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Translator’s notes
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Abel’s theorem in half a year. In the process, complex numbers, Riemann surfaces were also taught.
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it is only now in January 2005 that the book is almost in a complete form. Please send any comments or
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Preface

In high school syllabus algebraic equations of first (linear) and second degree (quadratic) with one un-
known are studied in detail. In this case, for solving such equations, it happens that there are general
formulas which expresses the roots of the equation in terms of its coefficients using arithmetic opera-
tions and radicals. But very few students know whether there exists similar formulas for solving algebraic
equations of higher degree. In fact, such formulas also exist for equations of 3rd and 4th degree. We shall
illustrate methods of solving these equations in the introduction. But if we consider the most general
algebraic equation with one unknown of degree greater than four, it occurs that it is not solvable in
radicals, i.e. there exists no formulas which expresses the roots of this equation in terms of the coefficients
using arithmetic operations and radicals. This is the statement of Abel’s theorem.

One of the aims of this book is to introduce to the reader a proof of Abel’s theorem. We will not examine
in details the results obtained a bit later by the French mathematician Evariste Galois. He considered not
general, but specific algebraic equations with fixed coefficients and for these equations found conditions
under which the roots are expressible in terms of coefficients using arithmetic operations and radicals.
Those who want to learn the results of Galois in depth, we recommend the book by Postnikov on Galois
theory1.

From the general results of Galois it is possible, in particular, to obtain Abel’s theorem. However, in
this book we will proceed in a different direction: this will introduce the reader to two very important
branches of contemporary mathematics, group theory and the theory of functions of one complex variable.
The reader will learn about groups (in mathematics), fields and various properties they possess. S/He
(translator’s non-sexist note) will also learn what complex numbers are and why they are so defined
and not otherwise. S/He (translator’s non-sexist note) will learn Riemann surfaces and contents of the
”fundamental theorem of complex number algebra”.

The author will help the reader along the way, but will give the reader the possibility to test its own
talents. For this purpose a large number of problems are proposed. Problems are posed directly within the
text of the book and are actually the essential part of the book. The problems are labelled by increasing
numbers in medium boldface type. Whenever some problems prove to be too difficult for the reader, the
chapter ”Hint, Solutions and Answers” will turn out helpful.

The book contains many concepts whicy may be new to the reader. To help the reader search these
new concepts, an alphabetical list of concepts indicating the page numbers where they are defined is given
at the end of the book.

The book is based on the lectures given by professor Vladimir Igorevich Arnold of Moscow University
and by the author in the Moscow physics-mathematics 18th boarding school in different years. The author
is grateful to V. I. Arnold who made a number of valuable observations during the preparation of the

1Postnikov M. M., Boron L.F., Galois E., Fundamentals of Galois theory, Nordhoff: Groningen, 1962
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manuscript of this book. I also thank Aleksander Vasilyevich Mikhaleva who took the large labor of
editing this book and also in many ways that contributed to its improvement.

V. B. Alekseev

Moscow, Russia V. B. Alekseev



1

Introduction.

We will begin this book with the study of the problem of solving algebraic equations with one unknown
from the first to the fourth degree. Methods of solving algebraic equations of first and second degree were
known to ancient mathematicians, but the methods of solving an algebraic equations of third and fourth
degree were developed only in the XVI century. The equation of the form

a0x
n + a1x

n−1 + · · ·+ an−1x+ an = 0

where a0 6= 0,1 is called the general algebraic equation in one unknown of degree n.
With n = 1 we obtain the linear equation

a0x+ a1 = 0, a0 6= 0

This equation has, obviously, the unique solution

x = −a1

a0

for any value of the coefficients.
With n = 2 we obtain the quadratic equation

ax2 + bx+ c = 0, a 6= 0

(instead of a0, a1, a2 we write a, b, c as learnt in school). After dividing both sides of this equation by a

and substituting p =
b

a
, q =

c

a
we get the following quadratic equation

x2 + px+ q = 0. (1.1)

After some algebra, we obtain

x2 + px+
p2

4
=
p2

4
− q and

(
x+

p

2

)2

=
p2

4
− q (1.2)

In high school only the case
p2

4
− 1 ≥ 0 is considered. If

p2

4
− q < 0, then it is said that equality (1.2)

cannot take place and equation (1.1) does not have any real roots.
To avoid such exceptions, henceforth, it will be more convenient for us to examine algebraic equations

not in the domain of real numbers, but in the larger domain of complex numbers.
We will examine complex numbers in greater detail (together with the definition) in chapter II. So

far it is sufficient for the reader to know, or to accept as true, the following assertions about complex
numbers:

1Coefficients a0, a1, ...an are considered to be real numbers
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1. The set of complex numbers is an extension of the set of real numbers, i.e. real numbers are contained
in the complex numbers, just as, for example, integers are contained in the real numbers;

2. Complex numbers can be added, subtracted, multiplied, divided, raised to a natural power - all the
operations possessing all the basic properties of the corresponding operations on the real numbers;

3. If z is a complex number, not equal to zero, and n a natural number then there exists exactly n roots
of z, i.e. n complex numbers w such that, that wn = z. With z=0 we have n

√
0 = 0. If w1 and w2 are

the squareroots of 1 then w2 = −w1.
In the following, we shall not only be interested in both the real and complex roots of equations, but
will also examine these equations with arbitrary complex numbers as coefficients. In this case, the
previous arguments about linear and quadratic equations will remain true, which follows from the
above-indicated property (2) of complex numbers.
Let us continue to study the quadratic equation. In the field of complex numbers, equality (2) with
any values p and q is equivalent to

x+
p

2
= ±

√
p2

4
− q

where by

√
p2

4
− q is understood any one of the two values of square root.

Thus we have for future references

x1,2 = −p
2
±
√
p2

4
− q i.e., in old notation (1.3)

x1,2 =
−b±

√
b2 − 4ac

2a
(1.4)

Theorem 1.1 (Theorem of Francois Viète) 2: The complex numbers x1 and x2 are the only roots
of equation x2 + px+ q = 0 , if and only if x1 + x2 = −p, x1x2 = q.

Indeed, if x1 and x2 are the roots of x2 + px + q = 0 , then equality (1.3) holds. Hence x1 + x2 =
−p, x1x2 = q. Conversely, if x1 + x2 = −p, x1x2 = q, then, by substituting p and q in the equation
x2 + px+ q = 0 by their expressions in terms of x1 and x2, we will obtain x2 − (x1 + x2)x+ x1x2 =
(x− x1)(x− x2) = 0, and therefore x1 and x2 are the roots of equation x2 + px+ q = 0;
The quadratic polynomial ax2 + bx + c is a perfect square (i.e. ax2 + bx + c = [

√
a(x− x0)]2 for a

certain complex number x0 ) ⇐⇒ the roots of equation ax2 +bx+c = 0 coincide (both of them must
be equal to x0). This occurs only in the case (see formula (1.4)) b2 − 4ac = 0. Expression b2 − 4ac is
called the discriminant of quadratic polynomial.
Let us examine now the following equation of third degree.

x3 + ax2 + bx+ c = 0 (1.5)

(a general equation of 3rd degree is reduced to that given above on division by a0.) Let us make
x = y + d, where we will chose d later.
We obtain

(y + d)3 + a(y + d)2 + b(y + d) + c = 0

Expanding all brackets and after collecting terms of same degree in y, we obtain the equation

y3 + (3d+ a)y2 + (3d2 + 2ad+ b)y + (d3 + ad2 + bd+ c) = 0

2Francois Viète (1540-1603 ) was a French mathematician.
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The coefficient of y2 in this equation is equal to 3d + a. Therefore if we put d = −a
3

, then after

replacing x by y − a

3
we will get the equation:

y3 + py + q (1.6)

where p and q are polynomials in a, b, c.
Let y0 be a root of equation (1.6). After writing it in the form y0 = α + β, (where α and also β are
as of now unknown), we obtain

α3 + 3αβ(α+ β) + β3 + p(α+ β) + q = 0

and
α3 + β3 + (α+ β)(3αβ + p) + q = 0 (1.7)

Let us see, if it is possible to choose α and β satisfying

αβ = −p
3

In this case we will obtain two equations for α and β

α+ β = y0; αβ = −p
3

By Vièta’s theorem, for any y0 such α and β indeed exists (possibly complex) and they are the roots
of the equation

w2 − yow −
p

3
= 0

.
If we take such α and β (still unknowns), then equation (1.7) will take the form

α3 + β3 + q = 0 (1.8)

Raising both parts of the equation of αβ = −p
3

to the third power, and comparing the obtained

equation with (1.8), we will have

α3 + β3 = −q; α3β3 = −p
3

27
By Vièta’s theorem, α3 and β3 are the roots of the equation

w2 + qw − p

27
= 0

Thus we get,

α3 = −q
2

+

√
q2

4
+
p3

27
and

β3 = −q
2
−
√
q2

4
+
p3

27

where again

√
q2

4
+
p3

27
indicates one specific value of the square root. Hence the roots of equation

(1.6) are expressed by the formula
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y1,2,3 =
3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
+

√
q2

4
+
p3

27

Moreover for each of three values of the first cubic root, 3 one must take the appropriate value of the
second so that the condition αβ = −p

3
is satisfied.

The formula obtained is called Cardano’s solution 4. After substituting for p and q, their expression
in terms of a, b, c and subtracting

a

3
, we will obtain a formula for the roots of equation (1.5). After

the transformations a =
a1

a0
, b =

a2

ao
, c =

a3

a0
, we will obtain a formula for the roots of the most general

equation of third degree.
Let us examine now the following given equation of fourth degree

x4 + ax3 + bx2 + cx+ d = 0 (1.9)

(a general equation is reduced to this by dividing by a0). After making the substitution x = y − a

4
,

similar to the one made in the case of equation of third degree, let us modify equation (1.9) to the
form

y4 + py2 + qy + r = 0 (1.10)

where p, q and r are polynomials in a, b, c, d.
We will solve equation (1.10) by a method called Ferrari’s method 5. We transform the left side of
equation (1.10) as follows: (

y2 +
p

2

)2

+ qy +
(
r − p2

4

)
= 0

and (
y2 +

p

2
+ α

)2

−
[
2α
(
y2 +

p

2

)
+ α2 − qy +

p2

4
− r
]

= 0 (1.11)

where α is an arbitrary number. Let us now try to chose α so that the polynomial of degree two in y

2αy2 − qy +
(
αp+ α2 +

p2

4
− r
)

in the square brackets become a perfect square. As was noted above, it is necessary and sufficient
that the discriminant of this polynomial be equal to zero for it to be a perfect square, i.e.

q2 − 8α
(
αp+ α2 +

p2

4
− r
)

= 0 (1.12)

Removing the parentheses, we will obtain for α an equation of third degree, which we know how to
solve. If α is taken to be one of the roots of equation (1.12), the expression in the square brackets in
(1.11) will be a perfect square. In this case the left side of equation (1.11) is a difference of squares
and therefore it can be decomposed into the product of two polynomials of degree two in y. After
this, it remains to solve the two equations of degree two obtained.
Thus, equation of fourth degree can always be solved. Moreover, as in the case of third degree, it is
possible to obtain a formula which expresses the roots of general equation of fourth degree in terms

3See the above-indicated property 3) of the complex numbers
4G. Cardano (1501-1576) was an Italian mathematician
5L. Ferrari (1522-1565) was an Italian mathematician and a student of the Cardano
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of the coefficients of equation using the operations of addition, subtraction, multiplication, division,
raising to a natural power and the extracting a root of natural degree.
For a long time mathematics attempted to find a method of solution by radicals of a general equation
of fifth power. However, in 1824 the Norwegian mathematician Niels Henrik Abel (1802 - 1829) proved
the following theorem.

Theorem 1.2 (Abel’s theorem) The general algebraic equation with one unknown of degree greater
than 4 is insoluble in radicals, i.e. there do not exist a formula, which expresses the roots of a general
equation of degree greater than four in terms of the coefficients involving the operations of addition,
subtraction, multiplication, division, raising to a natural degree and extraction of roots of natural
degree.

We will be able to prove this theorem at the end of the book. However, we will require mathematical
concepts such as group, soluble group, functions of complex variable, Riemann surface, etc. We will
introduce the reader to all these and other mathematical concepts in the following pages of this book.
We will begin examining the notion of a group: a very important concept in mathematics.





2

Groups

The study of algebraic equations in the beginning of the XIX century lead mathematicians to the
need for a special mathematical notion: the concept of a group. This new concept proved to be fruitful
and penetrated not only almost all divisions of contemporary mathematics, but also began to play
an important role in some divisions of other sciences, for example in quantum mechanics and in
crystallography. The studies connected with the concept of a group grew into a separate branch of
contemporary mathematics known as the theory of groups. What is a group in mathematics? In order
to answer this question, let us begin by examining some examples.

2.1 Examples

In arithmetic we have already encountered operations, which to two given numbers in a set associates
a third number. The operation of addition puts the pair of numbers (3, 5) in correspondence with
the number 8 and to the pair (2, 2) the number 4. The operation of subtraction if considered on the
set of all integers also associates to each pair of integers a specific integer. In this case it is necessary
to indicate not only the pair of numbers, but also the order of these numbers. So, to the pair (5, 3)
subtraction assigns the number 2 and to the pair (3, 5) the number -2. Thus, pairs (5, 3) and (3, 5)
must be considered as different.
We will call pairs of elements to which an order is assigned ordered pairs.

Definition 1 Let M be a certain set of elements of arbitrary nature. If to the ordered pair of elements
from M is assigned a specific element also belonging to M, then it is said that a binary operation is
defined on M.

Binary operations are, for example, addition on the set of natural or on the set of integers, subtraction
on the set of integers. Subtraction on the set of natural numbers is not a binary operation, since, for
example, subtraction assigns to the ordered pair (3, 5) no natural number.
Problem-1 On the sets: 1) all even natural numbers, 2) all odd natural numbers, 3) all negative
integers you will examine the operations: a) addition, b) subtraction, c) multiplication. In what cases
will it turn out to be a binary operation? 1

Let us examine some more examples of binary operations. We will frequently encounter such examples
in the following pages.

1Part of the problems in the sequel has a practical nature and serves for a better understanding of new concepts
by examples. Other tasks are theoretical and their results are used later on. Therefore if the reader is unable to
solve some problems, then she/he must become acquainted with its solution in the Hints, Solutions and Answers
section.
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B C

A

O

Fig. 2.1.

Example-1 Let A, B and C be the vertices of equilateral triangle ABC (Fig. 2.1). Let us rotate the
triangle around its center O by 120◦ in the direction indicated by the arrow. Then vertex A goes to
the vertex B, B to C and C to A. Thus, the triangle will return to its initial position (if we neglect
the name of vertices), i.e. rotating by 120◦ around the point O is a transformation which takes this
triangle into itself. Let us denote this transformation by ã. It is possible to write it down in the form

ã =
(
ABC
BCA

)
where in the upper line all the vertices of the triangle are enumerated and the lower line shows
where each of them goes to. Rotation by 240◦ in the same direction around the point O is also a
transformation which takes the triangle into itself. Let us denote this transformation by b̃. Then

b̃ =
(
ABC
CAB

)
. There is one additional rotation which takes the triangle into itself different from ã

and b̃ which is a rotation by 0◦. Let us denote this conversion by ẽ. Then ẽ =
(
ABC
ABC

)
It is easy to

see that there are only 3 different rotations of the plane 2, taking the equilateral triangle ABC into
itself, namely ã, b̃ and ẽ.
Let g1 and g2 be two arbitrary transformations of the triangle. Then we denote by g1 · g2 (or sim-
ply g1g2) the transformation g3 which will result if we first carry out transformation g2 and then
transformation g1. We will call g3 the product or composition of transformations g2 and g1.

Table 2.1.

e a b

e

a e

b

It is possible to compile a multiplication table (Table 1) where each row and each column corresponds
to a certain rotation which takes the triangle ABC into itself. At the intersection of the row which
corresponds to transformation g1 and the column which corresponds to transformation g2 we will
place the transformation equal to g1 · g2. Thus, for instance, in the chosen cell in table 1 we must

2i.e. rotation only around some axes perpendicular to the plane.
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Fig. 2.2.

place the transformation ã · b̃ which will result if we first turn the triangle by 240◦ and then by another
120◦. Consequently, ã · b̃ is a rotation by 360 degress i.e. coincides with ẽ. We will obtain the same
result if we reason as follows: transformation b̃ takes the vertex A to C, while transformation ã takes
the vertex C to A . This means, transformation ã · b̃ will take the vertex A to A. In exactly the same

manner it is possible to see that the vertex B goes to B, and C goes to C. Therefore, ã · b̃ =
(
ABC
ABC

)
,

i.e., ãb̃ = ẽ.
Problem-2 Fill the table completely.
Any transformation of a certain geometrical figure into itself that preserves the distances between all
its points is called a symmetry of this figure. Thus, the rotations of the equilateral triangle examined
in example 1 are its symmetries.
Example-2 Besides rotations, the equilateral triangle has three additional symmetries, namely, reflec-
tion relative to axes l1, l2 and l3 (Fig. 2.2). We will denote these transformations by c, d, f, so that

c =
(
ABC
ACB

)
, d =

(
ABC
CBA

)
, f =

(
ABC
BAC

)
. Here, it is possible to understand in a different way the

composition of two transformations. Let us examine for example, the composition of transformations
c · d. It is possible to see that after the transformation d, axis l1 goes to the new position (namely
to the position of the old axis l3) and after this transformation to consider the reflection relative
to the new position of axis l1 (i.e. relative to the old axis l3) - On the other hand, it is possible to
consider that the axes are not connected rigidly with the figure and do not move with it; therefore, in
the example, after the transformation d in question, transformation must be carried out as reflection
relative to the old axis l1. We will consider the composition of transformations this way. With this
approach the arguments about the vertices of the figures, analogous to the reasonings given directly
before problem two hold true. Such reasonings are conveniently used to calculate the multiplication
table.
Problem-3 To compile multiplication table for all the symmetries of the equilateral triangle.
Example-3 Let e, a, b and c denote the rotations of a square by 0◦, 180◦, 90◦ and 270◦in the direction
indicated by the arrow (Fig. 2.3).
Problem-4 To compile the multiplication table for the rotations of the square.
Example-4 Let d, f, g and h designate the reflections of square relative to the axes shown in (Fig.
2.4)
Problem-5 To compile the multiplication table for all the symmetries of the square.
Example-5 Let ABCD be a rhombus which is not square.
Problem-6 Find all symmetries of the rhombus and to write the multiplication table for it.
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Example-6 Let ABCD be a rectangle which is not square.
Problem-7 Find all the symmetries of this rectangle and write the multiplication table.

2.2 Transformation groups

Let X and Y be two sets of elements of arbitrary nature and let to each element x ∈ X be assigned
unambiguously a specific element y ∈ Y . Then it is said that a certain mapping ϕ of set X into the
set Y (ϕ : X− > Y ) is defined. Element y is called the image of element x and x the pre-image of
element y and is written as ϕ(x) = y.

Definition 2 Mapping ϕ : X → Y is called a surjective mapping from set X to the set Y , if for each
element y ∈ Y there exists an element x ∈ X such that ϕ(x) = y i.e. for each y ∈ Y there exists a
pre-image in X.

Problem-8 Let the mapping ϕ assign to each city of Soviet Union the first letter from its name in
the Russian language (for example, ϕ(Moscow)=M). Will ϕ map all cities of the Soviet Union onto
the entire Russian alphabet?

Definition 3 Mapping ϕ : X → Y is called a one-to-one (or bijective) mapping of the set X onto
the set Y , if for each y ∈ Y there exists a unique pre-image in X.

Problem-9 Let us examine following mappings from the set of all integers into the set of all non-
negative integers:

a) ϕ(n) = n2 b) ϕ(n) = |n|

c) ϕ(n) =

{
2n if n ≥ 0,
2|n| − 1 if n < 0.

Which of these mappings are surjective, which are bijective ?

Definition 4 Let M be an arbitrary set. We will call an arbitrary one-to-one mapping of set M onto
itself g : M →M a transformation of the set M.
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Two transformations g1 and g2 will be considered equal if g1(A) = g2(A) for every element A ∈ M .
Instead of the term transformation, the term permutation is used often. We will use this term only
when the transformation is defined on a finite set. A permutation can thus be written down in the
form (

A1, A2, . . . , An

Ai1 , Ai2 , . . . , Ain

)
where in the upper row contains all the elements of this set and the lower row indicates where each
of these their elements maps to.
Since this transformation is a one-to-one mapping, for each transformation g there exists an inverse
transformation g−1, which is determined as follows: if g(A) = B, then g−1B = A. Then, in example

1, a =
(
ABC
BCA

)
, therefore a−1 =

(
ABC
CAB

)
, i.e., a−1 = b.

Problem-10 Find the inverse transformations to all symmetries of equilateral triangle (examples 1,
2, p. 13 ).
Problem-11 Let g(x) = 2x be a transformation of the real line. Find the inverse transformation.
The multiplication of transformations g1 and g2 is defined as follows: (g1g2)(A) = g1(g2(A)) (first by
g2 and then by g1). If g1 and g2 are transformations of a set M , then g1g2 is also a transformation of
M .

Definition 5 Suppose the collection G of all transformations possess the following properties:1) if
the transformations g1 and g2 belong to G, then their composition g3 = g1g2 also belongs to G;2)
if a transformation g belongs to G, then its inverse g−1 also belongs to G. Then this collection of
transformations G will be called a transformation group. It is not difficult to verify that the set of
transformations considered in examples 1-6 are transformation groups.

Problem-12 Prove that any transformation group contains an identity transformation e such that
e(A) = A for any element A ∈M .
Problem-13 Prove that eg = ge = g for any transformation g.
Problem-14 Prove that for any three transformation g1, g2, g3 the following equality holds

(g1g2)g3 = g1(g2g3)3

2.3 Groups

To solve problems 6 and 7 we compiled the multiplication tables for the symmetries of the rhombus
and the rectangle. In this case it turned out that in our notation for the symmetries (see the solutions)
these tables coincide. For many purposes it is natural to consider such transformation groups as the
same. Therefore we will ignore the nature of the elements of the set (in our case, of transformations)
and the nature of the binary operation 4) (in our case, the composition of transformations). We
will simply consider only those binary operations on arbitrary sets for which the basic properties
of a transformation groups holds true. In this case we will call the arbitrary binary operation a
multiplication; and if to the pair (a, b) there corresponds the element c, then we will call c the roduct
of a and b and write ab = c. In some special cases this operation will be called differently, for example,
composition, addition and so forth.

