non-chaotic differentials.
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Definition 6. Given a meromorphic quadratic differential 9 on a compact

Riemann surface Y , we say that 9 possesses a level function if there exists a

continuous and piecewise smooth function

F : Y \ Cr9 → R

(called the level function of 9) which is defined on the complement to the set

Cr9 and has the properties:

(i) F is non-constant on any open subset of Y \ Cr9,

(ii) yet F is constant on each horizontal trajectory of 9.

It is almost immediate that Strebel differentials possess level functions: the

distance (in the Riemannian metric induced by 9) to K9 ∪ Cr9 serves as the level

function.

Theorem 1. A quadratic differential 9 is non-chaotic if and only if 9 pos-

sesses a level function.

Proof. Assume non-chaoticity. In this case K9 ∪ Cr9 is a union of a finite

number of critical trajectories and critical points, and its complement is a union of

domains comprised either of compact trajectories (ring and circle domains) or of

trajectories isometric to a real line (strip and end domains).

On each of these domains we can construct a function that is continuous,

constant on the trajectories, but not on any open set, and which is vanishing on

the boundary of the domain: on circle and end domains, one can just take the

imaginary part of the canonical coordinate, on a ring or strip domain the sine of a

properly rescaled imaginary part of the canonical coordinate.

Gluing together these functions (each originally defined on individual domains,

but vanishing on the boundary) along K9 delivers the desired continuous level

function.

If 9 is chaotic, there exists a trajectory with closure having a non-empty

interior. A level function should be constant on this trajectory and continuous,

hence constant on an open set, a contradiction. �

As we mentioned, any Strebel differential possesses a level function. Moreover,

the following holds.

Proposition 1. A quadratic differential9 is Strebel if and only if it has a level

function F with finite limits at each critical point p ∈ Cr9, i.e., a level function F

that can be extended by continuity from Y \ Cr9 to Y.

Proof. As we mentioned above, a non-chaotic differential is Strebel if and

only if its domain decomposition consists only of ring and circle domains. It is

clear that in this case the construction of Lemma 1 yields a function continuous on
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all of Y . Conversely, the existence of an end or a strip domain implies that there is

a one-parametric family of non-critical trajectories converging (on one end of the

strip) to a critical point Co ∈ Cr9. The union of these trajectories forms a sub-strip

in a strip or an end domain. A non-constant function on such a sub-strip which is

constant along the trajectories will automatically have discontinuity at Co. �

To move further, let us recall some basic facts from complex analysis and

potential theory on Riemann surfaces; see, e.g., [7].

Let Y be an (open or closed) Riemann surface and h be a real- or complex-valued

smooth function on Y .

Definition 7. The Levy form of h (with respect to a local coordinate z) is

given by

(3.1) µh := 2i
∂2h

∂z∂z̄
dz ∧ dz̄.

In terms of the real and imaginary parts (x, y) of z, µh is given by

µh =
(∂2h

∂x2
+
∂2h

∂y2

)

dx ∧ dy = 1hdx ∧ dy.

If h is a smooth real-valued function, µh can be also thought of as a real signed

measure on Y with a smooth density. In potential theory h is usually referred to as

the (logarithmic) potential of the measure µh; see, e.g., [7, Chap. 3]. Notice

that (3.1) makes sense for an arbitrary complex-valued distribution h on Y if one

interprets µh as a 2-current on Y , i.e., a linear functional on the space of smooth

compactly supported functions on Y; see, e.g., [3].

Such a current is necessarily exact since the inclusion of smooth forms into

currents induces the (co)homology isomorphism. Recall that any complex-valued

measure on Y is a 2-current characterized by the additional requirement that its

value on a smooth compactly supported function depends only on the values of this

function, i.e., on its 0-jet (and does not depend on its derivatives, i.e., on higher

jets). Notice that if Y is compact and connected, then exactness of µh is equivalent

to the vanishing of the integral of µh over Y .

We should remark here that the Levy form depends on the (local) metric

structure defined by the (local) coordinate z, unless it is a sum of the delta-functions.

Example 2. (a) If h = ln |z| on CP1, then µh = 2π(δ(0) − δ(∞)) is the

signed measure supported on the 2-point set {0,∞}. (Here δ(a) is the Dirac

measure supported at a.)

