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Abstract

A discussion is presented of roles of regression analysis in sensometric studies, distinguishing description, interpretation and
prediction purposes. A brief review is given of linear regression methods for prediction in situations with near-collinear explanatory

variables, including for example ridge regression and partial least squares, and latent variable models are discussed. Finally pro-
blems with statistical and causal inference from regression on covariates in designed experiments are discussed. Illustrations in the
paper are based on a sensometric study of apple ¯avour under varied storage conditions [Brockho�, P., Skovgaard, I., Poll, L., &
Hansen, K. (1993). A comparison of methods for linear prediction of apple ¯avor from gas chromatographic measurements. Food

Quality and Preference, 4, 215±222], with sensory response data and with gas chromatography measurements as covariates. # 1999
Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper aspects are discussed of sensometric
studies in the form of more or less explicitly designed
experiments involving auxiliary physical or chemical
measurements, `covariates', which might be used as
explanatory variables in a regression or covariance
analysis. A review is given of modern linear regression
methodology, with discussion of how the information in
the explanatory variables should be judged according to
what is wanted from the study, and in particular the
problems with covariates in the interpretation of
designed experiments.
Typically a sensometric study involves several sensory

response variables, concerning texture, taste, smell, etc.,
but di�erent responses are nevertheless treated indivi-
dually. Multivariate aproaches are possible, with the
idea of borrowing strength from one response variable
to another. However, the potential of a multivariate
approach is unclear. Also, this aspect was the topic of a
talk by Sijmen de Jong at the same meeting, so here
the discussion will concentrate on aspects concerning

individual responses. Also problems with missing data
and nonlinearities will not be discussed here, even
though they may be important concerns in a statistical
analysis of sensory data.

2. Two sensometric experiments

A ®rst simple example of the type of situations to
have in mind in this paper is a study by Hough et al.
(1996) of relationships between sensory descriptors for
cheese and physical or chemical descriptors. Sensory
texture descriptors were related to a set of four instru-
mental compression tests variables (plus moisture).
Aroma and ¯avour descriptors were related to con-
centrations of a set of nine organic acids. A sample of
23 cheeses were analysed, cheeses taken at di�erent
stages of ripening. This was the implicit design of the
study, not used for a study of ripening per se, but
apparently primarily used as a guarantee for substantial
variation. Nine trained assessors gave sensory pro®les.
Averages over assessors were used. Sensory and instru-
mental descriptors were ``correlated'' by the use of
multivariate PLS.
The second situation is taken from Brockho�, Skov-

gaard, Poll and Hansen (1993), where it is described in
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more detail, and where its data are analysed from the
predictive point of view. These data will be used to
illustrate features of the following discussion. It must be
stressed that the present study does not invalidate the
one previously published, but serves to supply some
additional aspects. This example involves an imbedded
factorial experiment. Apples were given four di�erent
treatments (storage conditions, speci®ed by oxygen/
nitrogen ratio), during a shorter or longer period
(109±190 days). The apples were then subject to evalua-
tion 6 times during a post-storage ripening period.
This constitutes a complete factorial experiment with
2�4�6=48 design points. The smell of the apples was
evaluated by a trained sensory panel of 8±10 assessors,
who gave scores on a 0±5 point scale (in half units) for
preference, intensity, banana ¯avour, etc. Also, gas
chromatographic (GC) measurements were made of a
number of 15 volatiles (di�erent acetates, propanoates
etc), so that to each design point was attached a set of
such GC-data. An explicit purpose of the study was to
investigate the predictive ability of these volatiles.

3. Regression methodology, a review and discussion

3.1. Aims of regression studies

A standard ingredient in a statistical analysis of
situations like those described above will be a regression
analysis, where the original sensory response variables,
or some functions of them (as for example the residuals
from an ANOVA model ®t in the apples example) are
regressed on the instrumental data. The reason is not
only that the primary aim is prediction of sensory
properties from instrumental readings, but also because
directly concentration-related instrument measurements
are considered causal to sensory variables, at least more
than the other way round, and because random errors
in sensory variables are thought to be larger than in the
chemical variables, cf. the discussion around Fig. 4(a)±
(c) below. Assuming that the variation between asses-
sors has nothing to do with variation in instrumental
values, i.e. that the di�erence between any two assessors
is uncorrelated with the instrumental variables, response
values from now on will be taken to be the averages
over assessors, to be denoted y�n� 1�. This was also
done in the examples referred to above. A complication
that will not be addressed is that all assessors had not
evaluated all apple samples. The matrix of potential
explanatory instrumental variables will be denoted
X�n� p�. For convenience, the x-variables are assumed
centered. This means that the intercept need not be
much discussed in the following. The apples data will be
particularly considered, with preference as y-variable
(48�1) and the GC data as X (48�15). Preference was
one of the responses found by Brockho� et al. to be