Definition 6 A group is a set G of elements of an arbitrary nature, on which a binary operation a · b
is defined, such that the following conditions are satisfied:

3This equality is true not only for transformations, but also for any three mappings g1, g2, g3 such that g3 :
M1 →M2, g2 : M2 →M3, g1 : M3 →M4

4See page 13 for the definitaion of a binary operation.
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Problem-15 Prove that any transformation group contains an identity transformation e such that
e(A) = A for any element A ∈M .
Problem-16 Prove that eg = ge = g for any transformation g.
Problem-17 Prove that for any three transformation g1, g2, g3 the following equality holds

(g1g2)g3 = g1(g2g3)5

2.4 Groups

To solve problems 6 and 7 we compiled the multiplication tables for the symmetries of the rhombus
and the rectangle. In this case it turned out that in our notation for the symmetries (see the solutions)
these tables coincide. For many purposes it is natural to consider such transformation groups as the
same. Therefore we will ignore the nature of the elements of the set (in our case, of transformations)
and the nature of the binary operation 6) (in our case, the composition of transformations). We
will simply consider only those binary operations on arbitrary sets for which the basic properties
of a transformation groups holds true. In this case we will call the arbitrary binary operation a
multiplication; and if to the pair (a, b) there corresponds the element c, then we will call c the roduct
of a and b and write ab = c. In some special cases this operation will be called differently, for example,
composition, addition and so forth.
a) associativity: (ab)c = a(bc) for any elements a, b, c from G
b) in G there exists an element e, such that ea = ae = a for any element a ∈ G; this element e is

called the identity element (or neutral element or unit element) of the group G;
c) for any element a ∈ G there is this element a−1 ∈ G, such that aa−1 = a−1a = e; this element is

called the inverse of a.
From the results of problems 12-14 we see that any transformation group is a group (in some sense
the converse is also true (see 55)). Thus, we already have several examples of groups. All these groups
contain finite number of elements and such groups are called finite groups. The number of elements in
a finite group is called the order of group. The groups, which contain an infinite number of elements
are called infinite groups.
Let us consider some examples of infinite groups.
Example-7 Let us consider the set of all integers. The binary operation on this set will be the usual
addition. Then we obtain a group. Indeed, the role of the identity element in this case is played by 0,
since 0 +n = n+ 0 = n for any integer n. Furthermore, for each n there exists the inverse element −n
(which is in this case called the negative of n), since n+ (−n) = (−n) + n = 0. Associative property
in this case follows from the rules of arithmetic. The group obtained is called the group of integers
under addition.
Problem-18 Do the following sets form a group under multiplication: 1) all real numbers, 2) all real
numbers without O?
Problem-19 Do all positive real numbers form a group under multiplication ?
Problem-20 Do natural numbers form a group :a) under addition, b) under multiplication?
Problem-21 Prove that any group has a unique identity element.
Problem-22 Prove that for any element a in a group there is a unique inverse element a−1.
Problem-23 Prove that a)e−1 = e, b)(a−1)−1 = a.
If a and b are elements of a certain group, then by the definition of binary operation, the expression
given by a·b is also an element of the group. Therefore expressions of the form (a·b)·c, a·(b·c), (a·b)·(c·d)

5This equality is true not only for transformations, but also for any three mappings g1, g2, g3 such that g3 :
M1 →M2, g2 : M2 →M3, g1 : M3 →M4

6See page 13 for the definitaion of a binary operation.
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are also elements of the group. Any two of these elements can again be multiplied with another element
of the group and so on. We will put in brackets the two elements which are to be multiplied at each
step. In this way, at each step, there is a unique way to perform the next step ( we may choose not
to enclose a single letter in brackets). Let us call all possible expressions which can be built this
way correctly arranged products. For example, (a · b) · (a · (a · c)) is a correctly arranged product
but (a · b) · c · (c · d) is not a correctly arranged product since it is not clear in what order the
multiplication is performed. In the product a1 · a2 · . . . · an of several real numbers a1, a2, . . . , an we
have not placed brackets since it happens that the result does not depend on the order in which the
operations are performed i.e., any arrangement of brackets which gives correctly arranged products,
the result corresponding to this product will be the same. It turns out that this property holds in any
group, as follows from the result of the following problem.
Problem-24 Let the binary operation a · b have the associativity property, i.e., (a · b) · c = a · (b · c)
for any elements a, b, c. Prove that any correctly arranged product, in which the elements from left
to right are a1, a2, . . . an gives the same element as the product (. . . ((a1 · a2) · a3) · . . . · an−1) · an.
Thus, if a1, a2, . . . an are elements of a certain group, then all correctly arranged products containing
a1, a2, . . . an in this order and differing only by the arrangement of brackets gives one and the same
element which we will denote by a1 · a2 · . . . · an (without indicating brackets).
The multiplication of real numbers has one additional very important property: the product a1 · a2 ·
. . . · an will not change if we arbitrarily swap two factors. However, this property does not hold true
in an arbitrary group.

Definition 7 Two elements a and b of a group are called adjustable or or commutating, if ab = ba.
If any two elements of a group commutate, then this group is called a commutative or abelian.

There exists non-commutative groups. For example, the symmetry group of triangle (see example 2,
where the ac = f, ca = d and ac 6= ca) is non-commutative.
Problem-25 To explain whether the following groups are commutative (see 2, 4 -7): 1) the rotation
group of the triangle, 2) the rotation group of the square, 3) the symmetry group of the square, 4)
the symmetry group of the rhombus, 5) the symmetry group of the rectangle.
Problem-26 Prove that in an arbitrary group: 1)(ab)−1 = b−1a−1, 2)(a1 · a2 · . . . · an)−1 = a−1

n · . . . ·
a−1
1 .

Observation. A jacket is put on after the shirt, but taken off before it.
If there is certain identity a = b in an arbitrary group G ( the left and right expression giving the
same element), then its possible to obtain a new identity by multiplying both sides of the initial
identity by a certain element from the group G. However, since multiplication in a group may depend
on the order of its factors, one can multiply both sides of the identity by a certain element to the
right:ac = bc, or multiply both sides by a certain element to the left:ca = cb.
Problem-27 Let a and b be arbitrary elements of a certain group G. Show that, each of the equations
ax = b and ya = b has an unique solution in the group G.
The uniqueness condition from problem 24 can be stated as follows: if ab1 = ab2 or b1a = b2a, then
b1 = b2
Problem-28 Let a · a = e for any element a of a group G. Show that the group G is commutative.
By am, where m is a natural number and a an arbitrary element of group G, we will denote the
product a · a · . . . · a where the number of factors is equal to m.
Problem-29 Prove that (am)−1 = (a−1)m where m is a natural number. Thus, (am)−1 and (a−1)m

with m a natural number indicates one and the same element, which we will denote by a−m. Further-
more, we will assume for any element a, a0 = e
Problem-30 Prove that am · an = am+n for any integers m and n.
Problem-31 Prove that (am)n = amn for any integers m and n.
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2.5 Cyclic groups

The simplest and at the same time very important groups are the cyclic groups, which we will now
study.

Definition 8 Let a be an element of a certain group G. If there exists a natural number n such that
an = e, then n is called the order of the element a. If such a n does not exist, then it is said that
element a has infinite order.

Problem-32 Find the order of all elements in the symmetry groups of the equilateral triangle, the
square and rhombus (see 3, 5, 6).
Problem-33 Let the element a be of order n. Prove that: 1) elements e, a, a2, . . . , an−1 all are
different; 2) for any integer m, the element am coincides with one of the elements listed above.

Definition 9 If an element a has order n and there are no elements besides e, a, a2, . . . an−1 in the
group G, then G is called a cyclic group of order n generated by the element a and element a is called
a generator of this group

Example-8 Let a regular n-polygon be given on the plane. Let us examine all the rotations of the
plane which takes the regular n-polygon into itself.
Problem-34 Prove that these rotations form a cyclic group of order n.
Problem-35 Find all the generators in the rotation groups of the triangle and the square (examples
1 and 3, page ?? and ??).
Problem-36 Let the element a have order n. Prove that am = e ⇐⇒ m = nd, where d is an
arbitrary integer.
Problem-37 Let a have prime order p and m an arbitrary integer. Prove that either am = e or am

has order p. .
Problem-38 Let the greatest common divisor of the natural numbers m and n be equal to d and a
have order n. Prove that the order of element am is

n

d
.

Problem-39 Find all the generators in the rotation group of a regular 12 sided polygon.
Problem-40 Let a be an element of infinite order. Prove that the elements . . . a−1, a0, a, a2, . . . are
all different

Definition 10 If a is an element of infinite order and the group G has no elements other than
. . . a−2, a−1, e, a, a2, . . ., then G is called an infinite cyclic group and a its generator.

Problem-41 Prove that the group of integers under addition (example 7, p. 18 ) is an infinite cyclic
group. Find all generators. Example-9 Let n be a natural number. Consider all possible remainders,
which can be obtained by dividing integers by n, i.e., the numbers 0, 1, 2, . . . , n− 1. Let us define on
these remainders the following binary operation. We will add remainders as usual, but for the result
take the remainder from the division of the obtained number by n. We will call this operation addition
modulo n. Thus, under addition modulo 4, we have 1 + 2 = 3 and 3 + 3 = 2.
Problem-42 To compile the tables of addition modulo: a) 2, b) 3, c) 4.
Problem-43 Prove that the remainders with the operation of addition modulo n form a group;
moreover this group is cyclic of order n.
Consider again an arbitrary cyclic group of order n: {e, a, a2, . . . an−1}.
Problem-44 Prove that am · ar = ak where 0 ≤ m < n, 0 ≤ r < n and 0 ≤ k < n ⇐⇒ under
addition modulo n we have m+ r = k.
It follows that from the result of the previous problems, it follows that the multiplication in an
arbitrary cyclic group of order n corresponds to the addition of remainders modulo n. In exactly the
same manner, multiplication of elements in an infinite cyclic group corresponds to the addition of
integers (see 27). Here we have arrived at an important concept in group theory: the concept of an
isomorphism.
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2.6 Isomorphism

Definition 11 Let G1 and G2 be two groups and with a one-to-one mapping ϕ from group G1 into
group G2 (see chap 2) with the property: if ϕ(a) = a′, ϕ(b) = b′, ϕ(c) = c′ and, ab = c in group G1

, then a′b′ = c′ in the group G2. Then ϕ is call an isomorphism from the group G1 to the group
G2 and groups between which it is possible to establish an isomorphism are called isomorphic groups.
The condition that the one-to-one mapping ϕ is an isomorphism can be written down as follows:
ϕ(ab) = ϕ(a) · ϕ(b) for any elements a and b of G1; here product ab is taken in the group G1 , and
product ϕ(a) · ϕ(b) in the group G2.

Problem-45 Which of the following groups are isomorphic:1) the rotation group of a square, 2) the
symmetry group of a rhombus, 3) the symmetry group of a rectangle, 4) the group of remainders
under addition modulo 4?
Problem-46 Let ϕ : G1 → G2 be an isomorphism. Prove that the inverse mapping ϕ−1 : G2 → G1

is also an isomorphism
Problem-47 Let ϕ1 : G1 → G2 and ϕ2 : G2 → G3 be isomorphisms. Prove that ϕ2ϕ1 : G1 → G3 is
also an isomorphism
It follows from the last two tasks that two groups isomorphic to a third group are themselves isomor-
phic.
Problem-48 Prove that any cyclic group of order n is isomorphic to the group of remainders on
division by n under addition modulo n.
Problem-49 Prove that any infinite cyclic group is isomorphic to the group of integers under
addition.
Problem-50 Let ϕ : G → F be an isomorphism. Prove that ϕ(eG) = eF where eG and eF are the
identity elements in groups G and F respectively.
Problem-51 Let ϕ : G→ F be an isomorphism. Prove that ϕ(g−1) = (ϕ(g))−1 for all g ∈ G.
Problem-52 Let ϕ : G→ F be an isomorphism and ϕ(g) = h. Prove that g and h have equal orders.
If we are interested in the group operation by itself and not the nature of elements of the group (which
does not play any role), then isomorphic groups cannot be distinguished. Thus for instance, we will
say that there is only one (see 45) cyclic group of order n upto isomorphism which we denote by Zn

and one (see 46) infinite cyclic group upto isomorphism which we denote by Z.
If the group G1 is isomorphic to the group G2, then we write G1

∼= G2

Problem-53 Find all the groups (upto isomorphism), which contain: a) 2 elements, b) 3 elements.
Problem-54 To give an example of two non-isomorphic groups with identical number of elements.
Problem-55 Prove that the group of all real numbers under addition is isomorphic to the group of
all positive real numbers under multiplication
Problem-56 Let a be an arbitrary element of group G. Consider the set of mappings ϕa of the
elements of group G into itself defined as follows: ϕa(x) = ax for any element x ∈ G. Prove that ϕa

is a transformation of the set of the elements of group G (i.e. a one-to-one mapping of the set of the
elements of group G into itself).
Problem-57 Let for each element a of group G, ϕa be the previous transformation (see the previous
problem). Prove that the set of all these transformations ϕa form a group with the usual operation
of composition of transformations.
Problem-58 Prove that the group G is isomorphic to the transformation group constructed in the
previous problem.

2.7 Subgroups

Let us examine a certain subset of elements H in a group G . It may happen that H is itself a group
with the same binary operation defined on G. In this case H is called a subgroup of group G. Thus, for
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instance, rotation group of a regular n-polygon is the subgroup of the group of all of the symmetries
of the regular n-polygon.
If a is an element of group G, the set of all elements of the form am is a subgroup of group G (this
subgroup which we saw in section 4 is cyclic)
Problem-59 Let H be a subgroup of the group G. Prove that:a) identity elements in G and H
coincide; b) if a is an element of subgroup H, then the inverse of a in G and H coincide.
Problem-60 For H to be a subgroup of the group G (relative to the same binary operation), it is
necessary and sufficient that the following conditions are satisfied: 1) if a and b are contained in H,
then ab (product in group G) is contained in H; 2) e (identity element in G) is contained in H; 3) if
a is contained in H, then a−1 (in the group G) is contained in H. Prove this.
Observation.From conditions 1) and 3) follow condition 2).
Problem-61 Find all subgroups in the groups:1) the symmetry group of an equilateral triangle, 2)
the symmetry group of a square.
Problem-62 Find all subgroups in the cyclic groups: a)Z5; b)Z8; c)Z15

Problem-63 Prove that all subgroups in Zn take the form e, ad, a2d, . . . , a
(
n

d
−1)d

where d divides n
and and a is the generator of group Zn.
Problem-64 Prove that all subgroups of infinite cyclic group take the form . . . , a−2r, a−r, e, ar, a2r, . . .,
where a generates the group , and r is an arbitrary natural number.
Problem-65 Prove that in any infinite group there are infinitely many subgroups.
Problem-66 Prove that the intersection of any number of subgroups 7 of a certain group G is also
a subgroup of group G.
Example-10 Let us consider a regular tetrahedron whose vertices are designated by letters A,B,C
and D. If we look at triangle ABC from point D, then the points A,B,C can be oriented clockwise
or anti-clockwise (Fig. 2.5). We will distinguish these two orientations of the tetrahedron.

Problem-67 Do the following permutations preserve the orientation of tetrahedron: a =
(
ABCD
BCAD

)
- rotation by 120◦ around the altitude fromD and perpendicular to the base; b =

(
ABCD
DCBA

)
- rotation

by 180◦ around the axis passing through the middle of edges AD and BC; c =
(
ABCD
ACBD

)
- reflection

7The intersection of several sets consists of all the elements which belong to all the given sets
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with respect to the plane containing edge AD and the middle of edge BC; the permutation which

generates the cyclic substitution of the vertices d =
(
ABCD
BCDA

)
.

All symmetries of a regular tetrahedron obviously form a group which is called the symmetry group
of the tetrahedron.
Problem-68 How many elements does the symmetry group of a tetrahedron have?
Problem-69 Find the subgroups in the symmetry group of tetrahedron isomorphic to: a) to the
symmetry group of triangle, b) to cyclic group Z4.
Problem-70 Prove that all symmetries of a tetrahedron which preserve the orientation form a group.
How many elements does it have ?
The symmetry group of a tetrahedron that preserves orientation is called the rotation group of the
tetrahedron.
Problem-71 Find subgroups in the rotation group of the tetrahedron isomorphic to the cyclic
groups: a) Z2, b) Z3.

2.8 Direct product

From two groups it is possible to form a new group.

Definition 12 The direct product of two groups G and H (denoted by G×H) is the set of all possible
ordered pairs (g, h), where g is an arbitrary element from G and is h an arbitrary element from H
with the following binary operation: (g1, h1) · (g2, h2) = (g1g2, h1h2) where the product g1g2 is taken
in the group G and h1h2 is taken in H.

Problem-72 Prove that G×H is a group.
Problem-73 Let G and H have n and k elements respectively. How many elements does G × H
have ?
Problem-74 Prove that the groups G×H and H ×G are isomorphic.
Problem-75 Find subgroups in G×H isomorphic to groups G and H.
Problem-76 Let the groups G and H be commutative. Prove that the group G×H is also commu-
tative.
Problem-77 Let G1 and H1 be subgroups of groups G and H respectively. Prove that G1 ×H1 is
a subgroup of G×H.
Problem-78 Let G and H be arbitrary groups. Is it true that any subgroup in the group G × H
can be represented in the form of G1 × H1 where G1 and H1 are subgroups of groups G and H
respectively.
Problem-79 Prove that the symmetry group of a rhombus is isomorphic to group Z2 × Z2.
Problem-80 Prove the isomorphisms: 1)Z2 × Z3

∼= Z6, 2) Z2 × Z4
∼= Z8.

Problem-81 Prove that Zm × Zn
∼= Zmn ⇐⇒ the numbers m and n are mutually coprime.

2.9 Cosets and Lagrange’s theorem

To each subgroup H of the group G we can associate the following partition of the elements of group
G into subsets. For any element x ∈ G let us consider the set of all elements of the form xh where h
runs over all possible elements in H. This subset denoted by xH is called the left coset of H generated
by the element x.
Problem-82 Find all left cosets of the group of symmetry of triangle by: a) the subgroup of rotations
of triangle; b) subgroup of reflections with respect to a single axis {e, c} (see examples 1 and 2, p.
13).



24 2 Groups

Problem-83 Prove that given a subgroup H, each element of the group belongs to a certain left
coset of the subgroup H.
Problem-84 Let element y belong to the left coset of H generated by element x. Prove that left
coset of H generated by elements x and y coincide.
Problem-85 Let left cosets of H generated by elements x and y contain a common element. Prove
that these cosets coincide.
Thus, left cosets generated by any two elements either do not intersect or they coincide and we obtain
a partition of all elements of the group G into non-intersecting classes. This partition is called the
left decomposition of group G by the subgroup H.
The number of elements in a subgroup is called the order of subgroup. Let m be the order of the
subgroup H. If h1 6= h2, then xh1 6= xh2, therefore each left coset also contains m elements. Conse-
quently, if n is the order of the group G and r the number of left cosets in the decomposition of G by
H, then m · r = n and we have proved:

Theorem 2.1 (Lagrange’s theorem 8) The order of a subgroup divides the order of the group.

Problem-86 Prove that the order of any element (see p. 20) divides the order of the group.
Problem-87 Prove that any group of prime order is cyclic and any element in it different from e is
its generator.
Problem-88 Group G contains 31 elements. How many subgroups can group G contain ?
Problem-89 Prove that all groups of prime order p are isomorphic to each other.
Problem-90 Suppose m divides m. Build a group of order n containing a subgroup isomorphic to
a group G of order m.
Problem-91 Suppose m divides m. Is it possible that a group of order n does not contain any
subgroup of order m ?
It is also possible to build right cosets Hx and right decomposition of a group G by a subgroup H.
If the order of a subgroup H is equal to m, then each right coset contains m elements and number of
cosets equal to the natural number

n

m
, where n the order of group. Thus, the number of right cosets

coincides with the number of left cosets
Note For the practical construction of expansions of finite group it is not necessary to construct cosets
for each element, since in this case identical classes will be obtained, and it is necessary to take the
elements which are not yet in the cosets already constructed. Since eH = He = H, the subgroup
itself always forms both right and left coset.
Problem-92 To build the left and right decomposition of the symmetry group of an equilateral
triangle by: a) the subgroup of rotations {e, a, b}, b) subgroup of reflections relative to one axis {e, c}.
Problem-93 To build the left and right decomposition of the symmetry group of a square by: a) the
subgroup of reflections relative to center {e, a}, b) the subgroup of reflections relative to one diagonal
{e, d}.
Problem-94 To build the decomposition of the group of all integers (under addition) by the subgroup
of the numbers under addition modulo 3. 9.
Problem-95 Find all groups (upto isomorphism) of order: a)4, b)6, c)8.

2.10 Inner automorphism

Let us start with an example. Consider the symmetry group of an equilateral triangle. If we denote the
vertices of the triangle by the letters A,B,C, then each element of this group is uniquely determined
by a permutation of three letters A,B,C. For example, the reflection of the triangle with respect

9We do not mention here what type of decomposition we want since in a commutative group the left and right
decompositions coincide
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to the altitude from the vertex A to the side BC is written as
(
ABC
ACB

)
. In order to multiply two

elements of this symmetry group, it suffices to carry out the corresponding permutations one after
the another. In this way we obtain an isomorphism from the symmetry group of the triangle and the
permutation group of three letters A,B,C. Note that this isomorphism is not uniquely determined:
it depends on how we labelled the vertex of the triangle by A,B and C. The relabeling of vertices

can also be considered as a permutation of the three letters A,B,C. For example, g =
(
ABC
BCA

)
corresponds to the following relabelling of vertices:

Table 2.2.

Old notation A B C

New notation B C A

Under the new labelling of the vertices each element of the symmetry group of the triangle will have
a new notation in terms of permutation of the letters A,B,C. For example, the reflection of triangle
relative to its vertical altitude (Fig. 2.6 ) is denoted as follows:

the old labelling
(
ABC
ACB

)
the new labelling

(
ABC
CBA

)
Problem-96 Consider an element of the symmetry group of the triangle, which, in a certain labelling
of vertices corresponds to a permutation h. What permutation will correspond to the same element
of the symmetry group of the triangle after the relabelling of vertices given by g ?
Note Observe now that the relabelling g sends the element h of a certain transformation group to
ghg−1 not only in the example of the symmetry group of triangle considered, but also in the most
general case. So, the study of relabelling leads to the following definition.

Definition 13 Let G be a group and g one of its element. Define the mapping ϕg of the group G
into itself by the formula of ϕg(h) = ghg−1 (where h is any element of the group). This mapping is
called the inner automorphism of group G generated by element g.

Problem-97 Prove that the inner automorphism of a group is an isomorphism of the group into
itself.
Problem-98 What is the image of the reflection of the triangle with respect to its altitude under
all possible inner automorphism of the symmetry group of the triangle ?
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Problem-99 What is the image of the rotation of the triangle by 120◦ under all possible inner
automorphism of the symmetry group of triangle transform ?
Problem-100 What are the pairs of elements of the symmetry group of the tetrahedron that can be
sent into each other by an inner automorphism ? Which element pairs cannot ? The same question
for the rotation group of the tetrahedron.
Problem-101 Prove that the orders of elements ab and ba in any group are equal.
Note that in general, the image of a subgroup under any inner automorphism of a group (as well as
under any isomorphism) is in general different. (for example, reflections with respect to one altitude
of a triangle mapt to reflections with respect to another altitude). However, some ”especially sym-
metrical” subgroups are invariant under all inner automorphism (for example, the subgroup of the
rotations of triangle in the symmetry group of triangle). We will now studey such subgroups.

2.11 Normal subgroups

Definition 14 A subgroup of a group is called a normal subgroup if it invariant under all inner
automorphism of the group. In other words, a subgroup H of a group G is called a normal subgroup
in G if for any element h ∈ H and any element g ∈ G element ghg−1 belongs to H.

Thus, the subgroup of rotations is a normal subgroup in the symmetry group of a triangle but the
subgroup of reflections with respect to an altitude from the vertex A to the side BC (consisting of
two elements) is not a normal subgroup of the symmetry group of triangle.
Problem-102 Prove that in a commutative group any subgroup is a normal subgroup
Problem-103 Is the subgroup of the symmetry group of a square which consists of two elements
{e, a} (examples 3, 4, page. 15) a normal subgroup ?

Theorem 2.2 The subgroup H of a group G is normal subgroup ⇐⇒ left and right decompositions
(see section 8) of the group G by the subgroup H coincide. 10

Problem-104 Prove the above theorem.
Problem-105 Let n be the order of a group G, m the order of subgroup H and m =

n

2
. Prove that

H is a normal subgroup of the group G.
Problem-106 Prove that the intersection (see footnote on page 22) of any number of normal
subgroups of a group G is a normal subgroup of the group G.

Definition 15 The set of all the elements of a group G which commute with all the elements of the
group is called the center of the group G.

Problem-107 Show that center of a group G is a subgroup and moreover, a normal subgroup of the
group G.
Problem-108 Let N1 and N2 be normal subgroups respectively in the groups G1 and G2. Prove
that N1 ×N2 is a normal subgroup in the group G1 ×G2.
The following example shows that the normal subgroup of a normal subgroup of group G may not be
a normal subgroup of the group G itself.
labelnormal-normal-notnormal
Example-11 Let us examine the subgroup of the symmetry group of square which consists of the
reflections with respect to diagonals and the center (see examples 3, 4, page 15 , the subgroup
{e, a, d, f}). This subgroup contains half of the elements of the symmetry group of the square and is
therefore a normal subgroup (see problem 102). The subgroup {e, d} which consists of the reflections
relative to one of the diagonals contains half of the elements of the subgroup {e, a, d, f} is therefore

10In this case the decomposition obtained will simply be called the decomposition by the normal subgroup
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a normal subgroup in it. On the other hand the subgroup {e, d} is not a normal subgroup of the
entire symmetry group of square, since under an inner automorphism, d goes to a reflection relative
to another diagonal: bdb−1 = f .

2.12 Quotient groups

Let us start with an example. Consider the decomposition of the symmetry group of square by the
normal subgroup which consists of the identity and rotation by 180◦, i.e., the subgroup {e, a} (see
examples 3, 4, page 15). It is easy to see that the decomposition of our group into four cosets takes
the form, indicated in table 2.3. Denote each coset by a letter, for example E,A,B,C. If we multiply
any element from coset A with any element from coset B, then the result belongs to coset C and is
independent of the particular coset elements chosen from of A and B. From the solution of the next
problem it follows that this not a coincidence.

