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Abstract

The main object of study here is a classical example of linkage analysis, in which there
are two separately but not jointly ancillary statistics, which are mutually exchange-
able. In such cases it is not obvious how or even if the statistical inference about
the parameter of interest (here the recombination probability) should be a conditional
inference. We consider various precision measures, viz. the observed and the expected
(Fisher) information quantities, and various conditional expected values in between,
and we compare their ability to quantify the precision of the parameter estimate, as
well as to quantify the confidence to be attached to interval estimates. The general
conclusion drawn is that there is not much to be gained but much to be risked by
conditional inference in this example.
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1 Introduction

Classical crossing trials in genetics, carried out in order to study the linkage of different
genes, that is to study the probability that the genes are inherited together from the same
of the two crossed gametes, typically give rise to 2× 2 or larger tables and a multinomial
type statistical model with one or a few unknown parameters. Row or column sums may
turn out to be ancillary statistics, in the (weak) sense of simply having distributions not
depending on the parameters. This is the case in the examples to be discussed, and in the
second, main example there are even two exchangeable statistics which are separetely but
not jointly ancillary. The conditionality principle tells us to make the inference conditional
on ancillary statistics, in order to make the inference more relevant to the data obtained.
Is a conditional inference given such an ancillary statistic more relevant in these cases? Are
there other statistics on which it could pay to condition, in terms of increased relevance?

We will study conditional inference concerning the precision of maximum likelihood
(ML) point estimates and the degree of confidence of the corresponding large sample
interval estimates, based on various conditionally expected information statistics. In this
connection the observed information for the actual sample can be regarded as an extremal
case.

1.1 Linkage analysis

The aim of the statistical analyses to be discussed below is to get information about the
distance between the different loci (positions) for two genes on a chromosome, and we
study a population of individuals with two different gene forms (alleles) in each of these
places, A or a at one locus, B or b at the other one. The chromosomes appear in pairs,
inherited one from each parent of the individual, so each locus is represented by a pair
of genes. This pair specifies the genotype. That is, at one locus we have one of the
three genotypes AA, Aa and aa, and analogously one of BB, Bb and bb at the other
locus. When such specification is necessary, we write for example AB—ab to indicate
that A and B are on one chromosome and a and b on the other. At reproduction, a new
chromosome (a gamete) is formed from the two original ones and inherited. At each locus,
both genes have the same probability 1/2 to be selected. However, these Bernoulli trials
(“coin tosses”) are not independent between loci, because whole segments of the gamete
are taken together in the formation of the new one. This is called linkage. The probability
that the genes come from different gametes is called the recombination probability and
will be denoted p, with q = 1− p for its complement. For simplicity we assume that the
recombination probability is the same in both male and female gametogenesis. Knowledge
about p carries information about the distance between the two loci. If the loci are close
together, p should be close to zero, whereas if they are at a large distance, p should be
close to 1/2. Most models for recombination imply that p increases monotonically with
increasing distance. Values of p > 1/2 are less natural, or even “inadmissible on biological
grounds” as stated by Sham (1998).

In a classical crossing trial, the recombination probability p can be estimated from
observed frequencies of different offspring phenotypes (distinguishable appearances). In
two genetically different such situations we will discuss the precision of the ML estimate
and the confidence to be attached to a conventional ML-based interval estimate.

2



1.2 Prediction of precision and confidence

Here we prepare for later sections, in particular Section 3, by briefly discussing how pre-
cision and confidence should be attached to point estimates and interval estimates, re-
spectively. We will argue that precision and confidence are quantities to be predicted,
rather than estimated, and we will see that this point of view admits a quantification of
the concept of relevance, that can be used to compare various conditional inferences, for
example. A more extensive discussion is found in Sundberg (1996).