in¯uenced by the experimental factors. However, the
reader should temporarily forget about the imbedded
designed experiment, until it will be returned to in the
next section.
In the apples example all the GC x-variables are sub-

stantially positively correlated with the preference
response y. Fig. 1 shows the individual regressions of y
on six of the x-variables, including those who show the
highest variation per se (nos. 4, 5 and 10).
It is seen from Fig. 1 that some of these individual

relationships deviate clearly from linearity. This could
be expected from the fact that response data are sen-
sory data. However, because the x-variables are corre-
lated, individual x-variables may show a non-linear
relation with y at the same time as a suitable linear
combination of the same x-variables ®t the response
linearly. So, not only are non-linearities outside the
scope of this review; linear modelling cannot be rejected
just because of individual non-linearities. An extreme
example with spectroscopic x-data is discussed in Sund-
berg (1999).
All 15 correlation coe�cients are between 0.40 and

0.75. In fact, the variation in correlation is not even
higher than expected from only sample variation in
normal samples of size n � 48, under the assumption of
a common underlying value (of about 0.6). These cor-
relations show that one cannot immediately reject any
x-variables as irrelevant; rather one is led to use all of
them jointly for inference about the relation between the
x-variables and preference y. Then an important feature
is that the x-variables are also (necessarily) mutually
strongly correlated themselves. The empirical correla-
tions in x fall between 0.23 and 0.99. A principal com-
ponents analysis (PCA) on their covariance matrix
shows that the ®rst two principal components together
explain nearly 96% of this variability, see Fig. 2 for a
combined scores and loadings plot. This means that a
multitude of other linear forms in x, with coe�cients
orthogonal to the ®rst two PC directions, will be almost
constant. There is near-collinearity in X. Whether this
collinearity is a problem or not depends on what is
wanted from the data:

. a descriptive relationship?

. an understanding or interpretation of a possible
causal relationship?

. a relation to be used for prediction?

The best ®t of a linear regression function y � �� �0x
is obtained by classical ordinary least squares, OLS (in
chemometrics sometimes misleadingly called multiple
linear regression, MLR, which is rather the statistical
model for data). In a descriptive sense OLS regression
on the apple data will explain practically all variations
in y by the 15 variables in X. However, when the expla-
natory variables are near-collinear, the OLS regression
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Fig. 1. Plots of preference against concentrations for 6 GC components. Note the di�erent scales on the x-axis.

Fig. 2. First two principal components of GC covariance matrix. Asterisks are loadings and circles are proportional to scores. The three variables

with high loadings are labelled by numbers (4, 5 and 10).
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coe�cient estimator �̂OLS is likely to be misleading. In a
standard regression model its uncertainty, as given by
its variance±covariance matrix, is �2�X0X�ÿ1. Near-col-
linearity in X implies that X0X is near-singular, and its
inverse will have numerically very large elements. This
also means that �̂OLS will tend by randomness to have
unrealistic, numerically very large values. Hence, the
coe�cients of the best description of y may be very far
from the coe�cients of the true relationship, assuming
there is one. Also for prediction, OLS is likely to be
ine�cient due to this over®tting. The feature is seen in
the apples data, where the 15 OLS coe�cients cover a
wide interval, from about ÿ1 for x-variables 6 and 7 to
+1.5 for variable 12. The high weight on several x-
variables, which are of little variation per se, and the
several high negative coe�cients in spite of the clear
positive regression of y on any single x (cf. Fig. 1) are
indications that the OLS method over®ts. From the
predictive point of view this will also be clear from
comparisons of model ®t R2 with cross-validatory pre-
diction results. But how could one better estimate how y
will change with x in such little informative directions?
Perhaps one should not try?
OLS yields the best ®t, but many other linear func-

tions in x ®t y almost equally well. For future predic-
tions it is wise not to use the OLS estimates of the
relationship in little informative directions, because they
are likely to overreact. Instead one could shrink the
OLS relationship in these directions (e.g. RR) or even
assume that y does not depend on x in such directions
(PCR, PLS). For brief descriptions of these relatively
well-known methods, see formula box. For more details
the reader is referred to the books by Brown (1993) or
Martens and Nñs (1989). These methods ``trade bias for
variance'' by replacing the unbiased OLS estimator by a
(slightly) biased estimator of higher precision.
An alternative would be to exclude x-variables so that