Table 2.3.

e b d g

a c f h

E A B C

Problem-109 Let the decomposition of a group G by a normal subgroup N be given and let the
elements x1 and x2 belong to one coset and elements y1 and y2 belong to another coset. Prove that
the elements x1y1 and x2y2 belong to the same coset.
In this way, multiplying in a given order representatives of two cosets, we will obtain an element of
a coset which will not depend on the particular representatives we chose. Hence, under the decom-
position of a group by a normal subgroup N , it is possible to define a binary operation on the set of
cosets as follows: if A = xN,B = yN , we write AB = (xy)N . The result of problem 105 shows that
this operation is uniquely defined and does not depend on the elements x and y generating cosets A
and B. Then, in the example considered above AB = C.
In problems 107 to 109, the discussion deals with decomposition by normal subgroup. Assume the
subgroups are normal in these problems.
Problem-110 Let T1, T2, T3 be cosets. Prove (T1T2)T3 = T1(T2T3).
Problem-111 Let the normal subgroup containing e be denoted by the letter E. Show that ET =
TE = T for any coset T .
Problem-112 Prove that for any coset T there exists a coset T−1 such that TT−1 = T−1T = E
From the results of problems 107 to 109 it follow that the set of all cosets with the binary operation
defined above forms a group. This group is called the quotient group of group G by the normal subgroup
N and is denoted by G/N
It is obvious that G/e = G and G/G = e. It is also evident that the order of quotient group is equal
to the natural number

n

m
, where n is the order of group G, and m the order of normal subgroup N .

For example, the quotient group of the symmetry group of square by the subgroup {e, a} consisting
of the identity and rotation by 180◦ about an axis contains 4 elements.
Problem-113 Is the quotient of the symmetry group of a square by the subgroup {e, a} isomorphic
to the rotation group of a square or to the symmetry group of rhombus.
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Problem-114 Find all normal subgroups and the corresponding quotient groups 11 in the following
groups: a) the symmetry group of triangle, b) Z2×Z2 c) the symmetry group of square, g) the group
of quaternions.
Problem-115 To describe all normal subgroups and quotient groups in the groups: a)Zn, b)Z.
Problem-116 Find all normal subgroups and quotient groups in the rotation group of the tetrahe-
dron.
Problem-117 Consider the subgroup G1 × e2 in the direct product of the groups G1 × G2. Prove
that this is a normal subgroup and that the corresponding quotient group is isomorphic to the group
G2.

2.13 Commutator

Recall that two elements a and b of a group G are called commutating if ab = ba. The degree of the
noncommutativity of two elements of group can be measured by the product aba−1b−1, which is equal
to one ⇐⇒ a and b commute (prove this).

Definition 16 The element aba−1b−1 is called the commutator of elements a and b. The commutator
K(G) of a group G is the collection of all possible finite number of commutators of elements of the
group G.

Problem-118 Prove that the commutator of a group is a subgroup.
Problem-119 Prove that the commutator of a group is a normal subgroup.
Problem-120 Prove that the commutator coincides with the single element subgroup {e} if and
only if group is commutative.
Problem-121 Find the commutator in the groups: a) the symmetry group of a triangle, b) the
symmetry group of a square, c) the group of quaternions.
Problem-122 Prove that the commutator in the symmetry group of a regular n-polygon is isomor-
phic to group Zn with n odd and group Zn

2
if n is even.

Problem-123 Find the commutator in the symmetry group of a tetrahedron.
Problem-124 Prove that if a normal subgroup of the rotation group or of the symmetry group of
a tetrahedron contains at one rotation around an axis passing through a vertex, then it contains all
the rotations of the tetrahedron.
Problem-125 Find a commutator in the symmetry group of the tetrahedron.
Let us examine the 2 additional groups: the rotation group of a cube and the rotation group of a
regular octahedron (Fig. 2.7 ).
Problem-126 How many elements are there in each of these groups ? Enumerate the elements of
the rotation group of the cube.
Problem-127 Prove that the rotation group of a cube and an octahedron are isomorphic.
Problem-128 In how many different ways is it possible to paint the faces of a cube with 6 colors
(different color for each face) if two coloured cubes which do not coincide even after some rotation
are considered different. The same question for a box of match.
Problem-129 Which of the groups known to you is isomorphic to the rotation group of a match
box ?
To calculate the commutator of the rotation group of a cube inscribe a tetrahedron in the cube as
shown in figure (Fig. 2.8 ). In this case if we join the remaining vertices B,D,A1 and C1, one obtains

11In the sequel finding a quotient group will mean finding a group, among those already studied, which is
isomorphic to the desired quotient group.
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a second tetrahedron. Any rotation of cube either sends each tetrahedron into itself or it swaps their
positions.
Problem-130 Prove that all the rotations of a cube which sends each tetrahedron onto itself form:
a) a subgroup, b) a normal subgroup of the rotation group of cube.
Problem-131 Prove that the commutator of the rotation group of cube is isomorphic to the rotation
group of tetrahedron.
Let us now prove the following 3 properties of commutator which will be of use later on.
Problem-132 Prove that the quotient group of an arbitrary group G by its commutator is commu-
tative.
Problem-133 Let N be a normal subgroup of a group G and let the quotient group G/N be
commutative. Prove that N contains the commutator of the group G.
Problem-134 Let N be a normal subgroup of a group G and K(N) the commutator of the subgroup
N . Prove that K(N) is a normal subgroup of the group G (compare it with the example 11 on page
?? ).



30 2 Groups

2.14 Homomorphism

A homomorphish is a mapping ϕ : G → F from group G to group F such that ϕ(ab) = ϕ(a) · ϕ(b)
for any elements a and b in groups G (here the product ab is taken in the group G and the product
ϕ(a) ·ϕ(b) in group F ). A homomorphism is different from an isomorphism as it need not be bijective.
Example-12 Let G be the rotation group of a cube and Z2 the permutation group of two tetrahedrons
inscribed in it (see page. ???). To each rotation of the cube there corresponds a well defined permu-
tation of the tetrahedra. When we have two rotations of the cube one after the other, the resulting
permutation of the tetrahedra is the product of the permutations of the tetrahedra corresponding to
these rotations. Thus, the mapping of the group of rotations of the cube into the permutations of two
tetrahedra is a homomorphism.
Problem-135 Let ϕ : G → F be a surjective homomorphism of a group G onto a group F . If the
group G is commutative, then F is commutative. Prove this. Is the converse correct ?
Problem-136 Prove that a homomorphism of the group G into group F carries the identity of group
G to the identity of the group F .
Problem-137 Prove that ϕ(g−1) = (ϕ(g))−1, where ϕ : G→ F is a homomorphism and on the left
side the inverse is taken in the group G and in the right side it is taken in the group F .
Problem-138 Let ϕ1 : G→ F and ϕ2 : F → H be two homomorphisms. Prove that ϕ2ϕ1 : G→ H
is a homomorphism.
Important examples of homomorphisms are obtained using the following construction of ”natural
homomorphism”.
Let N be a normal subgroup of a group G. Consider the following mapping ϕ of the group G to
quotient group G/N . Map each element g in the group G to the coset of N which contains the
element g.
Problem-139 Prove that ϕ : G→ G/N is a homomorphism from the group G to the group G/N .

Definition 17 The mapping ϕ is called the natural homomorphism from the group G to the quotient
group G/N .

We showed that to each normal subgroup, there corresponds a certain homomorphism. Let us now
show that conversely, every surjective homomorphism of a group G onto group F can be seen as a
natural homomorphism from G to the quotient group G/N by a suitable normal subgroup.

Definition 18 Let ϕ : G→ F be a group homomorphism. Then the set of elements g of G such that
ϕ(g) = eF is called the kernel of the homomorphism ϕ and is denoted Ker ϕ.

Problem-140 Prove that Ker ϕ is a subgroup of the group G.
Problem-141 Prove that Ker ϕ is a normal subgroup of the group G.
Consider the decomposition of the group G by Ker ϕ.
Problem-142 Prove that g1 and g2 lie in one coset if and only if ϕ(g1) = ϕ(g2).

Theorem 2.3 Let ϕ : G → F be a homomorphism of a group G to a group F . Then the mapping
ψ : G/Ker ϕ → F which sends each coset to the image ϕ(g) for some element g of the coset (and
thus any element (see problem 139)) is an isomorphism.

The proof of this theorem is contained in the solutions of the following problems.
Problem-143 Prove that ψ is an onto mapping .
Problem-144 Prove that ψ is a bijective mapping.
Problem-145 Prove that ψ is an isomorphism.
Let us give examples of applications of the above theorem.
Example-13 In problem 110 it was asked whether the quotient group of the symmetry group of
square by the normal subgroup consisting of the identity and rotation by 180◦ about the centre was
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isomorphic to the rotation group of square or to the symmetry group of rhombus. To each element
of the symmetry group of the square there corresponds a certain permutation of axes of symmetry
l1, l2, l3, l4 (Fig. 2.9). This permutation can swap the diagonals l1 and l3 as well as the axis l2 and
l4. We thus obtain a mapping from the symmetry group of the square to the permutation group of
four elements: l1, l2, l3 and l4. This mapping is surjective homomorphism onto the entire group of
permutations which send {l1, l3} to {l1, l3} and {l2, l4} to {l2, l4} (verify). This group consists of four
permutations and is isomorphic to the symmetry group of rhombus L1L2L3L4 (Fig. 2.10).
The kernel of the homomorphism constructed contains all the symmetries of the square sending each
axis of symmetry onto itself. It is not difficult to verify that a and e are the only such transformations.
Therefore, by Theorem 3 the subgroup {e, a} is a normal subgroup of the symmetry group of the
square and the corresponding quotient group is isomorphic to the symmetry group of rhombus.
Similarly it is possible to solve the following problems.
Problem-146 Prove that the rotations of tetrahedron by 180◦ around the axes through the middle
points of opposite edges together with the identity transformation form a normal subgroup of the
symmetry group of tetrahedron. Find the corresponding quotient group.
Problem-147 Prove that the rotations of the cube by 180◦ around the axes through the centers
of opposite faces together with the identity transformation form a normal subgroup of the rotation
group of the cube. Find the corresponding quotient group.
Problem-148 Consider a reguler n-polygon on a plane with center O. Let R be the group of all
rotations of plane around the point O. Let Zn be the subgroup of all rotations of plane which sends the
regular n-polygon into itself. Prove that this is a normal subgroup of the group R and that R/Zn = R
Problem-149 Let N1 and N2 be two normal subgroups of G1 and G2 respectively. Prove that
N1 ×N2 is a normal subgroup of G1 ×G2 and (G1 ×G2)/(N1×N2) = (G1/N1)× (G2/N2).
Problem-150 Can two nonisomorphic groups have isomorphic normal subgroups and isomorphic
corresponding quotient groups ?
Problem-151 Can a group have two isomorphic normal subgroups but nonisomorphic corresponding
quotient groups ?
Problem-152 Can groups have nonisomorphic normal subgroups but with the corresponding quo-
tient groups isomorphic ?
Let us observe what happens to subgroups, normal subgroups and commutators under a homomor-
phism. Let ϕ : G→ F be a homomorphism and let M be a subset of G. Then the set of all elements
in F which have at least one pre-image in M under the homomorphism ϕ is called the image of M
( denoted by (ϕ(M)). Conversely, let P be subset of F . Then the set of all elements of G having an
image in P is called the pre-image of P (denoted by ϕ−1(P )). Note that the symbol ϕ−1 without
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P has no meaning: a homomorphism, in general has no inverse. Note also that if ϕ(M) = P , then
ϕ−1(P ) is contained in M , but is does not necessarily equal to M (Fig. 2.11).
Problem-153 Prove that the image of a subgroup H of a group G under the homomorphism
ϕ : G→ F is a subgroup of the group F .
Problem-154 Let H be a subgroup of F and ϕ : G→ F a homomorphism. Prove that ϕ−1(H) is a
subgroup of G.
Problem-155 Let N be a normal subgroup of G and ϕ : G → F be a homomorphism. Prove that
ϕ−1(N) is a normal subgroup of the group G.
Problem-156 Let ϕ : G → F be a homomorphism and K1,K2 be the commutators of groups G
and F respectively. Prove that ϕ(K1) is contained in K2 and K1 is contained in ϕ−1(K2)
Problem-157 Let N be a normal subgroup of F and ϕ : G → F be a surjective homomorphism.
Prove that ϕ(N) is a normal subgroup in F .
Problem-158 Let ϕ : G → F be a surjective homomorphism and K1,K2 be the commutators of
groups G and F respectively. Prove that ϕ(K1) = K2. Is it true that K1 = ϕ−1(K2)

2.15 Solvable groups.

There is an important class of groups which are similar to commutative groups: solvable groups. They
are called solvable because the possibility to solve algebraic equation in radicals, as we will see later
on, depends on the solvability of a certain group.
Let G be a certain group and K(G) its commutator. The commutator K(G) itself is a group and
it is possible to consider the commutator K(K(G)). In the obtained group one can again consider
its commutator and so forth. We will for brevity denote K(K(. . . (K(G)) . . .)) by Kr(G). Thus,
Kr+1(G) = K(Kr(G)).

Definition 19 A group G is called solvable if the sequence of groups G,K(G),K1(G),K2(G), . . .
ends, for a finite n, with the group consisting of the single element e, i.e., for some finite n we obtain
Kn(G) = {e}.

For example, any commutative group is solvable: if G is a commutative group, then we already
obtain K(G) = {e} at the first step. A group G is solvable if its commutator is commutative, since
K2(G) = {e}.
Problem-159 Are the following groups solvable: a) the cyclic group Zn b) the symmetry group of
a triangle, c) the symmetry group of a square, g) the group of quaternions, d) the rotation group of
a tetrahedron, e) the symmetry group of a tetrahedron, f) the rotation group of a cube.
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Fig. 2.12.

All the groups considered in problem 156 are solvable. It is thus natural to ask whether there are
non-soluble groups. Below we will show that the rotation group of a regular dodecahedron (Fig. 2.12)
is insoluble.
Problem-160 How many elements does the rotation group of a dodecahedron have ?
All rotations of a dodecahedron can be broken into 4 classes: 1) the identity transformation; 2) rotation
around the axes through the centers of opposite faces; 3) rotation around the axes through opposite
vertices; 4) rotation around the axes through the middle points of opposite edges.
Problem-161 How many elements are there in each class (without counting the identity transfor-
mation in classes in 2 - 4 )?
Problem-162 Let N be an arbitrary normal subgroup of the rotation group of a dodecahedron and
suppose N contains at least one element from a certain class from 1-4. Prove that then N contains
the entire class of this element.
Thus, each of the classes 1- 4 either belongs entirely to N or has no elements in N .
Problem-163 Prove that in the rotation group of a dodecahedron there are no other normal sub-
groups except {e} and entire group.
Problem-164 Let group G be non-commutative with no normal subgroups other than {e} and G.
Prove that the group G is non-solvable.
It follows that from problems 160 and 161 that the rotation group of a dodecahedron is non-solvable.
Lets consider some problems whose results will be of use later on.
Problem-165 Prove that every subgroup of a solvable group is solvable.
Problem-166 Let ϕ : G→ F be a homomorphism from group G to group F with group G solvable.
Prove that the group F is also solvable.
Problem-167 Give an example in which group F is solvable and group G is non-solvable (see the
previous problem).
Problem-168 Let group G be solvable with N a normal subgroup in G. Prove that the quotient
group G/N is solvable.
Problem-169 Prove that if groups N and G/N are solvable, then the group G is solvable.
Problem-170 Let groups G and F be solvable. Prove that the group G× F is solvable.
Problem-171 Let group G be solvable. Prove that there exists a sequence of groups G0, G1, . . . , Gn

such that: 1) G0 = G, 2) each group Gi(1 ≤ i ≤ n) is a normal subgroup of group Gi−1 and all the
quotient groups Gi−1/Gi are commutative; 3) the group Gn is commutative.
Problem-172 Suppose that for a group G there exists a sequence of groups with the properties
described in the previous problem. Prove that the group G is solvable.
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The results of problems 168 and 169 show that for a group G the existence of a sequence of groups
with the properties described in problem 168 is equivalent to the condition of solvability itself can as
well be taken as the definition of solvability. Yet another equivalent definition of solvability can be
obtained using results of two following problems.
Problem-173 Let group G be solvable. Prove that then there is a sequence of groups G0, G1, . . . , Gn

such that: 1)G0 = G, 2) each groupGi(0 ≤ i ≤ n−1) contains a certain commutative normal subgroup
Ni such that Gi/Ni = Gi+1; 3) the group Gn is commutative.
Problem-174 Suppose that for a group G there exists a sequence of groups with the properties
described in the previous problem. Prove that the group G is solvable.

2.16 Permutations

Let us study in more details the permutation (i.e. transformation) of the set of first n natural numbers
1, 2, . . . , n; we will call these permutations of degree n. Note that the permutations on an arbitrary set
with n elements can be considered as a permutation of degree n: it is sufficient to number the elements
of the set by natural numbers 1, 2, . . . , n. It is possible to write down an arbitrary permutation of

degree n in the form
(

12 . . . n
i1i2 . . . in

)
where im is the image of element m under the given permutation.

Recall that a permutation is a one-to-one mapping; therefore all the elements in the lower line are
different.
Problem-175 How many different permutations of degree n do we have ?

Definition 20 The group of all permutations of degree n with the usual operation of multiplication
(i.e. composition) of permutations 12 is called the symmetric group of degree n and are denoted by
Sn.

Problem-176 Prove that for n ≥ 3 the group Sn is non-commutative.
A permutation can move some elements and leave some fixed. It may happen that the permuted

elements change their position in a cyclic manner. For example, the permutation
(

1234567
4263517

)
fixes the

elements 2, 5 and 7, and the remaining elements are permuted cyclically: 1→ 4, 4→ 3, 3→ 6, 6→ 1.
Permutations of this kind are called cyclic permutations or simply cycles. We will use a different
notation for cyclic permutation. For example, the expression (1436) will denote the permutation
sending 1 → 4, 4 → 3, 3 → 6, 6 → 1 and which fixes the remaining elements of the set. So if our
permutation has degree 7, then then coincides with the permutation considered above.

Not all permutations are cyclic. For example, the permutation
(

123456
354126

)
is not cyclic but it can be

represented as the product of two cycles:
(

123456
354126

)
= (134) · (25).

The cycles obtained permute different elements and such cycles are called independent. It is easy to
see that the product of two independent cycles does not depend on the order of their factors. If we do
not distinguish products of independent cycles which differ in their factor sequence then the following
proposition holds true.
Problem-177 Any permutation is uniquely (upto different ordering of factors) decomposed into the
product of several independent cycles. Prove this.
The cycles of the form (i, j) which swaps only two elements are called transpositions.

12According to our definition for the product of transformations, the product of permutations are carried out
from right to left. Sometimes the product of permutations are carried out from left to right. The groups obtained
by these two rules are isomorphic.
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Problem-178 Prove that an arbitrary cycle can be decomposed into the product of transpositions
(not necessarily independent).
Transpositions (1, 2), (2, 3), . . . , (n− 1, n) are called elementary transpositions.
Problem-179 Prove that an arbitrary transposition can be represented in the form of a product of
elementary transpositions.
From the results of problems 174- 176 it follows that an arbitrary permutation of the degree n can
be represented as the product of elementary transpositions. In other words, the following theorem is
true.

Theorem 2.4 If a subgroup of the symmetrical group Sn contains all the elementary transpositions,
then this subgroup coincides with the entire group Sn

Suppose the numbers 1, 2, . . . , n are written in a line in a certain arbitrary order. We say that the pair
of numbers i, j is an inversion in this line if i < j but j is appears before i in the line. The number
of inversions characterizes the disorder in this line with respect to the usual order 1, 2, . . . , n.
Problem-180 Find the number of inversions in line 3, 2, 5, 4, 1.
From now on, we will not be interested in the number of inversions in a line, but in its parity.
Problem-181 Prove that the parity of the number of inversions in a line changes if we interchange
the position two arbitrary numbers.

Definition 21 The permutation
(

12 . . . n
i1i2 . . . in

)
is called an even or odd depending on whether there are

even or odd number of inversions in the lower line. For example, the identity permutation
(

12 . . . n
12 . . . n

)
is an even permutation, since the number of inversions in the lower line is equal to zero.

Problem-182 To determine the parity of the permutation
(

12345
25413

)
Problem-183 Prove that by multiplying an even permutation to the right by an arbitrary transpo-
sition we get an odd permutation and on the other hand by multiplying an odd permutation to the
right by an arbitrary transposition we get an even permutation.
Problem-184 Prove that an even permutation can be decomposed into the product of only even
number of transpositions and an odd permutation into the product of only an odd number of trans-
positions.
Problem-185 To determine the parity of an arbitrary cycle of the length: a) 3, b) 4, c) m.
Problem-186 Prove that by multiplying two permutations of identical parity we get an even per-
mutation and by multiplying two permutations of different parity we get an odd permutation.
Problem-187 Prove that the permutations a and a−1 have the same parity where a is an arbitrary
permutation.
It follows that from the results of problems 183 and 184 that all the even permutations form a
subgroup of the group Sn.

Definition 22 The group of all even permutations of the degree n is called the alternating group of
degree n and is denoted by An.

Problem-188 Prove that for n ≥ 4, An is noncommutative.
Problem-189 Prove that the alternating group An is a normal subgroup of the symmetric group
Sn and to build the decomposition of the group Sn by An.
Problem-190 To determine the number of elements in the group An.
Problem-191 Prove that the groups S2, S3 and S4 are solvable.
We now prove that the alternating group A5 is non-solvable. One of the proofs consists of the following.
Inscribe five tetrahedrons labelled by 1, 2, 3, 4, 5 in a dodecahedron in such a way that to every
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rotation of the dodecahedron there corresponds an even permutation of the tetrahedra and different
rotations correspond to different permutations. By this, we have established an isomorphism between
the rotation group of the dodecahedron and the group of even permutations of the degree 5 A5.
Then the non-solvability of the group A5 will follow from the non-solvability of the rotation group of
dodecahedron.
Problem-192 To inscribe five tetrahedrons in a dodecahedron in the required manner prescribed
above.
Another proof of the non-solvability of the group A5 consists in repeating the proof of the non-
solvability of the rotation group of a dodecahedron. For this it is necessary to solve the following
problems.
Problem-193 Prove that any even permutation of the degree 5 different from the identity permu-
tation can be decomposed into independent cycles in one of the following three way: A) (i1i2i3i4i5),
b)(i1i2i3), c)(i1i2)(i3i4).
Problem-194 Let N be a normal subgroup of group A5. Prove that if N contains at least one
permutation which splits into independent cycles indicated in Problem 190 then N contain all the
permutations splitting into independent cycles this way.
Problem-195 Prove that the group A5 does not contain normal subgroups except single element
subgroup and entire group.
From the results of problems 192, 161 and from the fact that group A5 is noncommutative the
insolvability of group A5 follows.
Problem-196 Prove that the symmetrical group Sn for n ≥ 5 contains a subgroup isomorphic to
group A5.
From the results of problems 193 and 162 we obtain the theorem.

Theorem 2.5 The symmetrical group Sn is non-solvable for n ≥ 5.

The proof of this theorem and other results in this chapter will be required in the following chapters
for the proof of non-solvability in radicals of a general algebraic equations of degree greater than
four13.

13

The following books are recommended to students who wish to study the theory of groups more deeply:
Kargapolov M. I., Merzlyakov Y. I., Fundamentals of the Theory of Groups, Graduate Texts in Mathematics,

Springer-Verlag: New York.
Kurosh A. G., The Theory of Groups, Chelsea Publishing Co., New York, 1960
Hall M., The Theory of Groups, Chelsea Publishing Co., New York, 1976.
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Complex numbers

In our high school mathematics curriculum, the set of numbers being studied kept gradually expand-
ing. The reason for this was that such expansions gave more freedom in operating with numbers Thus,
when we expand from the natural numbers to integers it is possible to subtract two numbers, when
we expand to rational numbers it is possible to divide two numbers and so on. But the more useful
result of such expansions is that the properties of the extended system often allow us to obtain new
results about the original system. Thus, for instance, many difficult problems of number theory which
concerning integers were solved with the use of real and even complex numbers.
Historically, complex numbers appeared just as a means for solving some problems about real numbers.
For instance, the Italian mathematician Cardano (1501-1576 ) found real roots while solving cubic
equations, using in the intermediate calculations, non-existent square roots of negative numbers.
In the course of time complex numbers occupied an ever more important place in mathematics and
applications. First of all they were heavily used in the theory of algebraic equations, because the
domain of complex numbers proved to be considerably more convenient for the study of such equations.
For example, every algebraic equation of degree n(n ≥ 1) with real or complex coefficients has at least
one complex root (see the fundamental theorem of algebra of complex numbers, page 55). At the same
time not all algebraic equations with real coefficients have at least one real root.
After the interpretation of complex numbers as points and vectors in a plane, it became possible
to apply geometric concepts such as continuity and geometric transformation to the study of com-
plex numbers. The relation between complex numbers and vectors allowed to reduce many problems
of mechanics to problems in complex numbers and their equations: especially hydrodynamics and
aerodynamics and also the theory of electricity, thermodynamics, etc.
At present, the study of complex numbers has developed into a large and important division of
contemporary mathematics - the theory of functions of complex variables.
The reader can expect to be introduced to a sufficiently indepth study of complex numbers and
functions of complex variable.