(b) If h = |ℑz| on C, then µh is a measure supported on the real axis, namely,

µh = 2δ(y)dx ∧ dy, i.e. twice the usual Lebesgue measure on the real line.
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The easiest way to verify these examples is to use Green’s formula:

µh(D) =

∫

D

2i ∂∂̄h =

∫

∂D

∂h

∂n
dl,

which provides a way to calculate µh(D), where D is an arbitrary compact domain

in Y with a smooth boundary, ∂h
∂n

is the derivative of h w.r.t. the outer normal, and dl

is the length element of the boundary. Now

∫

D

f1h = −

∫

D

(df, dh) +

∫

∂D

f
∂h

∂n
dl.

Here D is a domain bounded by a piecewise smooth loop ∂D oriented counter-

clockwise, ∂h/∂n is the derivative in the orthogonal direction to ∂D, while dl is the

length element on ∂D.

Our next goal is, for a given non-chaotic 9, to find its level function F which

is closely related to the metrics on Y induced by 9 or, alternatively, whose Levi

formµF has a small support. Such F is readily available by the following statement.

Proposition 2. For any non-chaotic differential 9 on Y, there exist its level

functions which are piecewise harmonic and which are non-smooth on finitely

many trajectories of 9.

Proof. Take as F the distance to K9∪Cr9 in the metric defined by9. Locally,

its differential coincides with ℑ
√
9, hence is harmonic. It is immediate that F is

smooth outside K9∪Cr9 and the (finite) union of the horizontal trajectories running

in the middle of the strip and annular domains. �

Remark 2. We will call level functions constructed in Proposition 2 piece-

wise harmonic. For any piecewise harmonic level function F, its Levy form µF

is a well-defined 2-current supported on the union of Cr9 and finitely many tra-

jectories where F is non-smooth. For example, in case of a Strebel differential9,

the Levy form of any piecewise harmonic level function will have point masses

exactly at the double poles of 9.

As the simplest example of this situation consider

9(z) = −
dz2

z2

in which case as a (piecewise) harmonic level function one can choose F(z) = ln |z|

implying that

µF = δ(0) − δ(∞),

where δ(a) stands for the unit point mass located at a.
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4 Gradient differentials

Denote by K̄9 the union of the critical trajectories and all finite critical points of9,

K̄9 = K9 ∪ Crf9.

This is a one-dimensional cell complex embedded into Y \ Cr−
9 (where Cr−

9 is

the union of all infinite critical points) and equipped with a metric given by |ℜ
√
9|

that turns K̄9 into a complete metric space such that topologically open ends of the

graph have an infinite length.

Consider the decomposition

K̄9 = ∐α∈AK̄α

into the set of its connected components.

Each of these components also carries the structure of a fat graph, encoded by

the collection of cyclic permutations of the edges incident to a given vertex, one

for each vertex of the graph. (A detailed account on the relation between fat graphs

and quadratic differentials can be found in, e.g., [17].)

These cyclic permutations can be thought of as a single permutation σ0 of the

set of flags of a graph, that is, of the pairs consisting of a vertex and its incident

edge; the orbits of the permutation σ0 are in one-to-one correspondence with the

vertices of the fat graph.

The other permutation of the flags of the fat graph is the involution σ1 inter-

changing two flags corresponding to the same edge.

The product σ0σ1 decomposes into cycles which correspond to boundary

components of the fat graph, in turn corresponding to the trajectories bounding

the connected components of the complement Y \ K9 in the order fixed by the

orientation.

We define the Reeb graph Rg9 of a non-chaotic quadratic differential 9 as

follows.

Definition 1. The Reeb graph Rg9 is the metric graph with possibly edges

of infinite length necessarily ending at leaves. The vertices V9 = A of the Reeb

graph are identified with the set of connected components of K̄9. The edges E9

are the spaces of non-critical trajectories (or, equivalently, the factor spaces of the

connected components of Y \ K9 by the equivalence relations given by belonging

to the same trajectory). The length element on the edges of the Reeb graph is given

by |ℑ
√
9|.

In other words, the points in the interior of the edges of the Reeb graph corre-

spond to non-critical trajectories of 9. That the resulting space is Hausdorff is an

immediate corollary of the absence of the density domains.
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The Reeb graph Rg9 might have loops and multiple edges.