the remaining ones are no longer near-collinear, for
example, by a stepwise regression procedure. Then, in
this example, almost all of them would have to be
excluded, however, and that would probably imply a
loss of precision. On the other hand it might be eco-
nomical for future predictions not having to measure all
x-variables.
Anyhow, for the second type of question one must

live with some intrinsic uncertainty from the design
of the study: The given 48 observations of the 15
x-variables are not able to answer in a unique way
which x-variables in¯uence y, and in what proportions.
The situation would not even change essentially if
many more x-variables were available than the number
of observations. The OLS ®t would be perfect, but
there would be an intrinsic lack of uniqueness. How-
ever, one could still hope for good predictors through
ridge regression or the latent factor methods PLS and
PCR.

Formula box
Conventional regression procedures
Linear regression model:

y � �� �0x� noise � ����jxj � ";
x� � 0; Var�"� � �2:
Intercept estimate: �̂ � y�.

Ordinary least squares (OLS):

�̂OLS � �X0X�ÿ1X0y
Ridge regression (RR):

�̂RR��� � �X0X� �I�ÿ1X0y:
where � is desired `ridge constant', and I the identity
matrix of size p.

Partial least squares (PLS):
form regressors (`factors') successively.
First factor t1 � c01x; c1j j � 1, to maximize Cov�t1; y�.
Regress y on t1,

�̂PLS�1� � �t01t1�ÿ1t01y:
Repeat on y-residuals to form t2 and regress y on
�t1; t2�, to form �̂PLS�2�, etc.
Principal components regression (PCR):
like PLS but replace Cov�t; y� by Var�t�.
This is equivalent to:
regress y on major PCs t from a PCA.

3.2. Latent factor models

To some extent a latent factor model helps inter-
pretation and understanding. If a PCA shows that the
variation in x lies within a small-dimensional subspace,
represented by a few PCs, one may argue that the rela-
tionship between y and x stays within these PCs. In
chemometrics this latent dimension is often called the
chemical rank of the system. The conceptual problem
whether there is a well-de®ned such rank will be left
aside, and the practical problem to decide how large it
is. Anyhow, note that such an identi®cation does not
necessarily require many more observations than the
chemical rank number itself, and in particular it may be
su�cient with fewer observations than variables.
A latent factor model motivates PCR and PLS

regression. PCR is regression on the ®rst few principal
components of x as regressors. By de®nition they max-
imize variance with respect to x. PLS is based on a
principle of maximization of covariance between x and
y, and will therefore tend to yield a lower rank by
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down-weighting potential regressors which correlate lit-
tle with y. In the apples example all x-variables correlate
about equally with y. This implies that ®rst factor PLS
and ®rst factor PCR should di�er little here, cf. Fig. 3
below.
A latent factor model assumes that a latent variable

or latent vector, t say, is randomly generated from some
population, and that x and y are linearly dependent on t
(+noise). For interpretation and understanding, this
population for t is crucial, and not less so for prediction.
Only if new observations can be regarded as generated
from the same population, the predictions can be trus-
ted. This restriction is obvious if the latent dimension is
estimated by leave-one-out cross-validation, since the
prediction tests are made within the same original set of
observations, but the restriction is also crucial with an
external test set. The quality of the predictions is
doubtful as soon as one goes outside the conditions of
the test set. It is important that the test set, in all essen-
tial ways (whatever they are) mimics the future. If the
test set is not representative enough, the predictor will
over®t. Note that this is a risk with any predictor con-
struction method. Diagnostics for checking that a new x
falls within the data of the calibration have an important
role. These are easily formed in latent factor models.
Here a warning might be appropriate concerning pre-

dictor validation in factorial and similar designed
experiments by latent factor models and by leave-one-
out and similar forms of internal cross-validation. The

observations in a designed experiment are not randomly
generated from a natural population. Leave-one-out is
particularly questionable if one of a set of replicates is
left out, or if one factor has no real e�ect, which implies
that this factor will serve to generate replicates. The
remaining replicates are likely to take care of the ®t such
that the one left out will always be well predicted.
Suppose now that a latent factor model is generating

the data. Some proponents of PLS seem to think this
means the regression model is necessarily invalid, and
that PLS, therefore, should yield better predictors than
those motivated from the regression model (see e.g.
contributions by S. Wold to the discussions of Frank &
Friedman, 1993, and of Sundberg, 1999). However, say
that the distribution for the latent factor t is (as usual)
assumed normal, and the noise in x and y as well, given
t. Then x and y are also normally distributed, jointly,
and as a mathematical consequence the best unbiased
predictor of y is the theoretical linear regression of y on
x. Hence the linear regression model is adequate for the
prediction problem even with an underlying latent
structure, although this best predictor is unknown. In a
comparison of di�erent predictor constructions it is not
obvious which will be the best one. For example, the
regression model apparently involves fewer parameters
in the linear structure than a typical latent factor model
in its loadings matrices. In fact, the most remarkable
feature is the close relationship between all these
methods, and their approximate equivalence in typical

