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Shrinkage regression

Shrinkage regression refers to shrinkage methods
of estimation or prediction in regression situations,
useful when there is multicollinearity among the
regressors. With a term borrowed from approximation
theory, these methods are also called regulariza-
tion methods. Such situations occur frequently in
environmetric studies, when many chemical, biologi-
cal or other explanatory variables are measured, as
when Branco et al. [3] wanted to model toxicity
of n D 19 industrial wastewater samples by pH and
seven metal concentrations, and found it necessary to
use dimensionality-reducing techniques. As another
example, to be discussed further below, Andersson
et al. [1] constructed a quantitative structure–acti-
vity relationship (QSAR) to model polychlorinated
biphenyl (PCB) effects on cell-to-cell communication
inhibition in the liver, having a sample of size n D 27
of PCB congeners that represented a set of 154 differ-
ent PCBs, and using 52 physicochemical properties
of the PCBs as explanatory variables.

Suppose we have n independent observations
of �x, y� D �x1, . . . , xp, y� from a standard multiple
regression model

Y D ˛ C ˇ0x C ε �1�

var�ε� D 2 (see Linear models). The ordinary least
squares (OLS) estimator can be written

bOLS D S�1
xx sxy �2�

where Sxx is the sum of squares and products matrix
of the centered x variables and sxy is the vector of
their sums of products with y. The OLS estimator is
the best fitting and minimum variance linear unbiased
estimator (best linear unbiased estimator, BLUE),
with variance

var�bOLS� D 2S�1
xx �3�

That OLS yields the best fit does not say, however,
that bOLS is best in a wider sense, or even a good
choice. We will discuss here alternatives to be used
when the x variables are (near) multicollinear, that
is when there are linear combinations among them
that show little variation. The matrix Sxx is then near
singular, so var�bOLS� will have very large elements.
Correspondingly, the components of bOLS may show

unrealistically large values. Under exact collinearity,
bOLS is not even uniquely defined. In these situations
it can pay substantially to use shrinkage methods that
trade bias for variance. Not only can they give more
realistic estimates of ˇ, but they are motivated even
stronger for construction of a predictor of y from x.

A simple and as we will see fundamental shrink-
age construction is ridge regression (RR), according
to which the OLS estimator is replaced by

bRR D �Sxx C υI��1sxy �4�

for a suitable ridge constant υ > 0 (to be specified).
Addition of whatever υ > 0 along the diagonal of
Sxx clearly makes this factor less close to singular.
To see more precisely how RR shrinks, consider
an orthogonal transformation that replaces the com-
ponents of x by the principal components (PCs),
ti D ci

′x, i D 1, . . . , p. Here the coefficient vectors
ci are the eigenvectors of Sxx, with eigenvalues �i,
say. Correspondingly, Sxx is replaced by the diago-
nal matrix of these eigenvalues �i, and RR adds υ to
them all. When OLS divides the ith component of the
vector sty by �i, RR divides by �i C υ. Hence, RR
shrinks bOLS much in principal directions with small
�, but only little in other principal directions.

Variable selection might appear to shrink, by
restricting attention to a lower-dimensional subspace
Ur �r < p� of the model space of the xs. Variable
selection improves precision when it omits vari-
ables with negligible influence, but if it is used to
eliminate multicollinearities, then it does not neces-
sarily shrink and will make interpretation difficult.
More sophisticated ways of restricting attention to
lower-dimensional subspaces Ur of regressors are
represented by methods such as principal compo-
nents regression (PCR) and partial least squares (or
projection to latent structures; PLS) regression. Both
methods construct new regressors, linear in the old
regressors, and y is regressed (by least squares, LS)
on a relatively small number of these PCs or PLS
factors. This number r, as well as the ridge constant
υ in RR, is typically chosen by a cross-validation
criterion. As an example, Andersson et al. [1] used
PLS regression with two PLS factors to replace the
52 original variables in the regression. This model
explained R2 D 84% of the variability, and in a cross-
validation predicted 80% (necessarily less than R2,
but quite close in this case). They could also interpret
their model within the context of their chemometric
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application, as referring basically to the position pat-
tern of the chlorine atoms.