We remark that on each of the connected components of Y\Kψ, the square root

of the quadratic differential is the meromorphic 1-form
√
9 defined unambiguously,

up to a sign.

The lengths of the edges are finite for the strip or ring components, and infinite

for the circle or end components. The components corresponding to edges of

infinite length are necessarily adjacent to the poles of order at least 2, i.e., to the

infinite critical points.

We will call a level function F natural if on any of the connected components

of Y \ (K9 ∪ Cr−
9), its gradient matches the imaginary part of a branch of

√
9:

dF = ±ℑ
√
9.

A natural level function fixes the orientation on each of the edges of the Reeb

graph Rg9. Together with the length elements on the edges, these orientations

define a family of 1-forms on the edges, and hence a de Rham cocycle on the Reeb

graph Rg9.

Theorem 2. A non-chaotic differential 9 admits a natural level function if

and only if the edges of Rg9 can be oriented in such a way that the resulting

1-cocycle on Rg9 is trivial. In other words, the edges of Rg9 can be oriented in

such a way that the sum of the lengths of the edges in any oriented cycle in the

Reeb graph, taken with the signs ± depending on whether the orientation of the

cycle is consistent with the orientations of the edges or not, vanishes.

Conversely, any such orientation defines a natural level function up to an

additive constant.

Definition 8. Any non-chaotic quadratic differential satisfying the conditions

of Theorem 2 will be called a gradient, and any of the corresponding level

functions F will be called a potential.

Any potential of a gradient quadratic differential is constant on the components

of K̄9.

Proof of Theorem 2. The claim that a potential defines an orientation on

the edges of the Reeb graph is immediate from the definition, as is the exactness of

that cocycle. Conversely, the exactness of the cocycle on the Reeb graph defined

by the length elements and orientations on the edges allows one to integrate it to a

function on the Reeb graph, which lifts to a potential. �

Lemma 4. Levy form µF of any potential F of a gradient quadratic differen-

tial 9 is supported on K9 ∪ Cr9.
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Proof. Certainly, the restriction of the potential to each of the domains in

Y \ (K9 ∪ Cr9) is harmonic. �

Potential functions may fail to exist (for example, if the Reeb graph has a loop).

But the number of classes of potential functions (identified if their difference is

a constant) is obviously finite, as we can identify the potential functions with an

element of the finite set of orientations of the edges of the Reeb graph. In fact, the

following generalization of Theorem 4 of [23] holds:

Proposition 3. For a gradient differential9, the number of different potentials

(considered up to an additive constant) is either 0 or a power of 2.

Proof. The group Flips = Z
E9
2 of flipping the orientations of the edges acts

on the space of cochains on the Reeb graph by reflections. The collections of flips

that preserve the subspace annihilating the cycles in the Reeb graph is, clearly, a

subgroup in Flips. �

Existence of a potential function imposes further restrictions on the local prop-

erties of the quadratic differential 9.

Let F be a potential for 9. We will refer to a pole of 9 as F-clean if some

punctured neighborhood of the pole does not intersect the support of the Levy

measure µF. Equivalently, in a punctured vicinity of the pole, the potential F is

harmonic and therefore smooth.

Of course, the Levy measure can be non-vanishing at a clean pole: for example,

−dz2/z2 has log |z| as its potential function, with the corresponding Levy measure

equal to ±δ at 0 and ∞: both poles are clean.

Lemma 5. The order r ≥ 2 of any F-clean pole is even.

Proof. Indeed, the Z2-bundle of orientations defined by ±dF does not admit

a section in a (punctured) vicinity of a pole of 9 of odd order. Hence dF cannot

be continuous in an arbitrarily small neighborhood of such a pole. �

The F-clean poles of even order exist. For a pole of even order, one can also

define
√
9 in its punctured neighborhood.

Proposition 4. Let F be a potential of a non-chaotic quadratic differential9.

Then for any F-clean pole z∗ of9 of even order, the residue of the
√
9 at z∗ (defined

up to a sign) is purely imaginary.

For example, the residues of 9 = −dz2/z2 at 0,∞ are ±i.

Proof. The statement follows immediately from the fact that for a clean pole, F

is smooth in a punctured vicinity of z∗, and therefore the increment of the potential F

equals the residue of
√
9. �
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Lemma 6. A gradient differential 9 on a compact Y is uniquely defined by

the Levy form µF of any of its potentials F.