Let θ be a parameter of interest, which could be the recombination probability p or
some function of it, and let θ̂ denote an estimator of θ, e.g. the MLE. We will restrict
ourselves to the special case of one-dimensional parameters here, since this is sufficient
for the examples to be discussed (i.e. no nuisance parameters involved). Conventionally,
assuming θ̂ unbiased or approximately unbiased, the precision of θ̂ is expressed by its
variance, Var(θ̂), with θ̂ inserted for the unknown θ in this expression. Generally, approx-
imate estimator variances for the MLE are obtained by using the inverse of the observed
or the expected (Fisher) information derived from the likelihood of the data. If there
is an ancillary statistic, i.e. vaguely a statistic whose distribution does not depend on θ,
the conditionality principle tells us to use the conditional Fisher information, given the
ancillary. However, even if we adhere to this principle, the vagueness of the concept of
ancillarity carries over to the principle. There are more or less demanding versions of
ancillarity, there are counter-examples where conditioning leads to absurd consequences,
and there are cases where an ancillary statistic would be desirable but does not exist, but
where there are other statistics that may be conditioned on. In the latter case particularly,
but also more generally, when does it pay to make the inference conditional?

More specifically, if we use the observed information or a conditional or unconditional
expected information to construct a variance estimator (by inversion), which of the possi-
ble variance estimators is the best one? Until possible parameters have been replaced by
estimates, observed and conditionally expected information quantities all have the same
expected value, identical with the unconditional Fisher information. But since they are
based on more or less conditioning they will not be equally relevant to the data at hand.
At the same time, inversion of the information statistic to yield a variance is a nonlin-
ear transformation, so results about expected values and other moments for information
statistics do not immediately carry over to variance estimators. When these variance
estimators next are used as standard errors in normality-based (asymptotic) confidence
intervals, even more nonlinearities come in. Which interval yields the most reliable or
relevant confidence statement?

In a previous manuscript (Sundberg, 1996) we have argued in detail that variance
estimators V should not be regarded as estimators of Varθ(θ̂) = Eθ{(θ̂ − θ)2}, but as
predictors of the actual quadratic error, (θ̂ − θ)2. The question which is the best one
among some such predictors V may be evaluated by comparing for example their expected
squared prediction errors Eθ[{V − (θ̂ − θ)2}2]. To allow theoretical calculations such a
quadratic measure is the most suitable one. For example, it is not difficult to prove that
if θ̂ is conditionally unbiased, given an ancillary statistic U , and if V = v(U) is the true
conditional variance of θ̂, then

Eθ[{V − (θ̂ − θ)2}2] = Var[(θ̂ − θ)2]− Var[v(U)]. (1)
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This result shows the advantage of conditioning on an ancillary statistic in simple cases.
More generally, if V is an unbiased estimator of Eθ[(θ̂ − θ)2], of course it holds that

Eθ[{V − (θ̂ − θ)2}2] = Var[(θ̂ − θ)2]− 2 Cov[(θ̂ − θ)2, V ] + Var(V ). (2)

Hence, for judging an unbiased variance estimator V , not only its variance, but also its
covariance with the actual quadratic error, is important. Even more generally, a bias
component can also play an important role. The measure proposed on the left hand
side of (1) and (2) above will be called the mean squared error of predicted squared error,
abbreviated the MSE of PSE. However, in principle we could think of alternative measures,
and for simulation studies any other function than the quadratic could be used as easily.

Analogously, a basis for comparison of interval estimators is formed by

1. Fixing a reference interval construction for θ, for example |θ̂−θ|/se(θ̂) ≤ 1.96, where
se(θ̂) is the marginal standard deviation of θ̂, either as a function of θ or else with
θ̂ inserted;

2. Allowing the attached confidence 1−α to be a random variable, 1− α̂, different for
different interval estimators (for example, one of them might depend on an ancillary
whereas another one does not);

3. Compare them as predictors of the indicator for coverage/non-coverage.

Let ξ be an indicator that is 0 if the interval covers θ, else 1. The criterion to judge
a confidence predictor 1 − α̂ will be Eθ{(α̂ − ξ)2}, the mean squared error of predicted
confidence, abbreviated the MSE of PC. Like in (2), if Eθ(ξ) = Eθ(α̂) we may write the
MSE of PC on the form

Eθ{(α̂− ξ)2} = Var(ξ)− 2 Cov[ξ, α̂] + Var(α̂), (3)

where the first term on the right hand side can be expressed even more explicitely as a
binomial variance, α(1− α) if E(ξ) = α. Effects of the correlation between ξ and α̂ will
be illustrated in Sec. 3.