3.1 Fields and polynomials

Real numbers can be added, multiplied, and inverse operations of subtraction and division are possible.
In any addition of several numbers it is possible to arbitrarily swap terms and arbitrarily rearrange
brackets without changing the result. The same holds true for products. All these properties and the
relation between addition and multiplication can be briefly expressed as follows. The real numbers
possess the following three properties:
a) They form a commutative group (see Chapter I, Section 3 ) under addition (the identity element

of this group is denoted by 0 and is called zero).
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b) If we exclude 0 the remaining numbers form a commutative group under multiplication.
c) Addition and multiplication are related with by distributivity: for any numbers a, b and c we have

a(b+ c) = ab+ ac
The existence of these three properties is very important because they allow us to simplify arithmetical
and algebraic expressions, to solve equations, etc. The set of real numbers is not the only set which
possesses these three properties. A special concept is introduced to single out of all these sets in
mathematics.

Definition 23 If on a certain set two binary operations (addition and multiplication) are defined
which possesses the above three properties, then this set is called a field.

Problem-197 Are the following subsets of real numbers with the usual operations of addition and
multiplication fields ? a) all natural numbers; b) all integers; c) all rational numbers; g) all numbers
of form r1 + r2

√
2, where r1 and r2 are arbitrary rational numbers.

Problem-198 Prove that in any field a · 0 = 0 · a = 0 for any element a.
Problem-199 Prove that in any field: 1)(−a) · b = a · (−b) = −(a · b), 2) (−a) · (−b) = ab for any
elements a and b.
Problem-200 Let a, b be elements of an arbitrary field and a · b = 0. Prove that either a = 0 or
b = 0.
Example-14 Suppose that in the set {0, 1, . . . , n}, besides the operation of addition modulo n (see
example 9, page 20 ) we also have multiplication modulo n in which the result of multiplication of
two numbers is the remainder under division by n.
Problem-201 To build tables of multiplication modulo 2, 3 and 4.
Problem-202 Prove that the remainders modulo n under the operations of addition and multipli-
cation form a field iff n is prime number.

Definition 24 By the difference between elements b and a in an arbitrary field ( denoted b − a) we
mean the element which solves the equation x+a = b (or a+x = b). The quotient obtained by dividing

element b by a for a 6= 0 (denoted by
b

a
) is the element which solves the equation y ·a = b (or a ·y = b).

From the result of problem 24 and the fact that addition and multiplication are commutative in a

field, it follows that elements b− a and
b

a
(with a 6= 0) are uniquely determined in any field.

Since a field is a group under addition and if we exclude zero, under multiplication, the equation
x+ a = b is equivalent to equation x = b+ (−a) and the equation ya = b with a 6= 0 is equivalent to

the equation y = ba−1. Thus we have b− a = b+ (−a) and
b

a
= ba−1

The reader can easily prove that the operations of addition, subtraction, multiplication and division
in any field possess all the basic properties these operations have in the field of real numbers. In
particular, in any field both sides of any equation can be multiplied or divided by any non-zero
element; it is possible to take any term from one side to the other of the equation after a sign
change and so forth. For example let us examine one of the properties which relates subtraction and
multiplication.
Problem-203 Prove that in any field (a− b)c = ac− bc for any elements a, b, c.
If K is a field, then just as for the real number field, it is possible to consider polynomials with
coefficients from the field K or in other words polynomials over the field K.

Definition 25 By a polynomial of degree n (n a natural number) in one variable x over the field K
we mean any expression of the form

a0x
n + anx

n−1 + . . .+ an−1x+ an (3.1)

where a0, a1, . . . , an ∈ K and a0 6= 0.
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If a is an element of the field K, the expression a is also considered to be a polynomial over the field
K. Moreover if a 6= 0, then this is a polynomial of degree zero, but if a = 0, then the degree of this
polynomial is undefined.
Elements a0, a1, . . . , an are called the coefficients of the polynomial (??) and a0 the leading coefficient.
Two polynomials in variable x are considered to be equal ⇐⇒ their same degree coefficients are
equal.
Let

P (x) = a0x
n + a1x

n−1 + . . .+ an−1x+ an

If on the right side, we substitute for x a certain element a from the field K and carry out the
calculations, i.e., the operations of addition and multiplication as operations in the field K, then the
result will be a a certain element b from the field K. In this case write P (a) = b. If P (a) = 0, where
0 is the zero element of the field K, then a is called a root of the equation P (x) = 0; a is also called
a root of the polynomial P (x).
Polynomials over an arbitrary field K can be added, subtracted and multiplied.
The sum of the polynomials P (x) and Q(x) is the polynomial R(x), in which the coefficient of
xk(k = 0, 1, 2, . . .) is equal to the sum (in the field K) of coefficients of xk in the polynomials P (x)
and Q(x). The difference of two polynomials is defined similarly. It is obvious that the degree of sum
or difference in two polynomials is not more than maximum of the degrees of the two polynomials.
To calculate the product of two polynomials P (x) and Q(x), we multiply each term axk of the
polynomial P (x) by the term bxl of the polynomial Q(x) using the rule: axkbxl = abxl+k, where ab is
the product in the field K, and k+l the usual sum of integers. All the expressions obtained this way are
added, i.e., collect all terms with the same degree r in variable x and substitute d1x

r +d2x
r + ...+dsx

r

by the expression (d1 + d2 + . . .+ ds)xr.
Let

P (x) = a0x
n + a1x

n−1 + . . .+ an−1x+ an,

Q(x) = b0x
m + b1x

m−1 + . . .+ bn−1x+ bm,

then,

P (x) ·Q(x) = a0b0x
n+m + (a0b1 + a1b0)xn+m−1 + . . .+ anbm

1

Since a0 6= 0 and b0 6= 0, the degree of the polynomial P (x) · Q(x) is equal to n + m, i.e., the
degree of the product of two polynomials (different from 0) is equal to the sum of the degrees of each
polynomial.
Taking into account that the operations of addition and multiplication of elements in the field K are
commutative, associative and distributive, it is not difficult to verify that the operations of addition
and multiplication of polynomials over the field K defined above are also commutative, associative
and distributive.
If P (x) +Q(x) = R1(x), P (x)−Q(x) = R2(x), P (x) ·Q(x) = R3(x)
and a is an arbitrary element of the fieldK, then is easy to see that P (a)+Q(a) = R1(a), P (a)−Q(a) =
R2(a), P (a) ·Q(a) = R3(a)
The polynomials over an arbitrary field K can be divided by one another with a remainder. To
divide the polynomial P (x) by the polynomial Q(x) with a remainder means finding polynomials
S(x) (quotient) and R(x) (remainder) such that P (x) = S(x) ·Q(x) +R(x)
Moreover the degree of the polynomial R(x) must be less than the degree of the polynomial Q(x), or
R(x) = 0.
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Let P (x) and Q(x) be arbitrary polynomials over the field K and Q(x) 6= 0. Let us show that it is
possible to divide the polynomial P (x) by the polynomial Q(x) with a remainder. Let

P (x) = a0x
n + a1x

n−1 + . . .+ an−1x+ an,

Q(x) = b0x
m + b1x

m−1 + . . .+ bn−1x+ bm,

If n < m choose S(x) = 0 and R(x) = P (x) and we obtain the required quotient and remainder. If
n ≥ m, then consider the polynomial

P (x)− a0

b0
xn−mQ(x) = R1(x)

R1(x) does not contain term xn, therefore its degree is not more than n− 1, or R1(x) = 0. If

R1(x) = c0x
k + c1x

k−1 + . . .+ ck

and k ≥ m, consider the polynomial

R1(x)− c0
b0
xk−mQ(x) = R2(x), etc

Since the degree of the polynomial obtained is strictly less than the degree of the previous polynomial
this process must end, i.e. at a certain step we will obtain

Rs−1(x)− d0

b0
xl−mQ(x) = Rs(x)

and the degree of the polynomial Rs(x) will be less than the degree of the polynomial Q(x) or
Rs(x) = 0. Then we obtain

P (x) =
a0

b0
xn−mQ(x) +R1(x)

=
a0

b0
xn−mQ(x) +

c0
b0
xk−mQ(x) +R2(x) = . . .

=
a0

b0
xn−mQ(x) +

c0
b0
xk−mQ(x) + . . .+

d0

b0
xl−mQ(x) +Rs(x)

=
(
a0

b0
xn−m +

c0
b0
xk−m + . . .+

d0

b0
xl−m

)
·Q(x) +Rs(x).

Thus, the expression in the brackets is the quotient of the division of the polynomial P (x) by Q(x)
and Rs(x) the remainder. This method of dividing a polynomial by another polynomial is called the
process of division by Euclidean algorithm.
The following problem shows that if P (x) and Q(x) are two polynomials and Q(x) 6= 0, then no
matter how we divide P (x) by Q(x), the quotient and the remainder are uniquely defined.
Problem-204 Let

P (x) = S1(x) ·Q(x) +R1(x)
P (x) = S2(x) ·Q(x) +R2(x)

for which the degree of polynomials R1(x) and R2(x) are less than the degree of the polynomial Q(x)
(it could be the R1(x) = 0 or R2(x) = 0). Prove that S1(x) = S2(x), R1(x) = R2(x).
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3.2 The field of complex numbers

From the solution of problem 194 it follows that there exists fields, smaller than the field of real
numbers; for example, the field of rational numbers. We will now construct a field larger than field of
real numbers; namely, the field of complex numbers.
Consider all possible ordered pairs of real numbers, i.e., pairs of the form (a, b), where a and b are
arbitrary real numbers. We will say that (a, b) = (c, d) ⇐⇒ a = b and c = d. In the set of all such
pairs define two binary operations, addition and multiplication as follows:

(a, b) + (c, d) = (a+ c, b+ d) (3.2)
(a, b) · (c, d) = (ac− bd, ad+ bc) (3.3)

( the operations within the right hand side brackets are the usual operations over the real numbers).
For example, we obtain

(
√

2, 3) + (
√

2, 1) = (2
√

2, 2)
(0, 1) · (0, 1) = (−1, 0)

Definition 26 The set of all possible ordered pairs of real numbers with the operations of addition
and multiplication defined by (3.2) and (3.3) is called the set of the complex numbers.

From this definition it is clear that there is nothing ”super-natural” about complex numbers: they
actually exist as pairs of real numbers. However, the following question can arise: is it justifiable
to call such objects numbers ? We will discuss this question at the end of this paragraph. Another
question which the reader might raise is why are the operations of addition and multiplication for
complex numbers (the operation of multiplication looks especially strange ) defined like this and not
in any other way ? We will answer this question in section 3.
Let us explain some good properties of the set of complex numbers defined above.
Problem-205 Prove that the complex numbers form a commutative group under addition. Which
is the identity element (zero) of this group?
From now on, complex numbers will be denoted by one letter for convenience, for example z (or w).
Problem-206 Prove that the operation of the multiplication of complex numbers is commutative
and associative, i.e. z1 · z2 = z2 · z1 and (z1 · z2) · z3 = z1 · (z2 · z3) for any complex numbers z1, z2, z3.
It is easy to verify that

(a, b) · (1, 0) = (1, 0) · (a, b) = (a, b)

for any complex number (a, b). Thus, the complex number (1, 0) is the identity element in the set of
the complex numbers under multiplication.
Problem-207 Let z be an arbitrary complex number and z 6= (0, 0). Prove that there exists complex
number z−1 such that

z · z−1 = z−1 · z = (1, 0).

The results of problems 203 and 204 show that the complex numbers form a commutative group
under multiplication.
Problem-208 Prove that the operations of addition and multiplication of complex numbers possess
the distributive law, i.e. (z1 + z2) · z3 = z1 · z3 + z2 · z3 for all complex numbers z1, z2, z3.
From the results of problems 202-205, it follows that the complex numbers with the operations of
addition and multiplication defined by (3.2) and (3.3) form a field. This is the field of complex
numbers.
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For the complex numbers of the type (a, 0), where a is an arbitrary real number, formulas (3.2) and
(3.3) give

(a, 0) + (b, 0) = (a+ b, 0)
(a, 0) · (b, 0) = (a · b, 0)

Thus, if we assign to each complex number of the form (a, 0) the real number a, then the operations
on the numbers of the form (a, 0) will correspond to the usual operations on real numbers. Therefore
we will simply identify the complex number (a, 0) with the real number a and 2 we will say that the
field of the complex numbers includes field of real numbers.
The complex number (0, 1) is not real (under our identification) and we will denote it by i, i.e.
i = (0, 1). Since the field of complex numbers does contain all real numbers and number i, it also
contains numbers of the form b · i and a + b · i, where a and b are arbitrary real numbers and the
operations of addition and multiplication are understood as the operations on the complex numbers.
Problem-209 Let (a, b) be a complex number. Prove that (a, b) = a+ b · i.
From the result of task 206, we obtain that a+ b · i = c+ d · i iff a = b and c = d.
Thus, it is possible to represent any complex number uniquely in the form a+ b · i, where a and b are
real numbers. If z = a+ b · i, then following historical traditions we call a the real part of the complex
number z, b · i the imaginary part and b the coefficient of the imaginary part.
The representation of a complex number z in the form z = a+ b · i is called the algebraic form of the
complex number z.
Formulas (3.2) and (3.3) for complex numbers in algebraic form will be rewritten as follows.

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i (3.4)
(a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i (3.5)

Problem-210 Solve the equation (to find the formula for the difference)

(a+ bi) + (x+ yi) = c+ di

Problem-211 Solve the equation (to find the formula for the quotient )

(a+ bi) · (x+ yi) = c+ di where a+ bi 6= 0

It is easy to verify that i · i = (0, 1) ·(0, 1) = (−1, 0) = −1, i.e., i2 = −1. Thus, square roots of negative
numbers are well defined in the field of complex numbers.
Problem-212 Calculate: a)i3, b)i4, c)in.
Problem-213 Find all complex numbers z = x + yi such that: a)z2 = 1, b)z2 = −1, c)z2 = a2,
d)z2 = −a2 (where a is a real number).

Definition 27 The complex number a− bi is called the conjugate of the complex number z = a+ bi
and is denoted by z.

It is easy to verify that
z + z = 2a, z · z = a2 + b2

.

2Just as the rational number
n

1
is identified with the integer n.
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Problem-214 Let z1 and z2 be arbitrary complex numbers. Prove that: a) z1 + z2 = z1 + z2,

b)z1 − z2 = z1 − z2, c) z1 · z2 = z1 · z2, d)
z1
z2

=
z1

z2
.

Problem-215 Let
P (z) = a0z

n + a1z
n−1 + . . .+ an−1z + an

where z is a complex number and all ais are real numbers. Prove that P (z) = P (z).
The passage to complex numbers is a step in the sequence: natural numbers - integers - rational
numbers - real numbers - complex numbers. The reader may form the opinion that upto real num-
bers one deals with numbers in reality and complex numbers are no longer numbers but objects of
more complex nature. Of course, any terminology can be used. However, in reality complex numbers
completely deserve to be called numbers.
The first objection against this can be the fact that this not a number but pairs of numbers. Re-
call however, that rational numbers introduced in a similar way (for example, see Kochetkov E. S.,
Kochetkova E. S., Algebra and Elementary Functions, h. I, publ. 10, education, 1975). A rational
number is an equivalence class of fractions and a fraction is a pair of integers of the form

m

n
(where

n 6= 0); in this way the operations on rational numbers are simply operations on pairs of integers.
Therefore the first objection seems unfounded. Another objection can be: how it is possible to measure
something with this number ? If we look at it this way, then one must exclude for example, negative
numbers from the set of numbers, since there are no segments with length -3 cm and a train cannot
travel -4 hours. But if we think that numbers are objects using which it is possible (or convenient)
to measure at least one quantity, then complex numbers aren’t worse off than other numbers: using
complex numbers, it is very convenient to describe, for example, currents, voltages and resistances in
the electrical alternating current circuits and this widely is used in electrical engineering 3.
Thus, the passage from real numbers to complex numbers is as natural as, for example the passage
from integers to rationals.

3.3 Uniqueness of the field of complex numbers

Let us now move on to examine the question as to why complex numbers were defined this way and
not otherwise. The answer to this question is this: we want to get a field which is an extension of the
real numbers. But is it not possible to construct another field which is also a field extension of the
real numbers ? We will answer this question in this paragraph.

Definition 28 By an isomorphic mapping (or simply an isomorphism) from one field to another we
mean a one-to-one mapping ϕ which is an isomorphism relative to both addition and multiplication,
i.e., ϕ(a+ b) = ϕ(a) + ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b). Two fields are called isomorphic if its possible to
establish an isomorphism between them.

If in a field only the operations of addition and multiplication considered, then all isomorphic fields
have identical properties. Therefore, just as in the case of groups, isomorphic fields cannot be distin-
guished.
As we saw in the previous paragraph, in the field of the complex numbers there is only element i
such that i2 = −1. The following problem shows that the addition of this element to the field of real
numbers leads to the field of complex numbers.
Problem-216 Let M a certain field which contains the field of real numbers and a certain element
i0 such that i2o = −1. Prove that M contains a certain field M ′ which is isomorphic to the field of
complex numbers.

3See, for example, the theoretical bases of electrical engineering, in three volumes, pod.0bshchey.redaktsiyey
Polivanova Pi. M., Vol. I. Polivanov k. M., linear electrical lumped circuits, energy, 1972,
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We will say that a certain field is a minimal field with some properties if it possesses these properties
and does not contain other fields with the same properties.
In this case the result of problem 213 can be formulated as follows: the minimum field which contains
the field of real numbers and an element i0 such that i20 = −1 is the field of complex numbers. This
result proves in a certain sense the uniqueness of the field of the complex numbers. However, there is a
substantially stronger result. Namely, let us do away with the requirement that the field M contains
an element i0 such that i20 = −1 and let us pose the problem of finding all fields which are the
minimum field extensions of real numbers. It occurs that there are only two such expansions (upto
isomorphism), one of them being the field of complex numbers. Let us prove this now.
Let the field M contain the field of real numbers i.e., M contains all real numbers and operations on
them in the field M coincide with the usual operations on real numbers. Suppose moreover, the field
M contains an element j different from all real numbers. Then the element equal to

jn + a1j
n−1 + . . .+ an (3.6)

belongs to M for any real numbers a1, a2, . . . , an ∈M . We will call n the degree of expression (3.6).
There are two cases:
a) a certain expression of the form (3.6) with n ≥ 1 is equal to 0;
b) no expression of the form (3.6) with n ≥ 1 is equal to 0.
Let us assume that the first case is true.

Definition 29 A polynomial with coefficients from a certain field K is called reducible above the field
K if it can be represented as the product of two polynomials of smaller degree with coefficients from
K. Otherwise it is called irreducible above the field K. 4

For example, polynomials x3 − 1 and x2 − x − 1 are reducible over the field of real numbers since

x3 − 1 = (x− 1)(x2 + x+ 1) and x2 − x− 1 =

(
x− 1 +

√
5

2

)(
x− 1−

√
5

2

)
,

and polynomials x2 + 1 and x2 +x+ 1 are irreducible over the field of real numbers. It is obvious that
polynomials of first degree above any field are irreducible.
Problem-217 Let us choose among all expressions of the form (3.6) equal to 0, the expression with
the smallest degree n where (n ≥ 1). Let this be given by the expression

jn + a1j
n−1 + . . .+ an = 0

Prove that the polynomial
xn + a1x

n−1 + . . .+ an = 0

is irreducible over the field of real numbers.
In the sequel we will show (see 272) that any polynomial with real coefficients of degree greater than
two is reducible over the field of real numbers. Therefore, the n in problem 214 cannot be more than
2. But since n 6= 1, (otherwise we would get j + a = 0 and j is equal to real number −a) we get that
n = 2
Thus, in the case a) there exists some real numbers p and q in the field M such that the equation

j2 + pj + q = 0

holds. Moreover the polynomial x2 + px+ q must be irreducible over the field of real numbers.
Problem-218 Prove that in case a) the field M contains an element i0 such that i20 = −1.
It follows from the results of problems 215 and 213 that in the case a) the field M contains a field M ′

isomorphic to the field of complex numbers. Hence, if the field M is the minimal field extension of
4Ireducible polynomials over the field K are the analogue of prime numbers in the set of integers.
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real numbers, then field M must coincide with M ′. Thus, in the case a) any field which is the minimal
field extension of the real numbers coincides (i.e. is isomorphic) to the field of complex numbers.
Thus, in case a) there is a unique ( upto isomorphism) field which is the minimal field extension of
real numbers, namely, the field of complex numbers.
Problem-219 Find all fields which are the minimal field extensions of real numbers in the case b).

3.4 Geometric description of complex numbers

Introduce on the plane a rectangular coordinate system XOY and associate to each complex number
a + bi the point in the plane with coordinates (a, b). We will obtain a one-to-one correspondence
between all complex numbers and all points of the plane. This introduces us to the first geometric
idea of complex numbers.
Problem-220 What complex numbers correspond to the points indicated in Fig. 3.1
Problem-221 Let the complex numbers be depicted as the points of plane. What is the geometric
meaning of the transformation ϕ, if for any complex number z: a)ϕ(z) = −z, b)ϕ(z) = 2z, c)ϕ(z) = z
(z is the complex conjugate of z).
Let A(xA, yA) and B(xB , yB) be two points in the plane (Fig. 3.2 ). The ray AB directed from A

to B as shown is called the vector
−−→
AB. The coordinates of the vector

−−→
AB are calculated as follows:

x−−→
AB

= xB − xA, y−−→
AB

= yB − yA. Two vectors are considered equal, if they are parallel, in the same
direction and of equal length.
Problem-222 Prove that two vectors are equal ⇐⇒ their corresponding coordinates are equal.
The so-called ”free vectors” is the set of equal vectors usually considered as one and the same vector
and characterized only by its coordinates. After assigning to each complex number a + bi the free
vector with the coordinates (a, b), we get the second geometric idea of complex numbers.
Problem-223 Assign to each complex number z1, z2 and z3 the corresponding free vectors u, v and
w. Prove that z1 + z2 = z3 ⇐⇒ u + v = w, where the sum of vectors is calculated using the
parallelogram law.
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Problem-224 Prove the following relationship between the two geometric ideas of complex number:
if z1, z2 and z−−→

AB
are complex numbers which correspond to points A,B and to vector

−−→
AB, then

z−−→
AB

= zB − zA.
From the definition of equal vectors we obtain that equal vectors have equal length. This length is
equal to the length of the free vector which corresponds to this set of equal vectors.

Definition 30 The magnitude or modulus of a complex number z (denoted by |z|) is called the length
of the corresponding free vector.5

Problem-225 If z = a+ bi. Prove that

|z|2 = a2 + b2 = z · z

where z is the complex conjugate of z.
Problem-226 Prove the inequalities:

|z1 + z2| ≤ |z|1 + |z|2
|z1 − z2| ≥

∣∣∣|z|1 − |z|2∣∣∣
where z1, z2 are arbitrary complex numbers. In what cases does the equality occur ?
Problem-227 Prove with the aid of complex numbers that in an arbitrary parallelogram the sum
of the squares of lengths of the diagonals is equal to the sum of the squares of the lengths of all sides.

3.5 Trigonometric form of complex numbers

Let us recall that the angle between the rays OA and OB about O is the angle, required to rotate
ray OA about the point O counterclockwise in order to get to the ray OB (if the rotation is done
clockwise, then the angle is assigned a ”minus” sign). In this case the angle is not uniquely determined
but upto rotations by 2kπ where k any integer.
Let point O be the origin of coordinates and let the vector OA with the coordinates (a, b) correspond
to the complex number z = a+ bi (Fig. 3.3 ). The argument of the complex number z (denoted Arg
z) is the angle between the positive direction of axis OX and the ray OA (Fig. 3.3 ) (if z = 0, then
Arg z is not defined).
Since for z 6= 0 the angle is not defined uniquely, by Arg z we mean a many-valued function which
assumes for each z 6= 0 the infinite set of the values whose difference is an integral multiple of 2π.
By Arg z = ϕ we will mean one of the values of the argument equal to ϕ.
Let z = a + bi 6= 0 and |z| = r. The vector

−→
OA with coordinates (a, b) correspond to the complex

number a+bi and therefore its length is equal to r. Let furthermore Arg z = ϕ. Then by the definition
of trigonometric functions (see Fig. 3.3 )

cosϕ =
a

r
, sinϕ =

b

r

Hence

5For the real numbers (as a special case of the complex numbers) the concept of magnitude introduced above
coincides with the usual concept of absolute value. In fact, the real number a+ 0i corresponds to the vector with
coordinates (a, 0), parallel to the X-axis and length equal to |a| - to the absolute value of the number a.
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z = a+ bi = r · cosϕ+ i · r · sinϕ =
= r(cosϕ+ i sinϕ),

where r = |z|, ϕ = Argz and we have obtained the trigonometric form of the complex number z.