Proof. Two functions F1 and F2 (considered as 0-currents) have the same

Levy forms (considered as 2-currents) only if the difference F1 − F2 has vanishing

Laplacian, and hence, by compactness of Y , is a constant.

Now, if two gradient quadratic differentials 91,92 have corresponding po-

tentials F1,F2 coinciding (up to a constant) on an open subset of Y , then the

(locally defined) holomorphic 1-forms
√
91,

√
92 have identical real parts (equal

to dF1, dF2, respectively) on the same subset, and hence coincide everywhere. �

5 Levy measures and Positivity

In this section we discuss the notion of positivity for gradient quadratic differentials.

Observe that for any potential function F, its Levy form µF is an exact 2-current

on Y , i.e.,
∫

Y
µF = 0. Many applications in asymptotic analysis lead to the situation

when a gradient differential has a potential F whose Levy form is a signed measure

whose positive part is supported on K9, and whose negative part is supported on

(F-clean) poles of 9. (We discuss such an example in §Appendix I:.)

Definition 9. We will call a potential F clean if all of the poles of9 are clean

with respect to F and positive if it is clean and the restriction of µF to K9 is a

positive measure. A quadratic potential admitting a positive potential will also be

referred to as positive.

Equivalently, the potential F is clean if the support of its Levy measure µF

intersects K̄9 over a compact subset.

We remark that the notion of positivity depends only on the potential function F

but not on the particular coordinate chart.

Whether or not a potential of a gradient quadratic differential 9 is positive,

depends not only on the structure of the Reeb graph of 9 (equipped with the

lengths and the widths of the edges), but also on the structure of fat graphs of the

components Kα corresponding to the vertices of the Reeb graph.

Specifically, each edge eαβ of the fat graph Kα is adjacent to either one or two

boundary components (corresponding to the orbits of the two flags incident to the

edge under the action of permutation σ0σ1 defining the fat graph structure). The

boundary components of the fat graph Kα correspond to the edges of Rg9. We

will be calling these edges of the Reeb graph incident to the corresponding

edge eαβ of the fat graph Kα.
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Theorem 3. The potential F of a gradient quadratic differential is positive if

and only if for any edge eαβ of any of the fat graphs Kα, the orientation of the Reeb

graph defined by F has at least one of the (at most two) incident edges of the Reeb

graph oriented away from Kα.

Proof. As locally the potential is const + ±ℑ
√
9, its Levy form vanishes at

its smooth points.

At the points where F is not smooth (which can happen, by definition, only at

the points of K9) it is locally given by const ± |ℑ
√
9|. The non-smoothness of

the potential results from discordant orientations the corresponding edges of the

Reeb graph. A local computation shows that if the edges incident to eαβ are both

oriented away from Kα, the corresponding measure on the edge equals 2|ℜ
√
9|; if

one edge is oriented towards, and one away from, Kα, then µF = 0 near the edge,

and if incident edges are oriented towards Kα, then µF = −2|ℜ
√
9|. �

Figure 1. Illustration of how the orientation of the Reeb graph affects the positivity

on a component of K9: on the left display, all edges of the fat graph component

have the Reeb graph orientation pointing toward them, or “through” them; on the

right display, the SW edge has both adjacent edges of the Reeb graph outgoing,

resulting in locally negative mass. (Positive charges are shown as fat solid lines,

negative charges as fat hollow line.)

We remark that Theorem 3 turns the computational question of the positivity

of a given gradient quadratic differential 9 into an instance of a 2-satisfiability

problem [16]. Indeed, one can interpret the orientations of the edges of the Reeb

graph as Boolean variables, and the absence of two outgoing edges of the Reeb

graph incident to an edge of a fat graph Kα as a 2-clause. Such interpretation

implies that given the fat graph structures, the positivity can be efficiently decided

in time quadratic in the number of the critical points of 9.
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Theorem 3 also allows one to construct a positive gradient quadratic differen-

tial—Strebel or not—by explicitly finding the orientations of the edges of the Reeb

graph, and verifying the conditions.

Thus, in the example on Figure 2, one immediately verifies that the differential

is positive.