Thus, as measures of relevance we will use the MSE of the predicted squared error of
the point estimator and the MSE of the predicted confidence of the interval estimator.

Note that, like for example the Wald statistic, the MSE of PSE comparisons are not
invariant under nonlinear transformations of the parameter. Hence, for use of the MSE of
PSE measure it must be decided what is the parameter of primary interest. For confidence
there is also a lack of invariance, in the sense that comparison results to some extent will
depend on the choice of reference interval. Note that the reference interval need not
be taken as the best construction, to be used in practice in the future. For example,
the reference interval might be unconditionally constructed while the comparisons are
indicating that inference should be conditional on some statistic a. Then it would probably
be more natural to response to the results of the comparisons by changing to a construction
that is conditional, too.
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2 A first example

The main role of this first example is to be genetically an introduction to the next sit-
uation, which will be statistically less trivial. Suppose a so called double heterozygote
AB—ab is crossed with itself, for example by self-fertilization, to yield a progeny of size
n. The following three tables show the possible outcomes, notations for the corresponding
frequencies, and the corresponding probabilities for these outcomes. The probability table
corresponds to Table 67, §57.1, in Fisher’s “Statistical Methods for Research Workers”,
where both this situation and the next one are discussed, and illustrated with data from
pea crossing trials, carried out by the Swedish geneticists Tedin & Tedin (Fisher, 1990).

•

BB Bb bb
AA AB—AB AB—Ab Ab—Ab
Aa AB—aB AB—ab Ab—aB Ab—ab
aa aB—aB aB—ab ab—ab

•

BB Bb bb
AA n11 n12 n13

Aa n21 n221 n222 n23

aa n31 n32 n33

• 1
4

q2 2pq p2

2pq 2q2 2p2 2pq
p2 2pq q2

Note that we should distinguish the outcomes AB—ab and Ab—aB, which both have one
of each allele but represent no recombination and double recombination, respectively.

In this example we assume that all these possible outcomes are identifiable. for example
by subsequent self-fertilization trials. The multinomial likelihood for the data is then given
by

L(p) ∝ pn21+2n31+n12+2n222+n32+2n13+n23 × (1− p)2n11+n21+n12+2n221+n23+n33 (4)

Note that the two exponents sum to 2n, that is twice the total progeny. The likelihood is
proportional to that of a binomial, Bin(2n,p), with

T = n21 + 2n31 + n12 + 2n222 + n32 + 2n13 + n23,

as sufficient statistic. It follows that the ML estimator is p̂ = T/2n. It is easily seen that
p̂ = T/2n is unbiased.

Since the sufficient statistic is one-dimensional, there is no room for any ancillary
statistic in the strict sense, that is for a statistic with distribution free of p which is also a
component of the minimal sufficient statistic. However, there are plenty of statistics which
are ancillary in the weak sense of only satisfying the first requirement, to have distributions
which do not depend on the parameter. As an example, consider the set of column sums
(or equivalently row sums), U = {n1, n2, n3}, which is trinomial(2n; 1/4, 1/2, 1/4). Could
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it be that U carries any (conditional) information about the precision of p̂? Intuitively we
perhaps do not expect this. Let us confirm that such an expectation is correct.

Conditionally on the column sums U , we are seen to have three multinomials with es-
sentially identical probability vectors. If we just merge n12 and n32 in the middle column,
they will be exactly the same, namely trinomial with probabilities p2, 2pq, and q2. That
we can merge n12 and n32 is because they represent the same probability, 2pq. Now, if we
have three samples of fixed sample sizes from one and the same multinomial (trinomial)
distribution, we certainly lose no information about the multinomial probabilities by merg-
ing the three samples, and only the total sample size is relevant for precision, in this case.
We could in fact go one step further to find that the experiment can be represented by a
Bin(2n,p) distribution, but this is not necessary for us to be able to draw the following
conclusion: Conditioning on the weak ancillary U in this example does not contribute to
the relevance of the statistical inference about p. (This does not say, of course, that this
conditioning could not be useful in connection with model checking.)