For example, if z = −1
√

3i, then |z| =
√

1 + 3 = 2 (see 222) and cosϕ = −1
2
, sinϕ =

√
3

2
. If we take

ϕ =
2π
3

, then z = −1 +
√

3i = 2
(

cos
2π
3

+ i sin
2π
3

)
.

Problem-228 Represent in trigonometric form the following complex numbers: a) 1 + i, b)−
√

3− i,
c)3i, d)−5, e)1 + 2i.
Problem-229 If z1 = r1(cosϕ1 + i sinϕ1) and z2 = r2(cosϕ2 + i sinϕ2). Prove that,

z1 · z2 = r1r2 (cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2)) ,
z1
z2

=
r1
r2

(cos(ϕ1 − ϕ2) + i sin(ϕ1 − ϕ2)) (z2 6= 0).

Thus, under multiplication of complex numbers, their magnitudes are multiplied and arguments are
added and under division their magnitudes are divided and their arguments are subtracted.
Problem-230 Prove the De Moivre formula 6:

[r(cosϕ+ i sinϕ)]n = rn (cosnϕ+ i sinnϕ)

for every integer n > 0.

Problem-231 Compute
(1−

√
3i)100

2100
.

Problem-232 If z = r(cosϕ + i sinϕ) is a fixed complex number and n a natural number, find all
complex numbers w which satisfy the equality

6A. de Moivre (1667-1754) was a French mathematician who lived in England
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wn = z (3.7)

Definition 31 The expression n
√
z ( nth root of z ), denotes a many-valued function which assigns

to each complex number z 6= 0 the solutions of equation (3.7) for all n.

If z = 0, then n
√

0 = 0.
Problem-233 Find all values of the roots: a)

√
−1, b) 3

√
8, c) 4

√
cos 100◦ + i sin 100◦ d) 3

√
1 + i.

For future purposes it will be convenient to introduce the following notation:

εn = cos
2π
n

+ i sin
2π
n

Problem-234 Prove that all the values of n
√
−1 are 1, εn, ε

2
n, . . . , ε

n−1
n .

Observation. Since εn
n = 1 the set of elements 1, εn, ε

2
n, . . . , ε

n−1
n form a cyclic group under multipli-

cation.
Problem-235 Let z1 be one of the values of n

√
z0. Find all the values of n

√
z0.

From now on, we will represent complex numbers as points in a plane, i.e., to the complex number
z = a + bi we will assign the point with coordinates (a, b). In this case instead of the point which
corresponds to the complex number z we will speak simply of the point z.
Problem-236 Let the complex numbers be depicted as the points of plane. Make geometric sense
of the expressions: a)|z|, b)Arg z, c)|z1 − z2|, d) Arg

z1
z2

?

Problem-237 Find the locus z, which satisfy the following conditions (z1, z2, z3 are fixed complex
numbers and R a fixed real number): a)|z| = 1, b)|z| = R, c) |z− z0| = R, d)|z− z0| ≤ R, e)|z− z1| =
|z − z2|, f)Arg z = π, g)Arg z =

9π
4

, h)Arg z = ϕ.

Problem-238 Where are all the values of n
√
z located on the plane, where z is a fixed complex

number.

3.6 Continuity

The notion of continuity will play an important role for us from now on and in particular the notion of
a smooth curve. The reader who doesn’t know the rigourous definition of these concepts, nevertheless
understands intuitively what a smooth curve is and what a continuous function of a real variable
is (intuitively, it is possible to say that this is function which has a smooth curve as its graph).

However, if the function is fairly complicated (for example f(x) =
x3 − 2x

x2 − sinx+ 1
) then to conclude

it is continuous using only intuition is quite difficult. Therefore, we will give a rigourous definition of
continuity and with it’s help prove several basic properties of continuous functions. In this case we
will give the definition of continuity both for functions of real argument and for functions of complex
argument.
Consider the graph of a function with real argument. Then this graph can be continuous at some
points and at some points it can have gaps. Therefore it is natural to first introduce the definition of
continuity of a function at a particular point rather than the general definition of continuity.
If we try to define more precisely our intuitive idea about the continuity of a function f(x) at a par-
ticular point x0 then we see that continuity means the following: with small changes in the argument
near point x0 the change in the function is also small with respect to the value f(x0). Moreover it is
possible to obtain as small a change in the value of the function about f(x0) by choosing a sufficiently
small interval of variation for the argument around x0. It is possible to formulate it rigourously as
follows.
indexcontinuous function
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Definition 32 Let f(z) be a function of a real or complex variable z. The function f(z) is continuous
at a point z0, if for any real number ε > 0, it is possible to select a real number δ > 0 (depending on z0
and ε), such that for all numbers z, which satisfy the condition |z−z0| < δ, we have |f(z)−f(z0)| < ε.
7

Example-15 Let us prove that the function with complex argument f(z) = 2z is continuous at any
point z0. Let the point z0 and an arbitrary real number ε > 0 be given. We have to choose this real
number δ > 0 such that for all numbers z which satisfy the condition |z − z0| < δ the inequality
|f(z)− f(z0)| = |2z − 2z0| < ε is satisfied. It is not difficult to see that it is possible to choose δ =

ε

2
(independent of point z0). Indeed, from the condition |z − z0| < δ it follows that:

|2z − 2z0| = |2(z − z0)| = see 226 = |2||z − z0| < 2δ = ε

i.e., |2z − 2z0| < ε. Therefore, the function f(z) = 2z is continuous at any point z0. In particular, it
is continuous for all real values of the argument z. Therefore, if we limit ourselves to only real valued
arguments, we see that the function with real argument f(x) = 2x is continuous for all real values x.
Problem-239 Let a be a fixed complex (or, as a particular case, real) number. Prove that the
function with complex (or real) argument f(z) = a is continuous for all values of the argument.
Problem-240 Prove that the function with complex argument f(z) = z and the function with real
argument f(x) = x are continuous for all values of the argument.
Problem-241 Prove that the function with complex argument f(z) = z2 is continuous with all
values of the argument z.

Definition 33 Let f(z) and g(z) be two functions of a complex (or real) argument. The function
with complex (or real) argument h(z), which is called the sum of the functions f(z) and g(z), satisfies
at each point z0 the equation h(z0) = f(z0) + g(z0) holds. In case the value of f(z0) or g(z0) is not
defined then the value of h(z0) is also not defined. In the same way one defines the difference, product
and quotient of two functions.

Problem-242 Let the functions f(z) and g(z) of complex (or real) argument be continuous at the
point z0. Prove that the functions: a)h(z) = f(z) + g(z), b)h(z) = f(z) − g(z), c)h(z) = f(z) · g(z)
are continuous at z0.
From the result of problem 239(c) we obtain, in particular, that if the function f(z) is continuous at
a point z0 and n is a natural number then the function [f(z)]n is also continuous at the point z0.
Problem-243 Let the functions f(z) and g(z) with complex or real argument be continuous at point

z0 and g(z0) 6= 0. Prove that the functions: a)h(z) =
1
g(z)

, b) h(z) =
f(z)
g(z)

are continuous at the

point z0.

Definition 34 Let f(z) and g(z) be two functions with complex or real argument. The function h(z)
which is called the composition of functions f(z) and g(z) satisfies at each point z0 the equation
h(z0) = f(g(z0)). In case g(z) is not defined at z0 or the function f(z) is not defined at the point
g(z0) then h(z0) is also not defined.

Problem-244 Let f(z) and g(z) be functions with complex or real argument. Let g(z0) = z1 and
let the function g(z) be continuous at point z0 and the function f(z) be continuous at the point z1.
Prove that the function h(z) = f(g(z)) is continuous at the point z0.
From the results of the problems 239-241 it follows that if a certain expression is built from several
continuous functions with complex (or real) argument using the operations of addition, subtraction,

7The geometric meaning of the inequalities |z − z0| < δ and |f(z) − f(z0)| < ε is given in problems 233 and
234).
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multiplication, division, raising to a natural power and composition, then the obtained expression will
also be a continuous function whenever none of it’s denominator vanish.
For example, from the results of problems 236 and 237 we obtain that the function f(z) = zn, f(z) =
azn and in general f(z) = a0z

n + a1z
n−1 + . . . + an are continuous functions of z for any complex

numbers a, a0, a1, . . . , an.
Problem-245 Prove that the functions with real argument f(x) = sinx and f(x) = cosx are
continuous for all values of x.
Problem-246 Consider for all real values x ≥ 0 the function f(x) = n

√
x, where n a non-zero integer

and n
√
x is taken to be non-negative. Prove that this function is continuous for all x > 0.

During the study of continuity it is necessary to be contended with some statements, which intuitively
seem completely obvious but a strict proof is technically difficult and requires a definition of real
numbers more rigourous than that done in school, as well as the study of principles of set treory and
topology.
The following statement serves as an example: if a function with real argument f(x) is continuous in
a certain interval and takes only integer values in this interval, then it takes one and the same value
in the entire interval. It seems intuitively obvious that during the motion of point x along the interval
the value of the function f(x) must change continuously and cannot ”jump” from one integer value
into another. However, to prove this assertion strictly is quite difficult.
In the following presentation we will be more oriented toward the intuition of the reader and we
will accept several ”intuitively clear” statements related to continuity without a proof. In particular,
we will accept the statement formulated above as an example without proof. A rigourous proof of
this statement can be found, for example, in the book: Steenrod N. and Chinn U., First concepts of
topology, Mir, 1967.

3.7 Continuous curves

Let the parameter t take real values in the interval 0 ≤ t ≤ 1 and let a certain complex number be
assigned to each such value t as

z(t) = x(t) + iy(t)

We will henceforth call the plane on which the values z are depicted as ”z plane”. If the function
x(t) and y(t) are continuous for 0 ≤ t ≤ 1, then as t goes from 0 to 1 the point z(t) will describe a
certain continuous curve in the z plane. We will consider this curve with a direction, taking the point
z0 = z(0) to be the initial point and the point z1 = z(1) to be the the final point. We will call the
function z(t) the parametric equation of this curve.
Example-16 Let z(t) = t+ it2.Then x(t) = t and y(t) = t2. Therefore y(t) = x2(t) for any t, i.e. the
point z(t) for any t lies on the parabola y = x2. As t varies from 0 to 1 x(t) also varies from 0 to 1
and the point z(t) traces the arc of the parabola y = x2 from the point z0 = 0 to the point z1 = 1 + i
(Fig. 3.4 ).
Problem-247 Construct on the z plane the curves given by the following parametric equations:
a)z(t) = 2t, b)z(t) = it, c)z(t) = it2, d)z(t) = t − it, e)z(t) = t2 + it, f)z(t) = R(cos 2πt + i sin 2πt),
g)z(t) = R(cos 4πt+ i sin 4πt), h)z(t) = R(cosπt+ i sinπt), and i)

z(t) =


cos 2πt+ i sin 2πt for 0 ≤ t ≤ 1

2
4t− 3 for

1
2
< t ≤ 1

Problem-248 Write a parametric equation for the segment joining the points z0 = a0 + b0i and
z1 = a1 + b1i.
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Observation.In the following problems the parametric equations have some labels. These numbers
indicate the label of the curve, and they all lie in the same z plane.
Problem-249 What geometric transformations takes the curve C1 with equation z1(t) to the curve
C2 with equation z2(t), if
a) z2(t) = z1(t) + z0 (z0 is a fixed complex number).
b) z2(t) = a · z1(t) (where a is a the real positive number).
c) z2(t) = z0 · z1(t), where |z0| = 1
d) z2(t) = z0 · z1(t) where z0 is a fixed complex number
Problem-250 Let z1(t) be a parametric equation of the curve C. What curve is described by the
equation z2(t) if z2(t) = z1(1− t)?
Problem-251 Let z1(t) and z2(t) be parametric equations of the curves C1 and C2 and let z1(1) =
z2(0). What curve is described by the equation z3(t) if:

z3(t) =


z1(2t) for 0 ≤ t ≤ 1

2
z2(2t− 1) for

1
2
< t ≤ 1?

Problem-252 Let z(t) = cosπt+ i sinπt (Fig. 3.5 ). Find all values of Arg z(t) as a function of t.
Problem-253 Let z(t) = cosπt+ i sinπt. Select one of the values of Arg z(t) for each t so that the
selected values vary continuously as t varies from 0 to 1 if Arg z(0) is chosen to be: a)0, b)2π, c)−4π,
d) 2πk (k is a fixed integer)
The following statement seems intuitively quite obvious and we will state it without a proof.

Theorem 3.1 Assume that a continuous curve C with parametric equation z(t) not pass through the
origin of coordinates (i.e. z(t) 6= 0 with 0 ≤ t ≤ 1) and let the argument of initial point of curve
C (i.e. Arg z(0)) be chosen to be equal to ϕ0. Then it is possible to select one of the values of the
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argument for all the points on the curve C such that along the entire curve its argument changes
continuously starting from the value ϕ0.

In other words, one can choose for each t one of the values ϕ(t) of Arg z(t) so that the function ϕ(t)
is continuous for 0 ≤ t ≤ 1 and ϕ(0) = ϕ0

8.
Problem-254 Let ϕ(t) and ϕ′(t) be two functions which describes a continuous change in Arg z(t)
along the curve C. Prove that ϕ(t) − ϕ′(t) = 2πk where k is a fixed integer which does not depend
on t.
Problem-255 Prove that if a certain value ϕ(0) = ϕ0 is chosen, then the function ϕ(t) which
describes a continuous change in Arg z(t) along the curve C is uniquely defined.
Problem-256 Let the function ϕ(t) describe a continuous change in Arg z(t). Prove that the function
ψ(t) = ϕ(t)−ϕ(0)is uniquely defined by the function z(t) and does not depend on the selection ϕ(0).
From the statement of problem 253 it follows, in particular for t = 1, that for a continuous curve C
not passing through the point z = 0, the value ϕ(1)− ϕ(0) is uniquely defined by the condition that
ϕ(t) is continuous.

Definition 35 We will call the value ϕ(1)− ϕ(0) the change in the argument along the curve C.

Problem-257 What is the change in the argument along the curves with the following parametric
equations:
a) z(t) = cosπt+ i sinπt,
b) z(t) = cos 2πt+ i sin 2πt,
c) z(t) = cos 4πt+ i sin 4πt,
d) z(t) = (1− t) + it
Problem-258 What is the change in the argument along the curves depicted in Fig. 3.6
If a continuous curve C is closed, i.e. z(1) = z(0), then the value ϕ(1)−ϕ(0) does have the form 2πk
where k is an integer.

Definition 36 If for a continuous closed curve C not passing through the point z = 0 the change in
the argument equals 2πk, then we will say that the curve C goes around the point z = 0 k times.

Problem-259 How many times do the following curves go around the point z = 0:
a) z(t) = 2 cos 2πt+ 2i sin 2πt, (Fig. 3.7 )

b) z(t) =
1
2

cos 4πt− 1
2
i sin 4πt (Fig 3.8 )

c) Curve in Fig. 3.9
d) Curve in Fig. 3.10

8In the book Steenrod N., Chinn W.G., First Concepts of Topology, ”Mir”,1967,20-23, the angle swept by this
curve is rigourously defined. Using this angle, it is easy to obtain the assertion of theorem 6: it suffices to consider
ϕ(t) = ϕ0 + ϕ1(t) where ϕ1(t) is the angle swept by the part of this curve from z(0) to z(t).
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Problem-260 Prove that the number of turns of a continuous closed curve around the point of z = 0
does not depend on the selection of initial point but depends only on the direction of curve.
Problem-261 Let the curve C with equation z1(t) go around the point z = 0 k times. How often do
the curve with the equation z2(t), go around the point z = 0 if: a) z2(t) = 2z1(t), b)z2(t) = −z1(t),
c)z2(t) = z0 · z1(t), where z0 6= 0, d) z2(t) = z1(t) where z is the complex conjugate of z?
Let the closed smooth curve C with equation z1(t) not pass through the point z = 0. Then we will
say that the curve C goes around the point z = z0 once if the curve with equation z2(t) = z1(t)− z0
goes around the point z = 0 once (Fig. 3.11 ).
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Thus, to define the number of turns of a curve around the point z = z0 it is necessary to follow the
rotation of the vector z1(t)− z0 which can be considered as the vector which connects the points z0
and zt(t) (see 221).
Problem-262 How many times do the curves described in problem 256 go around the point z = 1?
Problem-263 Let z1(t) and z2(t) be the equations of two curves C1 and C2 not passing through
the point z = 0. Let the changes in the argument along these curves be φ1 and φ2 respectively. What
is the change in the argument along the curve C with equation z(t) if: a) z(t) = z1(t) · z2(t), b)

z(t) =
z1(t)
z2(t)

?
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3.8 Images of curves: the fundamental theorem of the algebra of complex
numbers

Consider two planes of complex numbers: the z plane and w plane, and assume that a function
w = f(z) is defined which to each value z assigns in a unique way, the value w. If on z plane there
is continuous curve C with equation z(t), then by the function w = f(z) every point of this curve is
sent to a point in the w plane. If the function f(z) is continuous, then we will obtain a continuous
curve in the w plane with equation w0(t) = f(z(t)). We will denote this curve by f(C), which is the
image of the curve C.
Problem-264 What is the curve f(C) if w = f(z) = z2 and the curve C is:

a) quadrant: z(t) = R(cos
πt

2
+ i sin

πt

2
),

b) the semicircle: z(t) = R(cosπt+ i sinπt),
c) the circle: z(t) = R(cos 2πt+ i sin 2πt)

Problem-265 Let the change in the argument along a curve be equal to ϕ. What is the change in
the argument along the curve f(C) if: a) f(z) = z2, b) f(z) = z3, c) f(z) = zn, where n arbitrary
integer?
Problem-266 Suppose the curve C goes around the point z = z0 k times . How many times does
the curve f(C) go around the point w = 0 if f(z) = (z − z0)n?
Problem-267 Let the curve C go around around the points z = 0, z = 1,z = i,z = −i k1, k2, k3, k4

times respectively . How many times does the curve f(C) go around point w = 0 if: a) f(z) = z2− z,
b) f(z) = z2 + 1, c) f(z) = (z2 + +iz)4, g) f(z) = z3 − z2 − z − 1?
Consider the equation

a0z
n + a1z

n−1 + . . .+ an = 0

where all ais are arbitrary complex numbers, n ≥ 1 and a0 6= 0. Our immediate objective to show
that this equation has at least one complex root. From now on we will assume that an 6= 0.
Let us denote the maximum of the numbers |a0|, |a1|, . . . , |an| by A. Since a0 6= 0, A > 0. Choose two
positive real numbers R1 and R2 such that: R1 is small enough that the two inequalities: R1 ≤ 1 and

R1 <
|an|

10An
are satisfied; and R2 so large that the two inequalities: R2 ≥ 1 and R2 >

10An
|a0|

are also

satisfied.

Problem-268 Let |z| = R1. Prove that |a0z
n + a1z

n−1 + . . .+ an−1z| <
|a|n
10

Problem-269 Let |z| = R2. Prove that |a1

z
+ . . .+

an

z
| < |a|0

10
Let us denote by CR the curve with equation z(t) = R(cos 2π+ i sin of2πt) (i.e. the circle with radius
R oriented counterclockwise). Since the curve CR is closed (z(1) = z(0)), the curve f(CR), where
f(z) = a0z

n + . . . + an is also closed (f(z(1)) = f(z(0))). Let ν(R) be the number of turns of the
curve f(CR) around the point w = 0 (if f(CR) does not pass through point w = 0).
Problem-270 What are the values of ν(R1) and ν(R2)?
We will now change the radius R from R1 to R2 continuously. In this case the curve f(CR) will be
continuously deformed from f(CR1) to f(CR2). If for a certain value of R∗ the curve f(CR∗) does not
pass through point w = 0, then for a sufficiently small change in R near R∗ the curve f(CR) will be
deformed by a small amount such that the number of turns it makes around the point w = 0 will not
change, i.e., the function ν(R) is continuous at this value R∗. If the curves f(CR) for all the values
R such that R1 ≤ R ≤ R2 does not pass through the point w = 0, then ν(R) will be a continuous
function for all R1 ≤ R ≤ R2. Since the function ν(R) takes only integer values, it can be continuous
only if ν(R) a unique value for all R in the interval R1 ≤ R ≤ R2; in particular ν(R1) = ν(R2). But
it follows from the solution of problem 267 that ν(R1) = 0, a ν(R2) = n. Hence, the assumption that
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the curves f(CR) for all R1 ≤ R ≤ R2 do not pass through the point w = 0 is erroneous. This means
that for a certain z, f(z) = 0. Thus we obtain the following theorem9 .

Theorem 3.2 (The fundamental theorem of the algebra of complex numbers 10) The equa-
tion a0z

n + . . . + an = 0 with each ai an arbitrary complex numbers, n ≥ 1 and a0 6= 0, has at least
one complex root.

Problem-271 Prove Bezout’s theorem 11: If z0 is a root of the equation a0z
n + . . . + an = 0, then

the polynomial a0z
n + . . .+ an is divisible by z − z0 without a remainder.

Problem-272 Prove that the polynomial a0z
n + . . . + an where a0 6= 0 can be represented in the

form
a0z

n + . . .+ an = a0(z − z1)(z − z2) · . . . · (z − zn)

Observation. Assume that polynomial P(z) is decomposed into factors:

P (z) = a0(z − z1)(z − z2) · . . . · (z − zn)

The right side is equal to 0 ⇐⇒ at least one of the factors is equal to 0 (see 195, 197). Therefore
the roots of the equation P (z) = 0 are the numbers z1, z2, . . . , zn and them alone.
Problem-273 Let z0 be a root of the equation a0z

n + . . .+ an = 0 where all ais are real numbers.
Prove that the number z0, the conjugate of z0 is also a root of this equation.
Problem-274 Suppose that the equation a0z

n + . . . + an = 0 with real coefficients has a complex
root z0 which is not a pure real number. Prove that polynomial a0z

n + . . .+ an has a polynomial of
second degree with real coefficients as a factor.
Problem-275 Prove that any polynomial with real coefficients can be represented in the form of a
product of polynomials of first and second degree with the real coefficients.
Observation. It follows that from the result of task 272 that the only irreducible polynomials (see page
44) over the field of real numbers are the polynomials of first and second degree with no real roots.
We did use this in section 3 of this chapter. Over the field of complex numbers, as it follows from the
result of problem 269, the only irreducible polynomials are polynomials of first degree.
Let us return again to polynomials with arbitrary complex coefficients.

Definition 37 Let z0 be the root of the equation a0z
n + . . . + an = 0. We say that z0 is a root

with multiplicity k (or order k) if the polynomial a0z
n + . . . + an is divisible by (z − z0)k but not by

(z − z0)k+1.

Problem-276 What is the multiplicity of the roots z = 1 and z = −1 in the equation

z5 − z4 − 2z3 + 2z2 + z − 1 = 0

.

Definition 38 The derivative of the polynomial P (z) = a0z
n+a1z

n−1+. . .+akz
n−k+. . .+an−1z+an

is the polynomial P ′(z) = a0nz
n−1 +a1(n−1)zn−2 + . . .+ak(n−k)zn−k−1 + . . .+an−1. The derivative

is usually denoted by a prime.

Problem-277 Let P (z) and Q(z) be two polynomials. Prove the equalitites: a)(P (z) + Q(z))′ =
P ′(z) +Q′(z), b)(c · P (z))′ = c · P ′(z), c) (P (z) ·Q(z))′ = P ′(z) ·Q(z) + P (z) ·Q′(z).
Problem-278 Let P (z) = (z − z0)n (n ≥ 1− integer). Prove that P ′(z) = n(z − z0)n−1.
Problem-279 Prove that if the equation P (z) = 0 has a root z0 with multiplicity k > 1, then the
equation P ′(z) = 0 has a root z0 with multiplicity k− 1 and that if the equation P (z) = 0 has a root
z0 with multiplicity one then P ′(z0) 6= 0.