In the standard form of PCR, the new regres-
sors ti D ci

′x are the first PCs of the (centered) x
from a PCs analysis. This means that the cis are the
eigenvectors of Sxx that explain as much variation
as possible in x. The space Ur is then spanned by
the first r PCs. In this way directions in x with little
variation are shrunk to 0. The connection with vari-
ation in y is only indirect, however. PLS regression
is more efficient in this respect, because it constructs
a first regressor t1 D c1

′x to maximize covariance
between t1 and y (among coefficient vectors c1 of
fixed length), and then successively t2, t3, etc. so as
to maximize covariance with the y residuals after LS
regression of y on the previous set of regressors. As
an algorithm for construction of the PLS regression
subspaces Ur of the x space, spanned by t1, . . . tr ,
this is one of several possible. For a long time PLS
was only algorithmically defined, until Helland [10]
gave a more explicit characterization by showing that
Ur for PLS is spanned by the sequence of vectors sxy ,
Sxxsxy, . . . , Sr�1

xx sxy . This representation is of more
theoretical than practical interest, however, because
there are numerically better algorithms.

A step towards a general view on the choice
of shrinkage regression was taken by Stone and
Brooks [13], who introduced continuum regression
(CR), with the criterion function

R2�t, y�V�t�� �5�

where R�t, y� is the sample correlation between t D
c′x and y, V�t� is the sample variance of t, and � ½ 0
is a parameter to be specified. This function of t (or c)
should be maximized under the constraint jcj D 1. In
previous terms

R2�t, y� / �c′sxy�2

c′Sxxc
�6�

V�t� / c′Sxxc �7�

As in PLS, when a first c D c1, t D t1, has been
found, the criterion is applied again on the residuals
from LS regression of y on t1 to find the next c, c D
c2, etc. The new c will automatically be orthogonal
to the previous ones. In order to institute a regression
method of this algorithm, the number r of regressors
and the parameter � are chosen so as to optimize
some cross-validation measure.

The most important role of CR is perhaps not as a
practical regression method, however, but as a theo-
retical device embracing several methods. For � D 0
we get back OLS, and the algorithm will stop after
one step �r D 1�. For � D 1 the criterion function
(5) is proportional to the covariance squared and will
yield PLS, and as � ! 1, V�t� will dominate and
we get PCR. A much more general yet simple result,
which relates to RR and provides an even wider
understanding, has been given in [2], as follows.

Suppose we are given a criterion that is a func-
tion of R2�t, y� and V�t�, nondecreasing in each of
these arguments. The latter demand is quite natural,
because we want both of these quantities to have high
values. The regressor maximizing any such criterion
under the constraint jcj D 1 is then proportional to
the RR estimator (4) for some υ, possibly negative or
infinite. Conversely, for each υ ½ 0 or υ < ��max in
(4) there is a criterion for which this is the solution.
The first factor PLS is obtained as υ ! š1, and
υ ! ��max corresponds to the first factor PCR. The
first factor CR with varying � ½ 0 usually (but not
always) requires the whole union of υ ½ 0 and υ <
��max. The use of c D bRR from (4) to form a sin-
gle regressor in LS regression is called least squares
ridge regression (LSRR) in [2], and differs from RR
by a scalar factor that will be near 1 when υ is small.
Hence RR is closely related to the other construc-
tions. Furthermore, experience shows that typically
RR and LSRR for some best small υ yield a similar
regression as (the best r) PLS and (best r) PCR.

If different constructions yield quite similar esti-
mators/predictors, what shrinkage method is then
preferable? Here is some general advice.

ž RR and LSRR have the advantage that they only
involve a single factor.

ž LSRR only shrinks to compensate for multi-
collinearity, whereas RR always shrinks.

ž RR has a Bayesian interpretation as posterior
mean for a suitable prior for ˇ (see Bayesian
methods and modeling).

ž LSRR (like PLS and PCR) yields residuals
orthogonal to the fitted relation, unlike RR.

ž PLS and PCR have interpretations in terms of
latent factors, such that for PCR essentially all
x variability is in Ur for suitable r, whereas
for PLS all x variability that influences y is in
the corresponding Ur for a typically somewhat
smaller r than for PCR.
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ž The latent factor structure in PCR and
PLS is convenient for outlier detection and
classification (cf. below and [12, Chapter 5]).
Also x components missing at random in
prediction of y for a new observation are easily
handled.