Alternatively, we could have calculated the conditional variance of p̂, given U , and
would then have found that Var(p̂|U) depends on U only through the fixed sum 2n =
n1 + n2 + n3. Hence the conditional variance is independent of the conditioning ancillary
statistic, so no precision could be gained/lost by conditioning.

Remark: It is not necessary that the recombination frequency is the same in male
and female gametogenesis. With two different parameters, p1 and p2, instead of a common
p, we just replace p2 by p1p2, 2pq by p1q2 +p2q1, and q2 by q1q2. The argumentation above
remains essentially the same, but with a two-dimensional minimal sufficient statistic and a
two-dimensional parameter, identifiable except for a symmetry ambiguity between sexes,
q1q2 = q2q1.

Remark: If instead of crossing AB—ab with itself, Ab—aB is crossed with itself,
the only difference is a matter of notations, of course. Just change B to b and vice versa
in all tables, or p to q and vice versa in the probability table. However, when A and B are
dominant over a and b, the question is not only notational, see the next section.

Remark: Another modification of the previous example is when A and a are not dis-
tinguishable unless there is at least one B present at the other locus. Also such a situation
is discussed by Fisher (1990, Statist. Methods §57.1), describing the pea crossing trials
mentioned above. In this case the bb column above is condensed into a single bb outcome.
Since the probability for this outcome is independent of p, it yields no information about
linkage, so the column can simply be neglected. However, the argumentation above works
analogously with just two columns instead of all three.

3 The main example

In this example we start out from the situation of the previous section, but additionally
assume that alleles A and B are dominant over a and b, respectively. That allele A is
dominant means that as soon as A is present in any of the two chromosomes we will observe
one and the same phenotype, that is an observable characteristic of the individual. The
alternative phenotype in this trial requires that allele a is present in both chromosomes.
The data in this section are taken to be the frequencies of the phenotypes observable.
As a consequence, we cannot distinguish individuals in columns 1 and 2 of Table 1, nor
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observations in rows 1 and 2. The resulting aggregated data form a 2 × 2 table with cell
probabilities obtained by summing over the corresponding cell probabilities in the original
genotype table. The resulting table of probabilities is the following, where the marginal
row and column probabilities are also shown, and where θ denotes the q2 of the previous
table:

BB or Bb bb

AA or Aa 1
4 (2 + θ) 1

4 (1− θ) 3
4

aa 1
4 (1− θ) 1

4θ
1
4

3
4

1
4

Here θ can take any value, 0 ≤ θ ≤ 1, but only θ ≥ 1/4 is genetically reasonable.

Remark: If male and female recombination frequencies are not assumed equal, θ
should be interpreted as q1q2, cf. Sec. 2. If Ab—aB is self-fertilized instead of AB—ab,
θ = p2 (or p1p2). Then, the genetically natural values are θ ≤ 1/4. However, starting from
Ab—aB would lead to a relatively inefficient design. This can be seen by calculating and
comparing the Fisher information quantities in the two cases, see Fisher (1990, Experim.
Design §71).

The situation and the model appears in both old and recent texts on statistical genetics,
as exemplified by Fisher (1990, Statist. Methods §57.1-2 & Experim. Design §71), Mather
(1938) and Lange (1997, p. 30). The model has also appeared frequently in the general
statistical literature in order to illustrate computational aspects of ML estimation, even
though an explicit solution does exist, see (5) below. Rao (1952, Sec. 4c.2, & 1973, Sec.
5g) used the model to illustrate the Newton–Raphson and the Fisher scoring methods.
Dempster, Laird & Rubin (1977), Tanner (1991, Sec. 4), and McLachlan & Krishnan
(1997, Ex. 1.1) all have had it as their introductory example on the EM algorithm.