The natural length element |ℜ
√
9| on the edges of the fat graphs Kα’s (i.e., on

the critical trajectories of 9) defines the widths on the boundary components of

the fat graphs Kα, or, equivalently, on the edges of the Reeb graph Rg9. (Recall

that the lengths of the edges of the Reeb graph are defined by |ℑ
√
9|.) For the

components containing poles of 9 in their closure, the width can be infinite.

Figure 2. Gradient quadratic differential (1 − z2)dz2 is positive: its set of critical

trajectories is shown on the left, the support of the Levy measure being the fat edge

(straddling between z = ±1). The Reeb graph (and the corresponding orientations

of the edges) are shown on the right. This critical differential is non-Strebel, as its

(clean) pole at infinity is of order 6. The residue of
√
9 at infinity is 1/2.

Next result is immediate:

Lemma 7. The total mass of µF supported by a component Kα equals the

difference of the widths of all incoming and all outgoing components.

Lemma 7 implies the following necessary condition of positivity:

Corollary 1. If a potential F is positive, then for any component Kα, the

total width of the incoming edges is greater than or equal to the total width of the

outgoing edges.

It is worth mentioning that the latter condition is not sufficient: just fixing the

Reeb graph of a gradient quadratic differential, and widths and orientations of its

edges is not enough to deduce the positivity of the corresponding potential. Indeed,

isometrically shifting the glueing map along the boundaries of the domains of the



QUADRATIC DIFFERENTIALS AND SIGNED MEASURES 15

Jenkins decomposition preserves the structure of the Reeb graph, as well as all the

lengths, orientations and the widths of its edges. However, such shifts can destroy

positivity; see Figure 3.

Figure 3. Singular sets and trajectories of clean quadratic differentials on CP1

with 5 poles of order 2, and 6 simple zeros each. The residues of
√
9 at the poles

(equal to the widths of the circle domains centered at these poles) are the same

on the left and on the right displays. Yet the potential on the left has negative

components of µF; the one on the right is positive. The Reeb graph is sketched on

the top. (We keep the convention that positive masses are shown as solid lines or

dots, negative, as hollow ones.)

Another constraint on the orientation of the edges of the Reeb graph required

by the positivity of a potential comes from the simple poles of 9; see Figure 4.

As the edge of the fat graph adjacent to a simple pole has the same domain on

both sides, the positivity implies that the orientation of the edge of the Reeb graph

should be incoming; compare Proposition 2, [23].

Figure 4. Positivity forces the orientation of the potential function near a simple

pole of 9.
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Appendix I: Quadratic differentials and Heine–Steiltjes
theory

We have earlier encountered Strebel and gradient differentials in the study of the

asymptotic properties of Van Vleck and Heine–Stieltjes polynomials and solutions

of the Schrödinger equation with polynomial potential; see [9, 23, 22]. Some of

these results are formulated below as a major motivation for the present study.

Given a pair of polynomials P(z) and Q(z) of degree m and at most m − 1

respectively, consider the differential equation

(6.1) P(z)S′′(z) + Q(z)S′(z) + V(z)S(z) = 0.

The classical Heine–Stieltjes problem for equation (6.1) asks for any positive

integer n, to find the set of all possible polynomials V(z) of degree at most m−2 such

that (6.1) has a polynomial solution S(z) of degree n; see [8], [25]. Already E. Heine

proved that for a generic equation (6.1) and any positive n, there exist
(

n+l−2
l−2

)

polynomials V(z) of degree l−2 having the corresponding polynomial solution S(z)

of degree n. Such polynomials V(z) and S(z) are referred to as Van Vleck and

Heine–Stieltjes polynomials respectively. The following localization result for

the zero loci of S(z) and V(z) was proven in [21].

Proposition 5. For any ǫ > 0, there exists a positive integer Nǫ such that all

roots of V(z) and its corresponding S(z) lie within an ǫ-neighborhood of ConvP

if deg S(z) ≥ Nǫ. Here ConvP stands for the convex hull of the zero locus of the

leading coefficient P(z).

Notice that in Proposition 5, the polynomial S(z) is the Stieltjes polynomial

corresponding to the Van Vleck polynomial V(z). The above localization result

implies that there exist plenty of converging subsequences {Ṽn(z)}, where Vn(z) is

some Van Vleck polynomial for equation (6.1) whose Stieltjes polynomial Sn(z) has

degree n and Ṽn(z) is the monic polynomial proportional to Vn(z). (Convergence

is understood coefficient-wise.)