Fig. 3. Regression coe�cients of preference on GC variables by ®rst factor PLS (�) and ®rst factor PCR (square).
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cases (cf. below). The choice whether or not to scale x to
unit variances will usually be more important than the
choice between PLS, PCR and ridge regression. For the
apples data, as an example, variance standardization of
the GC variables gave a less good ®t for the same
number of PLS or PCR factors.

3.3. Relationships between regression procedures

Before this discussion is continued, a brief review
will be given of how the above mentioned methods
for multiple linear regression are related, by introdu-
cing a more general framework for regression method
construction.
Suppose one wants to select one or several regressors,

in the form of linear combinations t � c0x of the origi-
nal x-variables. High correlation with y would of course
be desirable. If the only criterion is to maximize the
(squared) correlation R2�t; y� with y, one is led to the
OLS regression; the regressor t will be proportional to
the OLS ®tted relationship. But it has also already been
remarked above that the uncertainty about the regres-
sion is high in directions where x has little variation.
Therefore it is also desirable that the regressor t � c0x to
be selected shows a large variation in the data, i.e. a
criterion that Var�t� � c0Var�x�c should be high.

Remark. To impose this criterion, some length restriction
on c must also be inserted, usually chosen as cj j � 1 in the
Euclidean metric. It is unavoidable that this implies a lack
of scaling invariance, if di�erent x-components are
rescaled di�erently. In other words, which regressors will
show large or little variation, and what is near or less near
collinearity, depends on the metric chosen.

Now suppose a criterion is formulated, involving both
R2�t; y� and V � Var�t�, in the form ``maximize a func-
tion g�R2;V� under the restriction cj j � 1''. An example
is the product of R2 and V, which is equivalent with the
covariance squared, and which is maximized by PLS, cf.
the formula box. From the function g it is only required
that it is increasing in each of its arguments separately, a
very weak and natural demand. Then, as shown in
BjoÈ rkstroÈ m and Sundberg (1999) it follows, remarkably,
that the regressor t must be proportional to a ridge
regression type estimator for some �, more precisely t �
c0RRx with

CRR / �X0X� �Ip�ÿ1X0y: �1�

Typical �-values in traditional ridge regression (RR) are
small positive, whereas when g is the product R2V, (®rst
factor) PLS is obtained in the limit as � tends to �1 or
ÿ1. On the negative axis all �-values may be allowed
between ÿ1 and minus the largest eigenvalue of X0X

(PCR via the ®rst PC). This representation includes
Stone and Brooks' (1990) continuum regression (CR),
with explicit criterion function

g�R2;V� � R2V; �2�

where they let  run through the continuum from 0
(OLS) via 1 (PLS) to �1 (PCR). As a rule, but a rule
with its exceptions, there is a (non-explicit) one-to-one
correspondence between � in (1) and  in (2).
Now, when a ®rst regressor t has been constructed, y

can be regressed on t, by simple least squares. This is so
in OLS, PLS, PCR and CR, but not in conventional
RR. Therefore BjoÈ rkstroÈ m and Sundberg (1999) advo-
cate least squares ridge regression (LSRR) to replace
conventional RR, that is to use cRR in (1) above not as
an estimate of � but to form a regressor t � c0RRx, as
described above. The di�erence is only a numerical
factor, typically close to 1 (for small �).
Usually PLS and PCR will require more than this ®rst

regressor. After regression of y on the ®rst t, the residuals
from this regression can replace y for a second step, to
construct a second regressor (second CR- or PLS-factor
or PC) to be used jointly with the ®rst one. Since LS
residuals are orthogonal to the regressors, the new c-
vector will be orthogonal to the previous ones. How
many steps should be gone through, that is how many
regressors (factors) should be constructed and used? If
the purpose is description, one makes sure one is close
enough to the maximum R2 (attained for � � 0). If the
purpose is prediction of new but similar observations,
cross-validation leave-one-out or some similar validation
procedure can be used. Else the choice is more delicate.
One might think there need not be any particular