Let the observed 2 × 2 table of frequencies for a progeny of size n, with its row and
column sums and total, be represented by

n11 n12 r

n21 n22 n− r

s n− s n

The basic likelihood properties of the model are as follows. The likelihood is

L(θ) ∝ (2 + θ)n11 × (1− θ)n12+n21 × θn22 .

It is evident that the minimal sufficient statistic is of dimension 2, consisting of any pair
of the three statistics n11, n12 + n21, n22, since the sum n of the table is fixed. We
have a curved exponential family, index (2,1). Since the minimal sufficient statistic is of
dimension 2 we have reason to look for an ancillary component of it. Unfortunately, an
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ancillary in this strict sense does not exist (according to definition in Sec. 2). However, the
row and column sums of the probability table immediately tell that both the row totals,
r and n− r, and the column totals, s and n− s, have marginal distributions independent
of θ, so each of the marginals is ancillary in the weak sense. Hence, we may pose the
question whether it pays to condition on one of them. But then, on rows or columns? We
return to this paradoxical question shortly.

The score function is

D logL(θ) =
n11

2 + θ
− n12 + n21

1− θ +
n22

θ
.

Setting this to zero yields the MLE in regular cases, when the likelihood has a maximum in
the interior of the interval (0, 1). The MLE θ̂ is then the solution of a quadratic equation,

θ̂ = b+
√
b2 + c, (5)

where b = (n11−2(n12 +n21)−n22)/2n and c = 2n22/n. In the special case n22 = 0, n11 <
2n/3 the likelihood maximum is attained at the boundary point θ = 0, and in the special
case of no off-diagonal observations, n12 + n21 = 0, the likelihood is maximized at θ = 1.

Minus the second derivative of logL will be denoted J and is given by

J(θ) = −D2 logL(θ) =
n11

(2 + θ)2
+
n12 + n21

(1− θ)2
+
n22

θ2
.

The value J(θ̂), calculated in a regular MLE, is the observed information in the data. The
expected (Fisher) information I(θ) is the expected value of J, or equivalently the variance
of the score function, that is

I(θ) = −ED2 logL(θ) =
n

4
(

1
2 + θ

+
2

1− θ +
1
θ

) = n
0.5 + θ

θ(2 + θ)(1− θ) .

The inverses of these information quantities J and I (with θ̂ inserted for θ) can be used
to approximate the variance of the MLE. A plot of I(θ)−1 against θ, found as Figure 1a,
gives an impression of how the estimation precision depends on θ. The Fisher information
for q = 1 − p is found as Figure 1b. For general arguments supporting the observed
information in large sample situations, see Lindsay & Li (1997). Considering that row
totals (or column totals) are ancillary statistics, a further alternative is to condition on
such an ancillary and use the inverse of

Ir(θ) = E{J(θ)|r} =
nθ + 2(n− r)
θ(2 + θ)(1− θ) ,

(or Is(θ), analogously defined). But how could we choose between Ir and Is? By symmetry
they are equivalent, until we have seen their values. Could we condition on both of them
jointly, and use the information Irs(θ) = E{J(θ)|r, s}? We are then not conditioning on
an ancillary statistic, but on the other hand we are still in a case in between the two
defendable statistics I and J, only closer to J. As another alternative, what happens if
one tries to “cheat nature ”by conditioning on the one that yields the highest information
value?
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It may be argued (Fisher, 1990, Scientific Inference, Ch. VI) that the unconditional
Fisher information I(θ) represents the total information in data, and if we do not recover
this information by conditioning, we should replace I by the information in the marginal
distribution for θ̂. This distribution does not have an explicit form, however, and the idea
will not be pursued here.

An analogous discussion to the one on point estimation can be given for interval es-
timates and the degree of confidence to be attached to them. Also in this case we may
compare unconditional and various conditional procedures.

We will present the results of a study which was based on complete enumeration of all
possible outcomes, for the two sample sizes n = 25 and n = 50.

• Comparisons of MSE of PSE functions of θ for four or five different information
quantities, their inverses regarded as variance estimators, or more precisely here, as
different predictors of the quadratic estimation error.

• The corresponding MSE of PSE comparison under parametrization with the recom-
bination probability itself, q =

√
θ or p = 1− q instead of θ.