9Our reasoning contains some lack of rigour and must be considered, in general, as an idea of the proof.
However, this reasoning can be (although it is not simple) made rigourous (see for example Chinn W.G., Steenrod
N.E, First Concepts of Topology.

11Bezout (1730-1783) was a French mathematician.
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3.9 Riemann surface of the function w =
√

z

We considered single-valued functions for which there is a unique value of the function corresponding
to each value of the variable. From now on, we will mainly be interested in many-valued functions,
which assigns several values of the function to a particular value of the argument 12. We will explain
the reason for our interest in such functions. Actually, the final goal of our study is the proof of Abel’s
theorem, according to which a function which expresses the roots of a general equation of degree five
in terms of coefficients is not expressible in radicals. But this function is many-valued since equation
of degree five with fixed coefficients has in general five roots. The functions which are expressed in
radicals are also many-valued.
The principal idea of the proof of Abel’s theorem is the following. To each many-valued function of a
complex variable, we will assign a certain group, the so-called Galois group 13. It will be shown that
the Galois’s group for the function which expresses the roots of a certain equation of degree five in
terms of a parameter z cannot be the Galois’s group for a function expressed in radicals and hence
this function cannot be expressed in radicals.
In order to introduce the concept of Galois’s group, we will first introduce another very important
concept in the theory of functions of a complex variable: the concept of a Riemann 14 surface of
many-valued function. We will begin with the construction of Riemann surface for one of the simplest
examples of a many-valued function, namely the function w =

√
z.

As we know, the function w =
√
z takes one value w = 0 for z = 0 and two values for all z 6= 0 (see

229). If w0 is one of the values of
√
z0, then the other value of

√
z0 is equal −w0.

Problem-280 Find all values of: a)
√

1, b)
√
−1, c)

√
i, t d)

√
1 + i

√
3 (here

√
3 is the positive value

of root).
On the z plane, let us make a cut on the negative part of the real axis from 0 to −∞ and for all
z which do not lie in the cut let us choose the value w =

√
z which lies on the right half-plane of

the w plane. We will obtain a certain single-valued and continuous function over the entire z plane,
excluding the cut. We will denote this function by 1

√
z. This function definea a single-valued and

continuous mapping of plane z excluding the cut to the right-half of w plane (Fig. 3.12 ).

12Whenever the context is clear the term many-valued will be omitted.
13Evarist Galois (1811-1832)? the French mathematician who established the general conditions of solvability of

equations in radicals, that placed principles of group theory. We advise to read: Sinfeld l., Evarist Galois (Izbrannik
gods), publishing house young guards, M., 1958.

14Riemann (1826-1866) was a German mathematician.
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Observation. If we choose Arg z so that −π < Arg z < π, then for the function 1

√
z we get Arg

1

√
z =

1
2

Arg z. (see 229). Under the mapping w = 1

√
z, the plane z shrinks like a fan to the positive

part of the real axis, with the decrease in the angle of the fan being half and a certain change in the
lengths along the rays of fan.
If we now choose, for all z which do not lie in the cut, the value w =

√
z which lies on the left half of w

plane, then we will obtain another single-valued continuous function on the entire z plane excluding
the cut. This function, which we will denote by 2

√
z, defines a single-valued continuous mapping of

the z plane excluding the cut to the left half of w plane (Fig. 3.13 ). Here 2

√
z = − 1

√
z.

Functions 1

√
z and 2

√
z so defined are called the single-valued continuous branches of the function

w =
√
z (for this cut).

Now take two copies of the plane z which we will call sheets and on each sheet cut out the negative
part of the real axis from 0 to −∞ (Fig. 3.14 ). Let us assign on the first sheet the function 1

√
z and

on the second sheet the function 2

√
z. We can consider the two functions 1

√
z and 2

√
z together as

a certain single-valued function not on the z plane but on a more complex surface which consists of
two separate sheets. So, if a point z moves continuously on the first sheet (or on the second sheet)
without crossing the cut, then the single-valued function defined changes continuously. But if the
point z, moving, for example, on the first sheet crosses the cut then continuity is lost. This follows,
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for example, from the fact that the two close points A and B in the z plane, under the mapping, 1

√
z

maps to the points A′ and B′ respectively, which are far from each other. (see Fig. 3.12 ).
On the other hand, from Fig. 3.12 and 3.13 it is easy to note that the image of the point A under
the mapping w = 1

√
z (point A′) is close to the image of the point D under the mapping w = 2

√
z

(point D′).
Hence, when crossing the cut if the point z goes from the upper part of the cut on one sheet to the
lower part of the cut on the other sheet, then the single-valued function defined will vary continuously.
In order to ensure that the point z moves as wanted, we will consider the upper side of the cut on
the first sheet glued to the lower side of the cut on the second sheet and the upper side of the cut on
the second sheet glued to the lower side of the cut on the first sheet (Fig. 3.15 ).
When we are glueing, we will add a ray from the point 0 to ∞ between the glued parts. During the
first glueing, for the points z which lie on this ray, we will choose the values w =

√
z lying on the

positive part of imaginary axis and for the second glueing, we choose the the values w =
√
z which

lie on the negative part of the imaginary axis.
After the required glueings we see that the two-valued function w =

√
z is replaced with another

function which is single-valued and continuous not on the z plane but on a more complex surface.
This surface is called the Riemann surface of the function w =

√
z.

Attempts to produce glueings without intersections (without turning over plane) leads to failure. In
spite of this, we will consider that Fig. 3.15 is the image of Riemann surface of the function w =

√
z

assuming that the intersection on the negative part of the real axis is only apparent. For comparison
consider the following example. Fig. 2.7 depicts the frame of a cube. Although some segments in the
figure intersect, we agree that this intersection is only apparent and this allows us to avoid errors.
The Riemann surface of an arbitrary many-valued function w(z) can be constructed the way we built
the Riemann surface of the function w =

√
z. For this it is necessary to first separate the single-valued

continuous branches of the function w(z) excluding some points z which belong to the cuts. Then the
branches are glued together along the cuts so as to get a single-valued continuous function on the
surface constructed. The surface obtained will be called Riemann surface of the many-valued function
w(z)15.
Thus, it remains to explain how to separate the continuous single-valued branches of an arbitrary
many-valued function w(z) and how to glue them. For explaining these questions let us consider again
in more details the function w =

√
z.

Let w(z) be a many-valued function and let us fix one of the values w0 of the function w(z) at a
certain point z0. Let w′(z) be a continuous single-valued branch of the function w(z) defined on some
region of the z plane (for example, on the entire plane excluding some cuts) such that w′(z0) = w0.
Assume that there exists a continuous curve C from the point z0 to a certain point z1 lying entirely
in the region of z plane being considered. Then as the point z moves along the curve C the function
w′(z) will vary continuously from w′(z0) to w′(z1).
Actually, it is possible to use this property conversely, namely for defining the function w′(z). Suppose
that at a certain point z0 one of the values w0 of the function w(z) be chosen and let C be a continuous
curve from the point z0 to a certain point z1. We will move along the curve C, selecting for each point
z which lies on C, one of the values of the function of w(z) such that these values change continuously
z moves along the curve C starting from the value w0. In this case, when we reach point z1, we will
have a value w1 = w(z1). We will indicate by w1 the value w(z1) defined using continuity along the
curve C under the condition w(z0) = w0. If we depict on the w plane the value of the function w(z)
chosen for all points on the curve C, then we get a continuous curve which begins at the point w0 and
ends at the point w1. This curve is one of the continuous images of the curve C under the mapping
w = w(z).

15Such constructions cannot be made for each many-valued function; however, for the functions which we will
be examining later, such constructions can always be possible
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Problem-281 For the function w(z) =
√
z let us choose w(1) = 1. Determine w(−1) =

√
−1 using

continuity along: a) the upper semicircle of radius 1 with the center in the beginning of coordinates,
b) lower semicircle (Fig. 3.16 ).
In fact, defining the function using continuity along a certain curve can lead to some problems. Let
us consider an appropriate example.
Problem-282 Find all continuous images w0(t) of the curve C with the parametric equation z(t) =
2t− 1 (Fig. 3.17 ) under the mapping w(z) =

√
z that begins: a) at the point i, b) at the point −i.

From the solution of problem 279 we see that even by fixing the image of initial point of curve C,
the continuous image of the curve C under the mapping w(z) =

√
z may be defined ambiguously.

Moreover uniqueness is lost when the curve C passes through the point z = 0. In fact, for the function
w(z) =

√
z the uniqueness of images is lost only in this case, since only in this case do both images

of the point z(t) approach close to each other and merge into one point.
In order to avoid non-uniqueness of continuous images of curves under the mapping w(z) =

√
z, we

may exclude the point z = 0 and not allow curves to pass through this point. This restriction however,
does not always allow us to separate the single-valued continuous branches of the function w(z) =

√
z.

Indeed, if we fix at a certain point z0 one of the values w0 = w(z0) and we define w(z) at a certain
point z1 using continuity along different curves from z0 to z1, then we can obtain different values for
w(z1) (for example, see 278). Let us see how to avoid this ambiguity.
Problem-283 Let the change in the argument of z(t) along the curve C be equal to φ. Find the change
in the argument w0(t) along any continuous image of the curve C under the mapping w(z) =

√
z.

Problem-284 Let w(z) =
√
z and choose w(1) =

√
1 = −1 Determine the value of w(i) =

√
i using

continuity along: a) the segment which connects points z = 1 and z = i; b) curve with parametric

equation z(t) = cos
3
2
πt− i sin

3
2
πt; c) curve with parametric equation z(t) = cos

5
2
πt− i sin

5
2
πt

Problem-285 Let w(z) =
√
z and choose at the initial point of a curve C w(1) =

√
1 = 1. Determine

using continuity along the curve C the value w(1) =
√

1 at the final point if the curve C has the
equation: a) z(t) = cos 2πt+ i sin 2πt; b)z(t) = cos 4πt− i sin 4πt; c) z(t) = 2− cos 2πt− i sin 2πt
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Problem-286 Let C be a closed curve on the z plane (i.e. z(1) = z(0)). Prove that the value of
the function

√
z at the end point of the curve C defined using continuity, coincides with the value at

initial point ⇐⇒ curve C goes around around point z = 0 an even number of times.
For future reference it is convenient to introduce the following notation.

Definition 39 Let C be a continuous curve with the parametric equation z(t). We will denote the
curve geometrically identical to C but travelled in the opposite direction by C−1 ; its equation (see
247) being z1(t) = z(1− t).

Definition 40 Suppose the initial point of a curve C2 coincides with the end point of a curve C1.
We will denote by C1C2 the curve obtained by first traversing C1 and then C2 (see 248).

Problem-287 Let C1 and C2 be two curves joining the point z0 to the point z1 and assume that
one of the values of

√
z0 = w0 is selected. Prove that the value

√
z1 defined using continuity along the

curves C1 and C2 will be identical ⇐⇒ the curve C−1
1 C2 (Fig. 3.18 ) goes around the point z = 0

an even number of times.
From the statement of the last problem it follows that if the curve C−1

1 C2 goes around the point z = 0
zero times, then the value of the function

√
z at the final points of the curves C1 and C2 defined using

continuity coincides if the values at initial points are identical and it goes around the point z = 0 an
even number of times.
To separate the single-valued continuous branches of the function w =

√
z it suffices that the curve

C−1
1 C2 not go around the point z = 0 once. For this it suffices to make any cut from point z = 0 into

infinity and to forbid curves to intersect this cut. Specifically, in the above example, a cut from point
z = 0 to −∞ on the negative part of the real axis is made.
If after making a cut we fix at a certain point z0 one of the values w′0 =

√
z0 and determine the value

at any other point z1 using continuity along any curve C that goes from z0 to z1 and not crossing the
cut, then on the entire plane excluding the cut, a certain single-valued continuous branch 1

√
z of the

function w =
√
z will be defined. If at the point z0 we fix the other value w′′0 =

√
z0 then this will

define another branch 2

√
z of the function w =

√
z.

Problem-288 Prove that 1

√
z 6= 2

√
z for any point z which does not lie on the cut.

Problem-289 Fix at a certain point z′ the value w′ = 1

√
z′ and define the values of the function

w =
√
z at other points of the plane z (excluding the cut) using continuity along curves starting from

point z′ but not crossing the cut. Prove that the single-valued continuous branch obtained coincides
with the function 1

√
z (defined by the value at point z′).
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It follows that from the result of problem 286 that selecting different points of the z plane as initial
points, one obtains the same splitting of the Riemann surface into single-valued continuous branch.
This splitting depends only on how the cuts are made.
Problem-290 Let the points z0 and z1 not lie in the cut and let the curve C that connects point z0
with z1 cross the cut once (Fig. 3.19 ). Choose a value w0 =

√
z0 and by continuity along C define

the value w1 =
√
z1. Prove that the values w0 and w1 correspond to different branches of the function

w =
√
z.

Thus, on crossing cuts we go from one branch of the function w =
√
z to another branch, i.e. branches

are connected precisely in the manner we connected them earlier (see Fig. 3.15 ). In this way, we get
the Riemann surface of the function w =

√
z.

We will say that a certain property holds for a closed loop around the point z0 if it holds for a single
closed loop counterclockwise for all circles with the center at the point z0 and with a sufficiently small
radius 16.
Problem-291 Prove that by a turn around the point z0 we remain on the same sheet of the Riemann
surface of the function w =

√
z if z0 6= 0 and we go to another sheet if z0 = 0.

The following concept is very important for future reference.

Definition 41 If we go from one branch to another (the value of the function changes) on moving
along a loop around a point, then the point is called a branch point of the given many-valued function.

The Riemann surface of the function w =
√
z can be depicted in the form of a diagram (Fig. 3.20 ).

This diagram shows that the Riemann surface of the function w =
√
z has 2 sheets, that the point

z = 0 is the branch point of the function w =
√
z and that with a loop around point z = 0 we go

from one sheet to the other. In this case the arrows at point z = 0 show passages from one sheet to
the other not only under a loop around the point z = 0 but also by crossing the cut which goes from
the point z = 0 to infinity. Below we will see that this relationship between the branch points and
cuts from these branch points is not an accident.
Henceforth, instead of Riemann surfaces of many-valued functions we will represent its diagram.

3.10 Riemann surfaces of more complicated functions

Consider the many-valued function w = 3
√
z.

Problem-292 Let the change in the argument along the curved z(t) be φ and let w0(t) be the
continuous image of the curve z(t) under the mapping w = 3

√
z. Find the change in the argument

along the curve w0(t).

16More precisely, this means the following: there exists a real number δ > 0 such that the property mentioned
holds for any turn along any circles with center z0 with radius less than δ
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Problem-293 Find the branch points of the function w = 3
√
z.

Problem-294 Assume that a cut is made from the point z = 0 to z = −∞ on the negative part of
the real axis and assume that the continuous single-valued branches of function w = 3

√
z are given by

the conditions: f1(1) = 1,

f2(1) = cos
2π
3

+ i sin
2π
3

= −1
2

+ i

√
3

2
,

f2(1) = cos
4π
3

+ i sin
4π
3

= −1
2
− i
√

3
2

. Find: a)f1(i), b)f2(i), c)f1(8), d)f3(8),e) f3(−i)
Problem-295 Contruct the Riemann surface and its diagram for the function w = 3

√
z.

Problem-296 Let C be a continuous curve with parametric equation z(t) and let w0 be one of the
values of n

√
z(0). Prove that there exists at least one continuous image of the curve C under the

mapping w = n
√
z starting at the point w0.

Problem-297 Suppose the change in the argument along the curve z(t) be is φ and let w0(t) be the
continuous image of the curve z(t) under the mapping w = n

√
z. Find the change in the argument

along the curve w0(t).
Problem-298 Find the branch points of the function w = n

√
z.

We introduced the notation
εn = cos

2π
n

+ i sin
2π
n

in section five and considered some of its properties.
Problem-299 Suppose that the curve z(t) does not go through the point z = 0 and let w0(t) be
one of the continuous images of the curve z(t) under the mapping w = n

√
z. Find all the continuous

images of the curve z(t) under the mapping w = n
√
z.

Consider two continuous curves C1 and C2 starting at a certain point z0 and ending at a certain point
z1. Just as for the function w =

√
z (see 284), it is true that if the curve C−1

1 C2 never goes around
around the point z = 0, then the function w = n

√
z is uniquely defined using continuity along the

curves C1 and C2. Therefore, just as for the function w =
√
z if we make a cut from the point z = 0

to infinity, then the function w = n
√
z is decomposed into continuous single-valued branches.

Problem-300 Make a cut from the point z = 0 to ∞, not passing through the point z = 1 and
define the continuous single-valued branches of the function n

√
z by the conditions: fi(1) = εi

n, where
i takes integer values from 0 to n− 1. How are the branches fi(z) expressed in terms of f0(z)?
Problem-301 Draw the diagram of the Riemann surface of the function of w = n

√
z.

Problem-302 Find the branch points and draw the Riemann surface diagram for the function√
z − 1.

Problem-303 Find the branch points and draw the Riemann surface diagram for the function
n
√
z + i.

When a many-valued function has several branch points, we will make cuts from each branch point
into infinity along non-intersecting lines to separate the continuous single-valued branches.
In this way the Riemann surface diagram of this function may depend on the cuts made from the
branch points to infinity ( corresponding examples are examined below in problems 327 and 328).
When this occurs, we will mention what cuts are made. But if this is not important then we will not
indicate them.
The Riemann surfaces diagram made by the reader during the solution of the problems posed below
can differ from the diagrams given in the solutions due to different labelling of sheets. With the
appropriate renumbering of sheets these diagrams should coincide.
Problem-304 Let f(z) be a single-valued continuous function and let C be a continuous curve on
the z plane which starts at the point z0. Let w0 be one of the values of n

√
f(z0). Prove that there
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exists at least one continuous image of the curve C under the mapping w = n
√
f(z) that starts at the

point w0.
From the results of problem 301 it follows that it is possible to define the function w = n

√
f(z) using

continuity along any curve not passing through points at which uniqueness of continuous image is
lost.
Problem-305 Let f(z) be a single-valued continuous function and w0(z) be one of the continuous
single-valued branches (under appropriate cuts) of the function w(z) = n

√
f(z). Find all single-valued

continuous branches (using the same cuts) of the function w(z).
Problem-306 Find all branch points and draw the of the Riemann surface diagrams for the functions:
a)
√
z(z − i), b)

√
z2 + 1

Problem-307 Draw the Riemann surfaces diagrams for the following functions: a) 3
√
z2 − 1, b) 3

√
(z − 1)2z,

c) 3
√

(z2 + 1)2
Problem-308 Separate the continuous single-valued branches and the diagram Riemann surface
build for the function

√
z2

Observation. From the solution of problem 305 we see that the point z = 0 is not a branch point of
function

√
z2. At the same time the images of curves passing through the point z = 0 are not uniquely

defined. For example, the continuous image of broken AOB (Fig. 3.21 ) under the mapping
√
z2 are

the broken lines COD,COF,EOD and EOF (Fig. 3.21 ). When passing the point z = 0 we can
remain on the same sheet (the lines COD and EOF ) or go to another sheet (the lines COF and
EOD). The Riemann surface of the function w(z) =

√
z2 takes the form shown in Fig. 3.22.

Definition 42 The points at which the uniqueness of continuous images of curves is lost but which
are not branch points are called the ambiguity points of the given function.

When drawing the Riemann surfaces diagram oen should make no cuts from ambiguity points to
infinity: it suffices to exclude these points, i.e., not allow curves to pass through them.
Problem-309 Draw the Riemann surfaces diagrams of the following functions: a) 4

√
z2 + 2, b) 4

√
z2,

c) 4
√

(z − 1)2(z + 1)3, d) 4
√

(z2 − 1)3(z + 1)3, d) 4
√
z(z3 − 1).

Problem-310 Draw the Riemann surface diagram of the function
√

1
z

Problem-311 Draw the Riemann surface diagrams of the following functions: a)
√

1
z − i

, b) 3

√
z − 1
z + 1

,

c) 4

√
(z + 1)4

z(z − 1)3



3.10 Riemann surfaces of more complicated functions 65

Fig. 3.22.

During the solution of problems in this section, we saw that after making nonintersecting cuts from
all branch points to infinity the function in question split into single-valued continuous branches,
which are then glued in a specific manner along the cuts. It occurs that a sufficiently broad class
of many-valued functions possesses this property. In particular, all the functions considered below
possess this property, namely functions which are expressed in radicals (section 11) and algebraic
functions (section 14) 17.
The proof of this statement exceeds the scope of this book. Therefore we simply refer to the literature
18 on this question and accept the statement formulated above without proof. The reader can if
wanted jump immediately to section 11.
However, a certain feeling of dissatisfaction can remain in the reader. And although we will not be able
to completely free the reader from this feeling, we will nevertheless show that the property formulated
above follows from another property, the so-called monodromy property which looks more obvious.
We know that to separate the single-valued continuous branches of the many-valued function w(z)
(in a certain region of the z plane) it is necessary that the function w(z) be defined using continuity
equally along any two curves C1 and C2 lying in this region and going from an arbitrary point z0 to
another point z1. The property of monodromy is connected with this condition.
Let the many-valued function w(z) be such that after fixing one of the values of w0 at an arbitrary point
z0 the function w(z) can be defined using continuity (possibly ambiguously) along any continuous
curve which starts at point z0 (and not passing through the points at which the function w(z) is not
defined). Let us say that the many-valued function w(z) possesses the property of monodromy if the
following assertion holds true.
Monodromy Property . Let C1 and C2 be two continuous curves on the z plane which begins at a
certain point z0 and which ends at a certain point z1 and not pass through the branch and ambiguity
points of the many-valued function w(z). Suppose that the curve C1 can be continuously deformed
into the curve C2 such that none of the the curves obtained during the deformation pass through the
branch points of the function w(z) and their ends remain fixed ( In Fig. 3.23 a, b are branch points).
If the value w(z1) is uniquely defined using continuity along the curves C1 and C2 (when a certain
value w0 = w(z0) is chosen).
Let us explain the consequences that follow from the monodromy property.
Problem-312 Suppose that the function w(z) possesses the monodromy property. Let us make
nonintersecting cuts on the z plane from all branch points of the function w(z) to infinity and pick

17Both of these functions are special cases of the broader class of the so-called analytic functions, which also
possess the above property.

18See for example, Springer G., Introduction to Riemann Surfaces.
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out the ambiguity points of the function w(z). Prove that in this case the function w(z) is decomposed
into single-valued continuous branches.
Problem-313 Suppose that in the conditions of the previous problem the cuts do not pass through
the ambiguity points of the function w(z) and that w(z) has a finite number of branch points. Prove
that on crossing a certain cut (in a particular direction) one moves from a particular branch of the
function w(z) to another unique branch which does not depend upon where we cross the cut.
Observation 1. During a loop around the branch point we cross the cut which goes from this point to
infinity once. Therefore using the result of problem 310 the passage from some branch to other during
the crossing of a certain cut in an arbitrary place coincides with the passage obtained under a loop (
with the appropriate direction) around the branch point from which the cut is made and hence they
coincide with the passage indicated by the corresponding arrows at the point in the Riemann surface
diagram.
Observation 2. It follows from the results of problems 309 and 310 that if the many-valued function
w(z) possesses the monodromy property, then one can build its Riemann surface. Moreover to un-
derstand the structure of this surface it suffices to find the branch points of the function w(z) and
to define the passages between the branches of the function w(z) corresponding to loops around these
points.
All functions which we shall consider below possess the monodromy property. Here we will not be able
to rigourously prove this statement since this requires the concept of an analytic function. However,
we will give a sketch of the proof of the statement that a certain many-valued function w(z) possesses
the monodromy property assuming that this function is ”sufficiently good”. What this means will be
clear from the sketch of the proof.
Suppose the conditions required for the monodromy property are satisfied. Let C ′1 and C ′2 be contin-
uous images of two curves C1 and C2 under the mapping w(z) begining at the point w0 = w(z0). We
have to prove that the curves C ′1 and C ′2 ends at the same point.
Assume that the curves which are obtained during the deformation of C1 into C2 neither pass through
the branch points nor through the ambiguity points of the function w(z). Let C be one of these curves.
Then there is a unique continuous image C ′ of the curve C under the mapping w(z) which begins
at the point w0 = w(z0). If the function w(z) is ”sufficiently good”19, then during the continuous

19The monodromy property is usually proved for arbitrary analytic functions. See, for example, Springer G.,
Introduction to Riemann Surfaces.
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deformation of the curve C from the position C1 to the position C2 the curves C ′ are continuously
deformed C ′1 to C ′2. The end point of the curve C ′ is also deformed continuously. But the curve C
ends at the point z1; therefore the end point curve C ′ must coincide with one of the images w(z1)
of the point of z1. If the function w(z1) is assumed to take only a finite number of values for each
z (in particular for z1) (but we will examine only such functions), then the end point of the curve
C ′ cannot jump from one image of the point z1 to another image since in this case the continuity of
deformation will be lost. Hence, end points of all the curves C ′ and in particular of the curves C ′1 and
C ′2 coincide.
Consider now what happens when the curve C crosses an ambiguity point of the function w(z) (which
is not a branch point). Consider the special case when curve changes only near the ambiguity point
(Fig. 3.24 ). If at the point z0 the value w0 = w(z0) then using continuity the value w(z) at point A
will be determined uniquely.
After this the value of w(z) at point E will be uniquely defined using continuity along the curves
ADE and ABE since otherwise on tracing the loop EDABE the value of the function w(z) would
change and the point would be a branch point of the function w(z). After the value of w(z) at the
point E is uniquely defined along the two curves, using continuity along the curve Ez1 the value of
w(z) at the point z1 is also defined uniquely.
Thus, the ”dark place” in our exposition remains the claim that all functions considered below are
”sufficiently good”.
The reader either has to accept this statement by faith or to turn to a deeper study of analytic
functions. 20

3.11 Functions expressible by radicals

Definition 43 Let f(z) and g(z) be two many-valued functions. By f(z) + g(z) we will denote the
many-valued function whose value at the point z0 is the sum of f(z0) and g(z0). Similarly the functions

f(z)−g(z), f(z) ·g(z),
f(z)
g(z)

are defined. By f(z)n, where n is a natural number we mean the function

whose value at a point z0 will be the value of f(z0) raised to the power n. By n
√
f(z), where n is

natural number we mean the function whose value at a point z0 will be all the n values of n
√
f(z0) for

each value of f(z0).