Recall that the Cauchy transform Cν(z) and the logarithmic potential uν(z) of a

(complex-valued) measure ν supported in C are by definition given by

Cν(z) =

∫

C

dν(ξ)

z − ξ
and uν(z) =

∫

C

log |z − ξ|dν(ξ).

Obviously, Cν(z) is analytic outside the support of ν and has a number of important

properties, e.g., that

Cν(z) =
∂uν(z)

∂z
, ν =

1

π

∂Cν(z)

∂z̄
,
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where the derivative is understood in the distributional sense. Detailed information

about Cauchy transforms can be found in, e.g., [6].

Theorem 4. Choose a sequence {Vn(z)} of Van Vleck polynomials, where

deg Sn(z) = n with converging sequence {Ṽn(z)} → Ṽ(z). Then the sequence of

root-counting measuresµn of Sn(z) weakly converges to the probability measureµ

whose Cauchy transform Cµ(z) satisfies a.e. in C the algebraic equation

C
2
µ(z) =

Ṽ(z)

P(z)
.

Moreover, the logarithmic potential uµ(z) of µ has the property that its set of level

curves coincides with the set of closed trajectories of the quadratic differential

− Ṽ(z)dz2

P(z)
which is therefore Strebel.

Theorem 4 implies further results for arbitrary rational Strebel differentials with

a second-order pole at ∞. (These statements are special cases of the results in §5.)

Theorem 5 (see Theorem 4, [23]). Let U1(z) and U2(z) be arbitrary monic

complex polynomials with deg U2 − deg U1 = 2. Then:

(1) The rational quadratic differential 9 = −U1(z)dz2/U2(z) on CP
1 is Strebel

if and only if there exists a real and compactly supported in C measure µ of

total mass 1 (i.e.,
∫

C
dµ = 1) whose Cauchy transform Cµ satisfies a.e. in C

the equation

(6.2) C
2
µ(z) = U1(z)/U2(z).

(2) For any 9 as in (1) there exists exactly 2d−1 real measures whose Cauchy

transforms satisfy (6.2) a.e. and whose support is contained in Kψ, where

d is the total number of connected components in CP
1 \ K9 (including the

unbounded component, i.e., the one containing ∞). These measures are in 1−

1-correspondence with 2d−1 possible choices of the branches of
√

U1(z)/U2(z)

in the union of (d − 1) bounded components of CP1 \ K9.

Concerning measures positive in CP
1 in the case when9 has a non-simple pole

at infinity, we notice first that the Reeb graph is necessarily a tree, with infinite

length edges corresponding to the edge domains (adjacent to ∞ ∈ CP
1) and with

the leaves which correspond to the components of K9 containing, necessarily,

simple poles of 9. Given that, the following statement should be quite obvious.

Theorem 6 (see Theorem 5, [23]). For any Strebel differential

9 = −U1(z)dz2/U2(z)

on CP
1 (in the notation of Theorem 5) there exists at most one positive measure

satisfying (6.2) a.e. in C. Its support necessarily belongs to K9, and, therefore,

among 2d−1 real measures described in Theorem 5 at most one is positive.
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✖✕
✗✔r r ✖✕

✗✔r rr r r r r r
rr rr

r r

Figure 5. K9 admitting and not admitting a positive measure.

Moreover, we can formulate an exact criterion of the existence of a positive

measure in terms of rather simple topological properties of K9. To do this we need

one more definition. Observe that in our situation K9 is a planar multigraph, i.e.,

a planar graph with possibly multiple edges.

Definition 10. By a simple cycle in a planar multigraph K9, we mean any

closed non-self-intersecting curve formed by the edges of K9. (Obviously, any

simple cycle bounds an open domain homeomorphic to a disk which we call the

interior of the cycle.)

Proposition 6 (see Proposition 2, [23]). A Strebel differential

9 = −U1(z)dz2/U2(z)

admits a positive measure satisfying (6.2) if and only if no edge of K9 is attached

to a simple cycle from inside. In other words, for any simple cycle in K9 and any

edge not in the cycle but adjacent to some vertex in the cycle this edge does not

belong to its interior. The support of the positive measure coincides with the forest

obtained from K9 after the removal of all its simple cycles.
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