• Comparison of true and predicted coverage probabilities.

• Comparison of the MSE of PC measure for relevance of confidence statements.

The different variance estimators and confidence predictors are constructed from the
following information statistics, the variance estimators simply as the inverses of the cor-
responding information statistics.

1. Standard Fisher information, I(θ̂)

2. Conditional information, given row (or column) sums, Ir(θ̂)

3. Maximal conditional information, given row or column sums, max{Ir(θ̂), Is(θ̂)}

4. Conditional information, given row and column sums jointly, Irs(θ̂)

5. Observed information J(θ̂)

As reference interval, for the comparisons of coverage probabilities and of the MSE of
PC measure of relevance of confidence statements for the five different choices above, is
taken the nominal 95% interval based on inversion of an assumed (approximate) marginal
normality of (θ̂ − θ)/I(θ)1/2. Slightly extending the plausible region θ ≥ 0.25 we will
restrict attention to the interval θ > 0.2. Five diagrams are shown for each of the two
n-values, representing MSE of PSE comparisons for θ and for p or q as the parameters of
interest, MSE of PC for confidence, and mean confidence and coverage probabilities for the
reference interval estimate, and correlations between predicted confidence and coverage.

We first consider Figures 2 and 3, which show MSE of PSE comparisons with θ or p (q)
as the parameter of interest. Qualitatively all four diagrams in Figures 2 and 3 are similar.
The forms seen in Figures 2 and 3 should differ, depending on the parameterization. The
crude form for the dependence on θ in Figure 2, when 1/I(θ̂) is used as variance estimator
(solid curve) is obtained by thinking of θ̂ as approximately N(θ, 1/I(θ)), which from (1)
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would yield an MSE of PSE for I(θ) of size 2(1/I(θ))2. Compare Figure 1a, which shows
the form of 1/I(θ). Analogously for p (or q), Figure 1b shows 1/I(p) when the crude form
of the MSE of PSE should follow 2(1/I(p))2.

The dotted curves in Figures 2 and 3 represent conditioning on the ancillary row
sum r (or s, exchangeable with r). Comparing with the solid curves, it is seen that this
conditioning yields a very tiny gain, if any. In some diagrams it is difficult to see the
dotted curve because it falls so close to the solid one. It turned out that the curves for
conditioning on max{Ir(θ̂), Is(θ̂)} also differed that little from I(θ̂), and these curves are
therefore not even shown in any of the diagrams.

Could the ancillary r be regarded as a precision index? For a sample size such as
n = 25 or more, the conditional bias E(θ̂|r) − θ was found to be quite small for all r,
within the interval θ > 0.2. Hence, with good approximation r can be accepted as a
precision index, albeit one with a negligible influence on precision.

For confidence the MSE of PC curves shown in Figure 4 (and interpreted below) are
also extremely close for I(θ) (solid) and Ir(θ) (dotted). The practical overall conclusion is
that it neither pays nor costs to condition on r (or s). Thus, the problem of choice between
the ancillary statistics r and s is superficial. Not even conditioning on the ‘best’ of r and
s had any noticeable effect (not included in the diagrams shown). The same conclusions
were drawn for n = 25 as for n = 50.

Returning to Figures 2 and 3, it is seen that use of Irs(θ̂) or J(θ̂) instead of I(θ̂) or
Ir(θ̂) makes a substantial difference. Over part of the parameter interval the variance
estimators 1/Irs(θ̂) or 1/J(θ̂) both have a reduced MSE of PSE, but in other parts it is
increased (Figure 2). The relationships with p or q as parameter of interest (Figure 3) are
qualitatively similar but considerably distorted, in comparison.