20See for example, Shabat B. V., Introduction to Complex Analysis.
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Problem-314 Find all values of: a) 3
√
−8, b)

1−
√
−2i√
−4

, c)
√
i+
√
−1, d)

(
4
√

(1 + i)2
)2

, e)
(√
i+
√
i
)2

Definition 44 We will say that the many-valued function h(z) is expressible in radicals if it can be
obtained from the function f(z) = z and the constant functions g(z) = a (a is an arbitrary complex
number) using the operations of addition, subtraction, multiplication, division, raising to a natural
power and extracting roots of integer order.

For example, the function
(

3
√√

z + 3z2 − i√
z

)4

is expressible in radicals. We have already examined

above some functions which are expressible in radicals.
Problem-315 Let the function h(z) be expressible in radicals and let C be a continuous curve on
the z plane starting at the point z0 and not passing through the points at which the function h(z) is
not defined. Prove that if w0 is one of the values of h(z0), then there exists at least one continuous
image of the curve C under the mapping w = h(z) which starts at a point w0. (We consider that
the parametric equation w(t) = a, where a is a fixed complex number describes a continuous curve
degenerated into a point)
From the result of problem 312 we obtain that an arbitrary function h(z) that is expressible in radicals
can be defined using continuity along by any continuous curve C not passing through the points at
which the function h(z) is not defined. Moreover, if the curve C does not pass through the branch
and ambiguity points of the function h(z) then the function h(z) is uniquely defined using continuity
along the curve C.
We already noted in the previous paragraph that the functions which are expressible in radicals are
”sufficiently good” 21,i.e., they possess the monodromy property. Therefore for any function which
is expressible in radicals one can build the Riemann surface (see 309 and 310)22. Let us study the
structure of these Riemann surfaces.
Henceforth, everywhere in the text we will assume that the discussion deals with functions which are
expressible in radicals.
Problem-316 Let h(z) = f(z)+g(z). Pick out from the plane all the ambiguity points of the function
h(z) and let us make nonintersecting cuts from all the branch points of f(z) and g(z) to infinity. Let
f1(z), . . . , fn(z) and g1(z), . . . , gm(z) be the continuous single-valued branches of the functions f(z)
and g(z) respectively on the plane obtained after making the cuts. Find the continuous single-valued
branches of the function of h(z).
If with a loop around the point z0 we go from the branch fi1(z) to the branch fi2(z) and also from the
branch gj1(z) to the branch gj2(z), then obviously, we go from the branch hi1,j1(z) = fi1(z) + gj1(z)
to the branch hi2,j2(z) = fi2(z) + gj2(z). This hints us the following formal method of constructing
the Riemann surface diagram of the function h(z) = f(z) + g(z) when the Riemann surface diagram
of the functions f(z) and g(z) are built (under the same cuts). To each pair of branches fi(z) and
gj(z) we assign the sheet which we consider as the branch hi,j(z) = fi(z) + gj(z). If we go from the
branch fi1(z) to the branch fi2(z) and from the branch gj1(z) to the branch gj2(z) in the of Riemann
surface diagram of the functions f(z) and g(z) at the point z0 respectively, then in the Riemann
surface diagram of the function h(z) we indicate at point z0, the passage from the branch hi1,j1(z) to
the branch hi2,j2(z).
Problem-317 Build the of Riemann surface diagrams of the following functions: a)

√
z +
√
z − 1,

b) 3
√
z2 − 1 +

√
1
z

,c)
√
z + 3
√
z, d)

√
z2 − 1 + 4

√
z − 1.

The informal method of constructing the of Riemann surface diagram of the function h(z) = f(z)+g(z)
described above does not always give the correct result, since it does not consider the fact that some

21All functions which are expressible in the radicals are analytical
22Any function which is expressible in radicals has a finite number of branch points.
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of the branches hi,j(z) can coincide. For simplicity, we will consider that the cuts do not pass through
the ambiguity points of the function h(z). In this case, during the crossing of any cut we go from the
sheet which corresponds to the equal branches of the function h(z), in view of uniqueness to sheets
which also correspond to equal branches. Hence, if we glue together the sheets which correspond
to identical branches of the function h(z), i.e., replace many such sheets with one sheet, then the
passages between the obtained sheets along loops around a branch point z0 will be uniquely defined.
Problem-318 Find all the values of f(1) if: a)f(z) =

√
z +
√
z, b) f(z) =

√
z + 4
√
z2, c) 3

√
z + 3
√
z.

Problem-319 To build the Riemann surface diagram by the informal method and the true diagram
of Riemann surface for the following functions: a)f(z) =

√
z +
√
z, b) f(z) =

√
z + 4
√
z2, c) 3

√
z + 3
√
z.

Finally we see that for constructing the Riemann surface diagram of the function h(z) = f(z) + g(z)
using the Riemann surface diagrams of the functions f(z) and g(z) (under the same cuts) it is sufficient
to build the diagram by the informal method described above and then to glue the corresponding
sheets.
It is easy to see that this algorithm can also be used to construct the Riemann surface diagram of

the functions h(z) = f(z)− g(z), h(z) = f(z) · g(z), h(z) =
f(z)
g(z)

Problem-320 Build the Riemann surface diagram of the following functions: a)i
√
z− 4
√
z2, b)

√
z − 1·

4
√
z, c)

√
z2 − 1

4
√
z + 1

, d)
√
z +
√
z√

z(z − 1)
.

Problem-321 Let f1(z), f2(z), . . . , fm(z) be all the continuous single-valued branches of the function
f(z). Using the same cuts, find all the continuous single-valued branches of the function h(z) = f(z)n,
where n is a non-zero integer.
It easily follows that from the result of last problem that the Riemann surface diagram of the function
h(z) = f(z)n will coincide with the Riemann surface diagram of the function f(z) if all the branches
of hi(z) = fi(z)n were different. However, this is not always the case. If there are equal branches,
then on crossing the cuts, because of uniqueness, we will go from equal branches to equal branches.
Finally we obtain that for constructing the Riemann surface diagram of the function h(z) = f(z)n

using the Riemann surface diagram of the function f(z) it is sufficient to consider the branches
hi(z) = fi(z)n instead of branches fi(z). If we get identical branches, then one has to glue together
the appropriate sheets.
Problem-322 Build the Riemann surfaces diagram of the following functions: a)( 4

√
z)2, b)(

√
z +
√
z)2,

c)
(√
z · 3
√
z − 1

)3
.

Let us now analyze the relation between the Riemann surface diagram of the function n
√
f(z) with

the Riemann surface diagram of the function f(z).
Problem-323 What are the branch points of the function n

√
f(z)?

On the z plane make the cuts from the branch points of the function f(z) to infinity such that they do
not pass through the points at which the function f(z) vanishes and separate the continuous single-
valued branches of the function f(z). Let f1(z), f2(z), . . . , fm(z) be these branches. Make additional
cuts from the points at which the function f(z) vanishes to infinity. Let g(z) be one of the continuous
single-valued branches of the function n

√
f(z) under these cuts.

Problem-324 Prove that the function g(z)n coincides with one of the functions fi(z) everywhere
except on the cuts.
It follows that from the result of the proceeding problem that every branch of the function n

√
f(z)

corresponds to a some branch of the function f(z).
Problem-325 Let g(z) be a continuous single-valued branch of the function n

√
f(z), corresponding

to the branch fi(z) of the function f(z). Find all continuous single-valued branches of function n
√
f(z)

corresponding to the branche fi(z).
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Fig. 3.25. Fig. 3.26.

From the result of last problem we obtain that to every branch fi(z) of the function f(z) there
corresponds a bundle which consists of n branches of the function n

√
f(z). We will number the branches

in this bundle fi,0(z), fi,1(z), . . . , fi,n−1(z) such that for every k the equation fi,k(z) = fi,0 · εk
n holds.

Let z0 be a branch point of the function f(z) and suppose that with a loop around the point z0
we go from the branch fi(z) to the branch fj(z). Then obviously, for the function n

√
f(z) we obtain

the following: on going around a loop about the point z0 we will go from all branches of the bundle
corresponding to the branch fi(z) to all branches of the bundle which corresponds to the branch
fj(z).
Problem-326 Let C be a curve on the z plane with the parametric equation z(t) and let the curve on
the w plane with the equation w0(t) be continuous image of curve C under the mapping w = n

√
f(z).

Prove that the curve with the equation wk(t) = w0(t) · εk
n is also the continuous image of the curve

C under the mapping w = n
√
f(z).

Problem-327 Let the curve C on the z plane not pass through the branch and ambiguity points of
the function n

√
f(z). Prove that if on moving along the curve C one moves from the branch fi,s(z)

to the branch fj,r(z), then one moves from the branch fi,s+k(z) to the branch fj,r+k(z), where the
sums s+ k and r + k are calculated modulo n (see 40).
Thus, to define where we one goes from the branches of a given bundle on moving along a loop about
a branch point of the function n

√
f(z), it suffices to define where we one goes from one of the branches

of this bundle; for other branches transitions will be automatically defined in view of the result of
problem 324.
Problem-328 Build the Riemann surface diagram of the function

√√
z − 1

Problem-329 Build the Riemann surfaces diagram of the following functions: a) 3
√√

z − 2, b)
√

3
√
z − 1

In the following two problems examples where the Riemann surface diagram of function depends on
the cuts made is considered.
Problem-330 Build the Riemann surface diagram of the function f(z) =

√
z2 + 1 − 2 using the

cuts depicted: a) in Fig. 3.25 , b)Fig. 3.26. In both cases, determine whether the points z such that
f(z) = 0 lie on the same sheet or on different sheets.
Problem-331 Build the Riemann surface diagram of the function f(z) =

√√
z2 + 1− 2 using the

cuts depicted:a) in Fig. 3.27 , b) Fig. 3.28.
Let us formulate once again the results of this section which will be useful in the sequel.
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Fig. 3.27.

Fig. 3.28.

Theorem 3.3 To construct the Riemann surface diagram of the functions h(z) = f(z)+g(z), h(z) =

f(z)− g(z), h(z) = f(z) · g(z), h(z) =
f(z)
g(z)

using the Riemann surface diagrams of the functions f(z)

and g(z), using the same cuts, it suffices to do the following:
a) to each pair of branches fi(z) and gj(z) a sheet on which the branch of h(z) denoted by hi,j(z),

equal to = fi(z) + gj(z), fi(z)− gj(z), fi(z) · gj(z),
fi(z)
gj(z)

is defined;

b) if on moving along a loop around the point z0, one moves branch fi1(z) to the branch fi2(z) and
from the branch gj1(z) to the branch gj2(z), then for the function h(z), on the same loop, one
moves from the branch hi1,j1(z) to the branch hi2,j2(z);

c) glue together the sheets on which the branches hi,j(z) coincide.

Theorem 3.4 To build the Riemann surface diagram of the function h(z) = f(z)n using the Riemann
surface diagram of the function f(z) defined by the same cuts, it is suffices to do the following:
a) in the Riemann surface diagram of the function f(z), consider instead of the branches fi(z), the

branches hi(z) = fi(z)n;
b) identify the sheets on which the branches hi(z) coincide.

Theorem 3.5 To build the Riemann surface diagram of the function h(z) = n
√
f(z) using the Rie-

mann surface diagram of the function f(z) using the same cuts, if suffices to do the following:
a) replace every sheet of the Riemann surface diagram of the function f(z) by a bundle of n sheets;
b) on moving along a loop around any branch point of the function h(z) one moves from all the

sheets of one bundle to all the sheets of a different bundle;
c) the passages from one bundle to another correspond to the passages between the sheets of the

Riemann surface of the function f(z);
d) if the branches in the bundles are enumerated such that fi,k(z) = fi,0 · εk

n then on passage from
one bundle to another, the sheets of the bundle are not mixed, but permuted cyclically (see 324).

3.12 Galois group of many-valued functions

We now associate a certain permutation group with each Riemann surface diagram.
Problem-332 Let the curve C on the z plane not pass through the branch and ambiguity points
of the function w(z). Prove that on moving along the curve C we will go from different sheets of the
Riemann surface diagram of the function w(z) to different sheets.
Thus, in view of the result of problem 329, to any loop (counterclockwise) around any branch point of
the function of w(z) there corresponds a permutation of the sheets of the Riemann surface diagram
of the function w(z).
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Problem-333 Let the Riemann surface diagram for the functions enumerated in task 314 be built
in the same way as its done in the solutions of this peoblem (see the chapter ”Hint, Solutions and
Answers” ) and let the sheets on these diagrams be numbered from bottom to top by the numbers
1, 2, 3, . . .. Write down the permutation of the sheets corresponding to one loop around each branch
point.
Problem-334 Let g1, g2, . . . , gs be elements of an arbitrary group G. Consider all elements of G
which can be obtained from g1, g2, . . . , gs by repeated application of the operations of multiplication
and of taking inverse element. Prove that the set obtained forms a subgroup of the group G.

Definition 45 The subgroup obtained in task 331 is called the subgroup generated by the elements
g1, g2, . . . , gs

Definition 46 Let g1, g2, . . . , gs be the permutations of the sheets of a certain Riemann surface dia-
gram corresponding to loops (counterclockwise) around all the branch points. We will call the subgroup
generated by the elements g1, g2, . . . , gs the permutation group of the sheets of the give Riemann surface
diagram.

Observation 1.If the number of sheets in the diagram is finite (but we consider only such diagrams),
then while constructing the permutation group of the sheets of this diagram, it suffices to use the
operation of composition of permutations and exclude the operation of taking inverse permutation. In
this case any permutation of sheets g has a finite order k: gk = e; therefore g−1 = gk−1 = g · g · . . . · g.
Observation 2. The permutation group of the sheets which will be constructed below are defined, as
usual, upto isomorphism. The numbering of these sheets will be not important, since for different
numberings, we obtain different but isomorphic subgroups of the group Sn.
Problem-335 Which of the groups you already know are isomorphic to the permutation group of
the Riemann surface diagram of the following functions: a)

√
z, b) 3

√
z, c) n

√
z, d) 3

√
z2 − 1 (see 304),

e) 4
√

(z − 1)2(z + 1)3(see 306)
Problem-336 To which of the groups you already know are the permutation group of the Riemann
surface diagram of functions enumerated in the problems :1) 314, 2) 317, 3) 319 isomorphic?
Problem-337 Describe the permutation group of both the Riemann surface diagrams of the function
h(z) =

√√
z2 + 1− 2 built in solution of the problem 328.

Let the point z0 be neither the branch point nor the ambiguity point of the many-valued function w(z)
and let w1, w2, . . . , wn be all the values of the function w(z) at the point z0. Consider a continuous
curve C begining and ending at the point z0 and not passing through any branch and ambiguity
points of the function w(z). Select a certain value wi = w(z0) and define the new value wj = w(z0)
using continuity along the curve C. Starting with different values wi we will obtain different values
for wj (otherwise uniqueness will be lost on the curve C−1 ). Hence, to the curve C there corresponds
a certain permutation of the values w1, w2, . . . , wn. In this case, if the permutation g corresponds to
the curve C, then the curve C−1 corresponds to the permutation g−1 and if to the two curves C1

and C2 (with both ending at point z0) there corresponds the permutations g1 and g2 then to the
curve C1C2 there corresponds the permutation g2g1 (let us recall that the permutations are carried
out from right to left).
Thus, if we consider all possible curves which begin and end at the same point z0 the permutations
corresponding to them will form a group, the permutation group of the values w(z0).
Problem-338 Let G1 be the permutation group of the values w(z0) and G2 the permutation group of
some Riemann surface diagram of the function w(z). Prove that the groups G1 and G2 are isomorphic.
Note that in the definition of the permutation group of the values w(z0) the Riemann surface diagram
of the function w(z) was not used. Therefore from the result of problem 335 it follows that the
permutation group of the values w(z0) for an arbitrary point z0 and the permutation group of the
any Riemann surface diagram of the function w(z) are isomorphic. Hence, the permutation groups
of the values w(z0) for all points z0 and the permutation group of the Riemann surface diagram of
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the function w(z) are isomorphic, i.e., they are one and the same group. We will call this group the
Galois group of the many-valued function w(z) 23.

3.13 Galois group of functions which are expressible in radicals

Let us now move on to prove one of the main theorems of this book.

Theorem 3.6 If the many-valued function h(z) is expressible in radicals, then the Galois group of
the function h(z) is solvable (see Chapter I, Section 14)

The proof of the above theorem is included in the solutions of the following problems.

Problem-339 Let h(z) = f(z) + g(z) or h(z) = f(z) − g(z) or h(z) = f(z) · g(z) or h(z) =
f(z)
g(z)

and let the Riemann surface diagram of the function h(z) be built from the Riemann surface diagram
of the functions f(z) and g(z) by the formal method (theorem 8(a)). Prove that if F and G are the
permutation groups of the initial diagrams, then the permutation group of the diagram constructed
is isomorphic to a subgroup of the direct product F ×G (see Chapter I, Section 7)
Problem-340 Let H1 be the permutation group of the diagram built by the formal method in the
previous problem and let H2 be the permutation group of the the true Riemann surface diagram of
the function h(z). Prove that there exists a surjective homomorphism (see Chapter I, section 13) of
the group H1 onto the group H2.
Problem-341 Suppose the Galois group of the functions f(z) and g(z) are solvable. Prove that
Galois group of the following functions are also solvable: h(z) = f(z)+g(z), h(z) = f(z)−g(z), h(z) =

f(z) · g(z), h(z) =
f(z)
g(z)

Problem-342 Let the Galois group of the function f(z) be solvable. Prove that the Galois group of
the function h(z) = f(z)n is also solvable.
Problem-343 Let H be the permutation group of the Riemann surface diagram of the function
h(z) = n

√
f(z) and F the permutation group of the Riemann surface diagram of the function f(z)

built using the same cuts. Define a surjective homomorphism from the group H onto the group F .
Problem-344 Prove that the kernel of the homomorphism (see Chapter I, Section 13) defined in
the solution of the previous problem is commutative.
Problem-345 Suppose that the Galois group of the function f(z) is solvable. Prove that the Galois
group of the function h(z) = n

√
f(z) is also solvable.

The function h(z) = a and the function h(z) = z are single-valued continuous functions on the
entire z plane. Therefore, their Riemann surfaces consist of a single sheet and the Galois group
corresponding to it is the single element group {e} and are therefore solvable. Hence, taking into
account the definition of the functions expressible in radicals (Chapter 2, Section 11) and the results
of the problems 338, 339 and 342, we obtain the statement of the above theorem.
Observation. For readers familiar with the theory of analytic functions we have the following. If we
define the Galois group of the function h(z) as the permutation group of the values of the function
h(z) at a certain point z0, then theorem 11 will be valid for a broader class of functions. For example,
to define the function h(z), in addition to constants, identity function, and functions expressible by
arithmetic operations and radicals, we can use any single-valued analytic functions (for example,
exp z, sin z, etc.), the many-valued function ln z and some other functions. In this case the Galois
group of the function h(z) will be solvable although it may not be no longer be necessarily finite.

23This group is also called the monodromy group
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Consider the equation

3w5 − 25w3 + 60w − z = 0 (3.8)

We consider z as a parameter and for each complex value of z will look for all complex roots w of
this equation. By virtue of the result of problem 269, this equation for each z has 5 roots (taking into
account the multiplicities).
Problem-346 What values of w can be the multiple roots (with multiplicity greater than 1, see
Section 8) of the equation 3w5 − 25w3 + 60w − z = 0. For what values of z will there be multiple
roots?
It follows that from the solution of the previous problem that for z = ±38 and z = ±16, equation
(3.8) has 4 different roots and for the remaining values of z this equation has 5 distinct roots. Thus,
the function w(z) which expresses the roots of the equation (3.8) in terms of the parameter z takes
4 different value with z = ±38 and z = ±16 and takes 5 different values for other values of z. Let us
study this function w(z).
First we prove that with a small change in the parameter z the roots of equation (3.8) also vary
slightly. This property is made more rigourous in the following problem.
Problem-347 Let z0 be an arbitrary complex number and w0 be one of the roots of the equation
(3.8) with z = z0. Consider a circle with conveniently small radius r with center at the point w0.
Prove that there exists a real number ρ > 0, such that if |z′0 − z0| < ρ then the disc contains at least
one root of the equation (3.8) for z′0 = z.
Suppose the function w(z) expresses the roots of the equation (3.8) in terms of the parameter z and let
w0 be one of the values of w(z0). It follows from the result of problem 344 that if z varies continuously
along a curve which starts at the point z0, then one can choose one of the values w(z) so that the
point w, too, moves continuously along a curve starting at the point w0. In other words, the function
w(z) can be defined using continuity along any curve C. If the curve C does not pass through the
branch and ambiguity points (p. 98) of the function w(z), then the function w(z) is uniquely defined
using continuity along the curve C.
Problem-348 Prove that the points different from z = ±38 and z = ±16, can be neither the branch
points nor the ambiguity points of the function w(z) which expresses the roots of the equation (3.8)
in terms of the parameter z.
The function w(z) which expresses the roots of the equation (3.8) in terms of the parameter z being an
algebraic function24 is ”sufficiently good” (see Chapter 2, Section 10), i.e., it possesses the monodromy
property. Therefore, one can build the Riemann surface (see 309 and 310) for the function w(z) . This
Riemann surface has 5 sheets.
In view of the result of problem 345, the only branch points of the function w(z) are the points
z = ±38 and z = ±16, but so far its not yet fully clear if that is the case.
Problem-349 Suppose it is known that the point z0 = +38 (or z0 = −38, or z0 = ±16) is a branch
point of the function w(z) which expresses the roots of the equation (3.8) in terms of the parameter
z. How are the sheets of the Riemann surface of this function w(z) at the point z0 joined? (more
precisely, along a cut made from the point z0 to infinity; see observation 2 in Chapter 2, Section 10).
Problem-350 Let w(z) be the function which expresses the roots of the equation (3.8) in terms of
the parameter z. Let furthermore, z0 and z1 be arbitrary points different from z = ±38 and z = ±16
and w0 and w1 their images under the mapping w(z). Prove that it is possible to draw a continuous

24 The many-valued function w(z) is called algebraic, if it expresses in terms of the parameter z all the roots
of some equation

a0(z)wn + a1(z)wn−1 + . . .+ an(z)

in which all the ai(z)s are polynomials in z. All algebraic functions are analytical.
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curve from the point z0 to the point z1 not passing through the points z = ±38 and z = ±16 and
such that its continuous image starting at point w0 ends at the point w1.
Problem-351 Prove that all four points z = ±38 and z = ±16 are the branch points of function
w(z). How does the Riemann surface diagram of the function w(z) look like? Draw all different cases.
(we consider two diagrams different if it is not possible to obtain one from the other by a permutation
of the sheets and of the branch points).
Problem-352 Find the Galois group of the function w(z) that expresses the roots of equation
3w5 − 25w3 + 60w − z = 0 in terms of parameter z.
Problem-353 Prove that function w(z) which expresses the roots of equation 3w5−25w3+60w−z =
0 in terms of the parameter z cannot be expressible in radicals.
Problem-354 Prove that the general algebraic equation of degree five a0w

5 +a1w
4 +a2w

3 +a3w
2 +

a4w + a5 = 0 (a0, a1, a2, a3, a4, a5 are complex parameters, a0 6= 0) is not solvable in radicals, i.e.,
there are no formulas which expresses the roots of this equation in terms of the coefficients using the
operations of addition, subtraction, multiplication, division, raising to a natural degree and extracting
root of integer degree.
Problem-355 Consider the equation

(3w5 − 25w3 + 60w − z)wn−5 = 0 (3.9)

and prove that for n > 5 a general algebraic equation with degree n is not solvable in radicals.
The results of problems 351 and 352 contain the main theorem of this book. We have indeed proved
the following theorem.