Multicollinearity imposes estimation identifiability
problems, when we want to find the true ˇ. If x1 C x2
is (near) constant, say, we cannot tell if x1 or x2
or both jointly are responsible for the influence of x
on y. This is less serious for prediction, provided that
new observations satisfy the same relation between y
and x, and that new xs are like calibration xs, in
particular satisfying the same multicollinearity. To
judge the predictive ability, some version of cross-
validation is natural, based on repeated splits of data
in calibration and test sets. But we must always have
in mind the risk that the calibration (x, y) data are
particular in some respect, and that therefore cross-
validation criteria are too optimistic. An extreme
example, from a study concerning determination of
nitrogen in wastewater, is discussed in [14]. In the
QSAR example above [1], the model was fitted on a
sample of 27 PCBs from a population group of 154
PCBs. If we want to predict the activity y for a new
PCB from this population, then we must allow and
check for the possibility that it is an outlier in x space,
compared with the calibration sample. Implications
differ according to whether it is an outlier in a
direction orthogonal to the two-dimensional latent
subspace Ur , or only within Ur . There are also other
PCBs not even satisfying the criteria for belonging to
the population group under study, and for them we
must doubt the prediction equation for y even if x is
not an outlier.

Shrinkage regression constructions are intrinsi-
cally scale noninvariant. This is because ‘near’ in
near-collinear is metric-dependent. Correlation is in-
variant, but not covariance and variance. Individ-
ual rescaling of the x components, or any other
nonorthogonal transformation, will affect the shrink-
age. It is often recommended that x components be
autoscaled to unit variances as a pretreatment. This
is natural when the x components are on incompa-
rable scales, as in QSAR studies, but silly in many
other situations, for example in spectroscopy. As
another example of frequent pretreatments, second-
order differencing of a spectrum x corresponds to
a nonorthogonal linear transformation, and thus has

effects on shrinkage regression. The choice of scal-
ing is often more crucial than the choice between the
different methods (RR, LSRR, PCR, PLS).

In multivariate regression, when the response is
a vector y and not a scalar y, and the regression
coefficients form a matrix B, we could try shrinkage
also in y space. In this way we might be able to
borrow strength for the prediction of one component
of y from the others. A variety of methods has been
proposed in the literature.

There are PLS type algorithms (PLS2, SIMPLS),
in each step constructing a pair of PLS factors, in
y and in x. The first factors are selected equally
by PLS2 and SIMPLS, but their criteria for the
subsequent factors differ. There is a multivariate
version of CR, joint continuum regression (JCR [5]),
of which SIMPLS is a special case. At one of the
extreme ends of JCR we find PCR, which is not
affected by the dimension of y. At the other end is
the LS version of reduced-rank regression (RRR).
RRR, imposing a rank constraint on B, is an example
of a principle that essentially only shrinks in y space
and therefore is inadequate under near-collinearity in
x. The maximum likelihood (ML) ( 6D LS) estimator
in an RRR model (standard multivariate regression
with a fixed rank constraint added) is equivalent to
using a number of canonical variates from a canonical
correlation analysis, so for each canonical y variate
we use OLS regression. This method has become
an important tool in econometrics for modeling
cointegration (i.e. common trends) in nonstationary
vector autoregressive time series models [11], with
potential applications also in environmetrics.

Burnham et al. [8] formulated a latent variable
multivariate regression model, in which both y and
x have latent structures, more or less overlapping.
The overlap yields a regression relationship, when
y should be predicted from x. A constrained ML
method in this model is equivalent to a method known
as principal covariates regression (PcovR [9]), which
is a shrinkage method that will often yield similar
results to those of PLS2 and SIMPLS. See also [7],
giving characterizations and relationships between
several different methods with respect to their opti-
mality criteria of construction.

Further methods were discussed and compared
by Breiman and Friedman [4], who constructed and
advocated a method they called ‘curds and whey’,
primarily shrinking in y space. The article caused
lively debate and much criticism.
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Despite the many shrinkage methods proposed and
used for multivariate regression, it is not clear if and
when they are really better than separate univariate
regressions. From the literature it seems as if one
seldom gains much precision from replacing separate
univariate predictions by a multivariate prediction
method, cf. the discussion in [5].

For fully implemented PCR or PLS, with cross-
validation to help select the number of factors and
various diagnostic tools, there are commercial pack-
ages from the field of chemometrics doing the job,
such as SIMCA (Umetrics) and UNSCRAMBLER

(CAMO). For those who want more flexibility or
more lucid software, programming in Matlab can
be recommended. The PLS Toolbox (Eigenvector
Research) contains a large number of Matlab sub-
routines, and there is also much free code available
on the web.

Recommended literature on shrinkage regression
includes the books by Brown [6], not least for cov-
ering Bayesian aspects, and Martens and Næs [12].
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