For confidence prediction, Figure 4 shows the MSE of PC measure for the four predic-
tors. The variability in the solid line shows essentially how the variance of the binomial
ξ varies with θ. Added to this is the variance of the predictor, and minus twice the co-
variance, see formula (??). Over the central part of the interval the predictor variances
are in fact so small that the covariances do not matter, either. Again, as for the MSE of
PSE, the dotted curve follows the solid curve, so it does neither pay nor cost in relevance
to condition on the ancillary r. For the more strongly conditional predictors, based on Irs
and J, and relatively large values of θ, the predictor variances are high, and this is not
compensated for by the covariance terms, but magnified, because the correlation between
ξ and these two predictors are negative for high θ, as illustrated in Figure 6. In the left
part of the region (around θ = 0.25), these correlations are mostly positive, however, and
more or less compensate for the predictor variances. The exception is for the observed
information J(θ) when n = 25, where the upper diagram of Figure 4 shows the dashed
curve is clearly above the others in the leftmost part.

Does not the possible bias in predicted confidence matter for these methods? Figure 5
shows the actual coverage probability for the interval estimate (E(ξ); solid curve) and the
mean values of the predicted confidences. The fluctuations in coverage probability reflect
the discrete character of data. It might appear as if these mean value curves should explain
the relationships in MSE of PC, but in fact the ‘squared bias’ contributions to the MSE
of PC are mostly quite small in comparison with the variance contributions. Therefore
much of the rugged features seen in Figure 5 are smoothed out in Figure 4.
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Conclusions: Our study of this classical example has shown that relevance is not
increased by making the inference conditional on row or column sums, so this in a sense
resolves the ancillarity paradox, at least from the practical point of view. Nor does it
appear adviceable to base inference on the observed information, because even though
it has a somewhat increased relevance in some parameter regions, it is much worse in
other regions. Thus, this seems to be an example where the asymptotic advantage of the
observed information (Lindsay & Li, 1997) does not carry over immediately to the finite
sample situations, essentially because the asymptotics of Lindsay & Li is not uniform in
the parameter. The example also asks for a statistic that is better approximated by the
normal than are θ̂ or p̂, but that is outside the scope of the present paper.
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Figure 1. Inverse of Fisher information under two different parametrizations, I(θ)−1 and
I(q)−1 = I(p)−1 of θ and q or p, respectively, where q = 1− p =

√
θ.
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Figure 2. MSE of PSE comparisons with θ = (1− p)2 as parameter of interest.
Sample sizes n = 25 (upper) and n = 50 (lower).
Solid curve: V = 1/I(θ̂)
Dotted curve: V = 1/Ir(θ̂)
Dash-dotted curve: V = 1/Irs(θ̂)
Dashed curve: V = 1/J(θ̂)
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Figure 3. MSE of PSE comparisons with p (or q = 1−p) as parameter of interest, sample
sizes n = 25 (upper) and n = 50 (lower).
Solid curve: V = 1/I(p̂)
Dotted curve: V = 1/Ir(p̂)
Dash-dotted curve: V = 1/Irs(p̂)
Dashed curve: V = 1/J(p̂)
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Figure 4. MSE of PC comparisons of confidence relevance, with θ = (1−p)2 as parameter
of interest. Sample sizes n = 25 (upper) and n = 50 (lower).
Solid curve: α̂ as if θ̂ ∼ N(θ, 1/I(θ̂))
Dotted curve: α̂ as if θ̂ ∼ N(θ, 1/Ir(θ̂)), given r
Dash-dotted curve: α̂ as if θ̂ ∼ N(θ, 1/Irs(θ̂)), given (r, s)
Dashed curve: α̂ as if θ̂ ∼ N(θ, 1/J(θ̂))
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Figure 5. Coverage probability and four confidence predictions (complementary values
shown) for an interval estimate of nominal 95% confidence, as functions of θ.
Sample sizes n = 25 (upper) and n = 50 (lower).
Solid curve (rugged): Actual non-coverage probability for the interval estimate, i.e. Eθ(ξ)
Solid horizontal line: Nominal value of predicted confidence by construction, α = 5%
Dotted curve: Mean value of predicted confidence based on Ir(θ).
Dash-dotted curve: Mean value of predicted confidence based on Irs(θ).
Dashed curve: Mean value of predicted confidence based on J(θ).
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Figure 6. Correlation between predicted confidence and coverage 1− ξ.
Sample sizes n = 25 (upper) and n = 50 (lower).
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