Theorem 3.7 Abel’s theorem. For n ≥ 5 the most general algebraic equation of degree n

a0w
n + a1w

n−1 + . . .+ an−1w + an = 0

is not solvable in radicals.

Observation 1. The Cardano formula for solving the general algebraic equation of degree three was
obtained in the introduction. Moreover the roots of equation were not all the values given by this
formula but only those for which an additional condition was satisfied. Therefore the question arises,
if for a general equation of degree n(n ≥ 5), is it possible to compute a formula in radicals so that its
roots are only part of the values given by the formula. Let us show that this cannot be the case even
for equation (3.8).
Indeed, if the values of the function w(z) which expresses the roots of the equation (3.8) in terms
of the parameter z are only part of the values of a function w1(z), expressible in radicals, then the
Riemann surface of the function w(z) is a separate part of the Riemann surface of the function w1(z).
If G is the Galois group of the function w1(z), then to every permutation from the group G there
corresponds a permutation of the five sheets of the function w(z). This mapping is a homomorphism
from the group G to the group S5. Since the group S5 is not solvable, the group G is also not solvable
(see 163). On the other hand, the group G must be solvable as its the Galois group of a function
which is expressible in radicals. This is a contradiction.
Observation 2. From the observation 1 in section 13 of this chapter, it follows that Abel’s theorem will
hold true if besides radicals we permit, some other functions, for example any single-valued analytic
functions (exp z, sin z etc.), the function ln z and some others.
Observation 3. Consider equation (3.8) in the domain of real numbers. Let the function y(x) express
the real roots of the equation

3y5 − 25y3 + 60y − x = 0

in terms of the real parameter x. Is it possible to express the function y(x) in radicals? It occurs
that we cannot. For those who are familiar with the theory of analytic functions, let us point out that
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this follows from the theorem on analytical continuation. Indeed, the function w(z) which expresses
the roots of the equation (3.8) in terms of the parameter z is an analytic function. Therefore, if the
function y(x) was expressible in radicals, then the same formula considered in the domain of complex
numbers will, in view of the theorem about the analytical continuation be the function w(z), i.e., the
function w(z) will be expressible in radicals.
Hence, Abel’s theorem will hold true when we consider only the real roots of a general equation of
degree n(n ≥ 5) with real coefficients. In view of observation 2 above, the theorem will be true even
in the case where we permit besides radicals, some other functions, for example all functions which
allow single-valued analytical continuation (expx, sinx, etc.), the function lnx and some others.
Observation 4. The class of algebraic functions (see footnote on page 74 is sufficiently rich and inter-
esting. In particular, one can show that all functions which are expressible in radicals are algebraic.
We proved that any function which is expressible in radicals has a solvable Galois group (Theorem
11). It turns out that if we limit ourselves to algebraic functions then the converse is true: if the
Galois group of a certain algebraic function is solvable then this function is expressible in radicals.
Thus, algebraic functions are expressible in radicals ⇐⇒ its Galois group is solvable. This result
is a special case of the general Galois theory (see for example, Chebotarev N. G., ( Grundzge der
Galois’schen Theorie) Fundamentals of Galois theory: ).



On teaching mathematics

On Teaching Mathematics25

Mathematics is a part of physics. Physics is an experimental science, a part of natural science. Mathematics
is the part of physics where experiments are cheap.

The Jacobi identity (which forces the heights of a triangle to cross at one point) is an experimental
fact in the same way as that the Earth is round (that is, homeomorphic to a ball). But it can be discovered
with less expense.

In the middle of the twentieth century it was attempted to divide physics and mathematics. The
consequences turned out to be catastrophic. Whole generations of mathematicians grew up without
knowing half of their science and, of course, in total ignorance of any other sciences. They first began
teaching their ugly scholastic pseudo-mathematics to their students, then to schoolchildren (forgetting
Hardy’s warning that ugly mathematics has no permanent place under the Sun).

Since scholastic mathematics that is cut off from physics is fit neither for teaching nor for application
in any other science, the result was the universal hate towards mathematicians – both on the part of the
poor schoolchildren (some of whom in the meantime became ministers) and of the users.

The ugly building, built by undereducated mathematicians who were exhausted by their inferiority
complex and who were unable to make themselves familiar with physics, reminds one of the rigorous
axiomatic theory of odd numbers. Obviously, it is possible to create such a theory and make pupils
admire the perfection and internal consistency of the resulting structure (in which, for example, the sum
of an odd number of terms and the product of any number of factors are defined). From this sectarian
point of view, even numbers could either be declared a heresy or, with passage of time, be introduced
into the theory supplemented with a few “ideal” objects (in order to comply with the needs of physics
and the real world).

Unfortunately, it was an ugly twisted construction of mathematics like the one above which predomi-
nated in the teaching of mathematics for decades. Having originated in France, this pervertedness quickly
spread to teaching of foundations of mathematics, first to university students, then to school pupils of all
lines (first in France, then in other countries, including Russia).

To the question “what is 2 + 3” a French primary school pupil replied: “3 + 2, since addition is
commutative”. He did not know what the sum was equal to and could not even understand what he was
asked about!

Another French pupil (quite rational, in my opinion) defined mathematics as follows: “there is a
square, but that still has to be proved”.

25This is an extended text of the address at the discussion on teaching of mathematics in Palais de Découverte
in Paris on 7 March 1997
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Judging by my teaching experience in France, the university students’ idea of mathematics (even of
those taught mathematics at the École Normale Supérieure – I feel sorry most of all for these obviously
intelligent but deformed kids) is as poor as that of this pupil.

For example, these students have never seen a paraboloid and a question on the form of the surface
given by the equation xy = z2 puts the mathematicians studying at ENS into a stupor. Drawing a curve
given by parametric equations (like x = t3 − 3t, y = t4 − 2t2) on a plane is a totally impossible problem
for students (and, probably, even for most French professors of mathematics).

Beginning with l’Hospital’s first textbook on calculus (“calculus for understanding of curved lines”)
and roughly until Goursat’s textbook, the ability to solve such problems was considered to be (along with
the knowledge of the times table) a necessary part of the craft of every mathematician.

Mentally challenged zealots of “abstract mathematics” threw all the geometry (through which connec-
tion with physics and reality most often takes place in mathematics) out of teaching. Calculus textbooks
by Goursat, Hermite, Picard were recently dumped by the student library of the Universities Paris 6 and
7 (Jussieu) as obsolete and, therefore, harmful (they were only rescued by my intervention).

ENS students who have sat through courses on differential and algebraic geometry (read by respected
mathematicians) turned out be acquainted neither with the Riemann surface of an elliptic curve y2 =
x3+ax+b nor, in fact, with the topological classification of surfaces (not even mentioning elliptic integrals
of first kind and the group property of an elliptic curve, that is, the Euler-Abel addition theorem). They
were only taught Hodge structures and Jacobi varieties!

How could this happen in France, which gave the world Lagrange and Laplace, Cauchy and Poincaré,
Leray and Thom? It seems to me that a reasonable explanation was given by I. G. Petrovskii, who taught
me in 1966: genuine mathematicians do not gang up, but the weak need gangs in order to survive. They
can unite on various grounds (it could be super-abstractness, anti-Semitism or “applied and industrial”
problems), but the essence is always a solution of the social problem – survival in conditions of more
literate surroundings.

By the way, I shall remind you of a warning of L. Pasteur: there never have been and never will be
any “applied sciences”, there are only applications of sciences (quite useful ones!).

In those times I was treating Petrovskii’s words with some doubt, but now I am being more and more
convinced of how right he was. A considerable part of the super-abstract activity comes down simply to
industrialising shameless grabbing of discoveries from discoverers and then systematically assigning them
to epigons-generalizers. Similarly to the fact that America does not carry Columbus’s name, mathematical
results are almost never called by the names of their discoverers.

In order to avoid being misquoted, I have to note that my own achievements were for some unknown
reason never expropriated in this way, although it always happened to both my teachers (Kolmogorov,
Petrovskii, Pontryagin, Rokhlin) and my pupils. Prof. M. Berry once formulated the following two prin-
ciples:

The Arnold Principle. If a notion bears a personal name, then this name is not the name of the
discoverer.

The Berry Principle. The Arnold Principle is applicable to itself.
Let’s return, however,to teaching of mathematics in France.
When I was a first-year student at the Faculty of Mechanics and Mathematics of the Moscow State

University, the lectures on calculus were read by the set-theoretic topologist L. A. Tumarkin, who con-
scientiously retold the old classical calculus course of French type in the Goursat version. He told us that
integrals of rational functions along an algebraic curve can be taken if the corresponding Riemann surface
is a sphere and, generally speaking, cannot be taken if its genus is higher, and that for the sphericity it is
enough to have a sufficiently large number of double points on the curve of a given degree (which forces
the curve to be unicursal: it is possible to draw its real points on the projective plane with one stroke of
a pen).

These facts capture the imagination so much that (even given without any proofs) they give a better
and more correct idea of modern mathematics than whole volumes of the Bourbaki treatise. Indeed, here
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we find out about the existence of a wonderful connection between things which seem to be completely
different: on the one hand, the existence of an explicit expression for the integrals and the topology of the
corresponding Riemann surface and, on the other hand, between the number of double points and genus
of the corresponding Riemann surface, which also exhibits itself in the real domain as the unicursality.

Jacobi noted, as mathematics’ most fascinating property, that in it one and the same function controls
both the presentations of a whole number as a sum of four squares and the real movement of a pendulum.

These discoveries of connections between heterogeneous mathematical objects can be compared with
the discovery of the connection between electricity and magnetism in physics or with the discovery of the
similarity between the east coast of America and the west coast of Africa in geology.

The emotional significance of such discoveries for teaching is difficult to overestimate. It is they who
teach us to search and find such wonderful phenomena of harmony of the Universe.

The de-geometrisation of mathematical education and the divorce from physics sever these ties. For
example, not only students but also modern algebro-geometers on the whole do not know about the
Jacobi fact mentioned here: an elliptic integral of first kind expresses the time of motion along an elliptic
phase curve in the corresponding Hamiltonian system.

Rephrasing the famous words on the electron and atom, it can be said that a hypocycloid is as
inexhaustible as an ideal in a polynomial ring. But teaching ideals to students who have never seen a
hypocycloid is as ridiculous as teaching addition of fractions to children who have never cut (at least
mentally) a cake or an apple into equal parts. No wonder that the children will prefer to add a numerator
to a numerator and a denominator to a denominator.

From my French friends I heard that the tendency towards super-abstract generalizations is their
traditional national trait. I do not entirely disagree that this might be a question of a hereditary disease,
but I would like to underline the fact that I borrowed the cake-and-apple example from Poincaré.

The scheme of construction of a mathematical theory is exactly the same as that in any other natural
science. First we consider some objects and make some observations in special cases. Then we try and find
the limits of application of our observations, look for counter-examples which would prevent unjustified
extension of our observations onto a too wide range of events (example: the number of partitions of
consecutive odd numbers 1, 3, 5, 7, 9 into an odd number of natural summands gives the sequence 1, 2,
4, 8, 16, but then comes 29).

As a result we formulate the empirical discovery that we made (for example, the Fermat conjecture
or Poincaré conjecture) as clearly as possible. After this there comes the difficult period of checking as to
how reliable are the conclusions .

At this point a special technique has been developed in mathematics. This technique, when applied
to the real world, is sometimes useful, but can sometimes also lead to self-deception. This technique is
called modelling. When constructing a model, the following idealisation is made: certain facts which are
only known with a certain degree of probability or with a certain degree of accuracy, are considered to
be “absolutely” correct and are accepted as “axioms”. The sense of this “absoluteness” lies precisely in
the fact that we allow ourselves to use these “facts” according to the rules of formal logic, in the process
declaring as “theorems” all that we can derive from them.

It is obvious that in any real-life activity it is impossible to wholly rely on such deductions. The reason
is at least that the parameters of the studied phenomena are never known absolutely exactly and a small
change in parameters (for example, the initial conditions of a process) can totally change the result. Say,
for this reason a reliable long-term weather forecast is impossible and will remain impossible, no matter
how much we develop computers and devices which record initial conditions.

In exactly the same way a small change in axioms (of which we cannot be completely sure) is capable,
generally speaking, of leading to completely different conclusions than those that are obtained from
theorems which have been deduced from the accepted axioms. The longer and fancier is the chain of
deductions (“proofs”), the less reliable is the final result.

Complex models are rarely useful (unless for those writing their dissertations).
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The mathematical technique of modelling consists of ignoring this trouble and speaking about your
deductive model in such a way as if it coincided with reality. The fact that this path, which is obviously
incorrect from the point of view of natural science, often leads to useful results in physics is called “the
inconceivable effectiveness of mathematics in natural sciences” (or “the Wigner principle”).

Here we can add a remark by I. M. Gel’fand: there exists yet another phenomenon which is comparable
in its inconceivability with the inconceivable effectiveness of mathematics in physics noted by Wigner –
this is the equally inconceivable ineffectiveness of mathematics in biology.

“The subtle poison of mathematical education” (in F. Klein’s words) for a physicist consists precisely
in that the absolutised model separates from the reality and is no longer compared with it. Here is a
simple example: mathematics teaches us that the solution of the Malthus equation dx/dt = x is uniquely
defined by the initial conditions (that is that the corresponding integral curves in the (t, x)-plane do not
intersect each other). This conclusion of the mathematical model bears little relevance to the reality. A
computer experiment shows that all these integral curves have common points on the negative t-semi-axis.
Indeed, say, curves with the initial conditions x(0) = 0 and x(0) = 1 practically intersect at t = −10 and
at t = −100 you cannot fit in an atom between them. Properties of the space at such small distances
are not described at all by Euclidean geometry. Application of the uniqueness theorem in this situation
obviously exceeds the accuracy of the model. This has to be respected in practical application of the
model, otherwise one might find oneself faced with serious troubles.

I would like to note, however, that the same uniqueness theorem explains why the closing stage of
mooring of a ship to the quay is carried out manually: on steering, if the velocity of approach would have
been defined as a smooth (linear) function of the distance, the process of mooring would have required
an infinitely long period of time. An alternative is an impact with the quay (which is damped by suitable
non-ideally elastic bodies). By the way, this problem had to be seriously confronted on landing the first
descending apparata on the Moon and Mars and also on docking with space stations – here the uniqueness
theorem is working against us.

Unfortunately, neither such examples, nor discussing the danger of fetishising theorems are to be met
in modern mathematical textbooks, even in the better ones. I even got the impression that scholastic
mathematicians (who have little knowledge of physics) believe in the principal difference of the axiomatic
mathematics from modelling which is common in natural science and which always requires the subsequent
control of deductions by an experiment.

Not even mentioning the relative character of initial axioms, one cannot forget about the inevitability
of logical mistakes in long arguments (say, in the form of a computer breakdown caused by cosmic rays
or quantum oscillations). Every working mathematician knows that if one does not control oneself (best
of all by examples), then after some ten pages half of all the signs in formulae will be wrong and twos
will find their way from denominators into numerators.

The technology of combatting such errors is the same external control by experiments or observations
as in any experimental science and it should be taught from the very beginning to all juniors in schools.

Attempts to create “pure” deductive-axiomatic mathematics have led to the rejection of the scheme
used in physics (observation – model – investigation of the model – conclusions – testing by observations)
and its substitution by the scheme: definition – theorem – proof. It is impossible to understand an
unmotivated definition but this does not stop the criminal algebraists-axiomatisators. For example, they
would readily define the product of natural numbers by means of the long multiplication rule. With this
the commutativity of multiplication becomes difficult to prove but it is still possible to deduce it as a
theorem from the axioms. It is then possible to force poor students to learn this theorem and its proof
(with the aim of raising the standing of both the science and the persons teaching it). It is obvious that
such definitions and such proofs can only harm the teaching and practical work.

It is only possible to understand the commutativity of multiplication by counting and re-counting
soldiers by ranks and files or by calculating the area of a rectangle in the two ways. Any attempt to do
without this interference by physics and reality into mathematics is sectarianism and isolationism which
destroy the image of mathematics as a useful human activity in the eyes of all sensible people.
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I shall open a few more such secrets (in the interest of poor students).
The determinant of a matrix is an (oriented) volume of the parallelepiped whose edges are its columns.

If the students are told this secret (which is carefully hidden in the purified algebraic education), then the
whole theory of determinants becomes a clear chapter of the theory of poly-linear forms. If determinants
are defined otherwise, then any sensible person will forever hate all the determinants, Jacobians and the
implicit function theorem.

What is a group? Algebraists teach that this is supposedly a set with two operations that satisfy a load
of easily-forgettable axioms. This definition provokes a natural protest: why would any sensible person
need such pairs of operations? “Oh, curse this maths” – concludes the student (who, possibly, becomes
the Minister for Science in the future).

We get a totally different situation if we start off not with the group but with the concept of a trans-
formation (a one-to-one mapping of a set onto itself) as it was historically. A collection of transformations
of a set is called a group if along with any two transformations it contains the result of their consecutive
application and an inverse transformation along with every transformation.

This is all the definition there is. The so-called “axioms” are in fact just (obvious) properties of groups
of transformations. What axiomatisators call “abstract groups” are just groups of transformations of
various sets considered up to isomorphisms (which are one-to-one mappings preserving the operations).
As Cayley proved, there are no “more abstract” groups in the world. So why do the algebraists keep on
tormenting students with the abstract definition?

By the way, in the 1960s I taught group theory to Moscow schoolchildren. Avoiding all the axiomatics
and staying as close as possible to physics, in half a year I got to the Abel theorem on the unsolvability
of a general equation of degree five in radicals (having on the way taught the pupils complex numbers,
Riemann surfaces, fundamental groups and monodromy groups of algebraic functions). This course was
later published by one of the audience, V. Alekseev, as the book The Abel theorem in problems.

What is a smooth manifold? In a recent American book I read that Poincaré was not acquainted with
this (introduced by himself) notion and that the “modern” definition was only given by Veblen in the
late 1920s: a manifold is a topological space which satisfies a long series of axioms.

For what sins must students try and find their way through all these twists and turns? Actually, in
Poincaré’s Analysis Situs there is an absolutely clear definition of a smooth manifold which is much more
useful than the “abstract” one.

A smooth k-dimensional submanifold of the Euclidean space RN is its subset which in a neighbourhood
of its every point is a graph of a smooth mapping of Rk into RN−k (where Rk and RN−k are coordinate
subspaces). This is a straightforward generalization of most common smooth curves on the plane (say, of
the circle x2 + y2 = 1) or curves and surfaces in the three-dimensional space.

Between smooth manifolds smooth mappings are naturally defined. Diffeomorphisms are mappings
which are smooth, together with their inverses.

An “abstract” smooth manifold is a smooth submanifold of a Euclidean space considered up to a dif-
feomorphism. There are no “more abstract” finite-dimensional smooth manifolds in the world (Whitney’s
theorem). Why do we keep on tormenting students with the abstract definition? Would it not be better to
prove them the theorem about the explicit classification of closed two-dimensional manifolds (surfaces)?

It is this wonderful theorem (which states, for example, that any compact connected oriented surface
is a sphere with a number of handles) that gives a correct impression of what modern mathematics is and
not the super-abstract generalizations of naive submanifolds of a Euclidean space which in fact do not
give anything new and are presented as achievements by the axiomatisators.

The theorem of classification of surfaces is a top-class mathematical achievement, comparable with
the discovery of America or X-rays. This is a genuine discovery of mathematical natural science and it
is even difficult to say whether the fact itself is more attributable to physics or to mathematics. In its
significance for both the applications and the development of correct Weltanschauung it by far surpasses
such “achievements” of mathematics as the proof of Fermat’s last theorem or the proof of the fact that
any sufficiently large whole number can be represented as a sum of three prime numbers.
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For the sake of publicity modern mathematicians sometimes present such sporting achievements as the
last word in their science. Understandably this not only does not contribute to the society’s appreciation
of mathematics but, on the contrary, causes a healthy distrust of the necessity of wasting energy on
(rock-climbing-type) exercises with these exotic questions needed and wanted by no one.

The theorem of classification of surfaces should have been included in high school mathematics courses
(probably, without the proof) but for some reason is not included even in university mathematics courses
(from which in France, by the way, all the geometry has been banished over the last few decades).

The return of mathematical teaching at all levels from the scholastic chatter to presenting the im-
portant domain of natural science is an espessially hot problem for France. I was astonished that all the
best and most important in methodical approach mathematical books are almost unknown to students
here (and, seems to me, have not been translated into French). Among these are Numbers and figures by
Rademacher and Töplitz, Geometry and the imagination by Hilbert and Cohn-Vossen, What is mathe-
matics? by Courant and Robbins, How to solve it and Mathematics and plausible reasoning by Polya,
Development of mathematics in the 19th century by F. Klein.

I remember well what a strong impression the calculus course by Hermite (which does exist in a
Russian translation!) made on me in my school years.

Riemann surfaces appeared in it, I think, in one of the first lectures (all the analysis was, of course,
complex, as it should be). Asymptotics of integrals were investigated by means of path deformations
on Riemann surfaces under the motion of branching points (nowadays, we would have called this the
Picard-Lefschetz theory; Picard, by the way, was Hermite’s son-in-law – mathematical abilities are often
transferred by sons-in-law: the dynasty Hadamard – P. Levy – L. Schwarz – U. Frisch is yet another
famous example in the Paris Academy of Sciences).

The “obsolete” course by Hermite of one hundred years ago (probably, now thrown away from student
libraries of French universities) was much more modern than those most boring calculus textbooks with
which students are nowadays tormented.

If mathematicians do not come to their senses, then the consumers who preserved a need in a modern,
in the best meaning of the word, mathematical theory as well as the immunity (characteristic of any sen-
sible person) to the useless axiomatic chatter will in the end turn down the services of the undereducated
scholastics in both the schools and the universities.

A teacher of mathematics, who has not got to grips with at least some of the volumes of the course by
Landau and Lifshitz, will then become a relict like the one nowadays who does not know the difference
between an open and a closed set.

V. I. Arnold
Translated by A. V. GORYUNOV
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geometrical description of complex numbers, 43
group

of transformations , 16
alternating, 34
commutative , 18
cyclic, 19
finite , 17
Galois , 69
generator , 19
infinite , 17
infinite cyclic , 19
isomorphism, 20
monodromy, 69
of permutations, 32
of quaternion, 26
of rotations

of the cube, 27
of the dodecahedron, 31



84 Index

of the octahedron, 27
of symmetries

of a rectangle, 16
of a rhombus, 15
of a square, 15
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inverse transformation, 16
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kernel of a homomorphism, 29

Lagrange’s theorem, 23
leading coefficient, 37
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modulus of a complex number, 44
monodromy group, 69
monodromy property, 62
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of transformations, 16
table, 14

natural homomorphism, 28
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odd permutation, 33

order of a group, 17

parametric equation of a curve, 48
partition of a group by a subgroup

left partition, 23
right partition, 23

permutation, 32
cyclic , 32
even , 33
odd , 33

permutation group , 32
polynomial, 36

irreducible , 42
over a field, 36
reducible , 42
remainder , 38
root, 37

polynomial sums, 37
pre-image, 16
product

of groups, 22
of many-valued functions, 64
of polynomials, 37
of transformations, 14

quadratic equation, 7
quaternions, 26
quotient

group, 26
polynomial, 38

quotient groups, 26

real numbers, 35
real part of a complex number, 40
reducible polynomial, 42
remainder polynomial, 38
Riemann surface, 55
Riemann surface diagram, 59
Riemann surface sheets, 55
root of a polynomial, 37
root of order k, 53
root with multiplicity k, 53

sheets of Riemann surface, 55
solvable groups, 31
subgroup, 21

normal, 25
sum

of many-valued functions, 64
of polynomials, 37

surjective mapping, 16
symmetric group of degree n, 32
symmetry of a geometric object, 14

theorem
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uniqueness of the image, 57
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Viète’s theorem, 8