similarity between LSRR regression (with only one
regressor but a selected �) and PLS or PCR with several
factors. However, experience indicates that typically all
three methods tend to give quite similar regressions.
More precisely, by the best choices of the parameter �
for LSRR and of the number of factors for PLS and for
PCR, respectively, they will all yield about the same
optimal predictors.
With the apples data it was seen that there is a single

major source of variation common to both preference y
and the GC-variables, namely one of the experimental
factors (storage condition: oxygen/nitrogen ratio). Nei-
ther the PLS or PCR predictors will bene®t from more
than the ®rst latent factor, and this factor will then be
almost identical for PLS and PCR, and represent the
experimental factor. The optimality of a single factor
was established by cross-validation. The corresponding
PLS and PCR regressions are almost indistinguishable,
as illustrated in Fig. 3. More generally interpreted, the
LSRR regression is quite insensitive to the choice of its
parameter � over a wide region of �-values, including the
PLS and PCR special cases.
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4. Covariates in designed experiments

In this section a discussion will be found of the role of
covariates (the GC-values) in a designed experiment,
where the main purpose is to ®nd out about the in¯uence
of the factors (storage conditions etc.) of the experi-
ment. In a designed experiment with covariates, analysis
of covariance (ANCOVA) is a statistical technique used
to obtain increased precision in the estimated treatment
e�ects. This is done by so called covariate adjustment of
the treatment means, and it is based on a combination
of an ANOVA type structure in the experimental factors
and a linear regression on the covariates. For a situation
where covariance analysis would be legitimate, imagine
a modi®ed apples example with the GC measurements
made on the apples before storage. A regression on these
GC values could increase the precision by eliminating
variability between apples before storage, if this source
of variability still a�ects the response values after storage.
In the apples experiment as it was really carried out, a

covariance analysis would not be legitimate, however.
For covariance analysis it is crucial that the covariates
be una�ected by treatment, whereas in the apples
experiment the covariate values are measured after
treatment and intrinsically connected with the factor
levels of the experiment. If storage conditions are sys-
tematically changed there is reason to expect changes
not only in smell- and taste-related sensory variables �y�
but also in the concentrations of the volatiles measured
by GC �x�. A detailed discussion of the postulates
behind covariance analysis and the problems when these
postulates fail were given more than 40 years ago
(Cochran, 1957; Smith, 1957). Not that I have seen
misuse in sensometrics, but a warning might never-
theless be motivated, because misuse can be found even
in examples from statistics texts of relatively recent date.
For the GC data of the apples example, one can feel

quite convinced that the covariation between x and y is
more or less caused by the experimental factors. But
what is the implication of the underlying experimental
design for the interpretation of this covariation? By help
of the x-data the variation in y can evidently be descri-
bed more completely. How well will one be able to pre-
dict from x? Are the reasons for variation in y better
understood? Does the variation in x completely describe
the variation in y due to treatment, or is there variation
in y caused by the experimental factors that does not go
through x? Is there variation in y caused by variation in
x that is not related to the experimental factors? Ques-
tions like these will be discussed, and whether they can
be answered or not. Three di�erent models for the var-
iation will be discussed and compared:

(a) a correlation model for �x; y�;
(b) a simple causal model for the in¯uence of x on y;
(c) a more saturated model for causal in¯uences.

The weakest (near absence of) structure just states
that the experimental factors in¯uence x and y, so
that as a consequence x and y are seen to be mutually
correlated. This correlation will imply a regression of y
on x, but without any causal interpretations of this
regression within the model. This is depicted in Fig. 4(a).
At the other end in causality is the structure stating

that the experimental factors in¯uence x, and x in¯u-
ences y, so that all in¯uence on y of the experimental
factors goes through x. A simple such structure is indi-
cated in Fig. 4(b).
The structure of Fig. 4(b) can be represented by the

following statistical model:

x � �x � ;
y � �� �x� "; �3�

where �x denotes the direct treatment e�ect on x, the
letter  represents the e�ects on x from other causes of
variation, and " denotes experimental and measurement
error variation in y (unrelated with treatments and with
x). The impact of x on y is assumed linear with coe�-
cient �. Since also in model (a), y has a regression on x,
models (a) and (b) are not distinguishable without
further information. The feature of model (b) that

Fig. 4. (a). Correlation structure; (b). A simple causal structure;

(c). An extended causal model.
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makes it distinguishable from the correlation structure
of Fig. 4(a) is that not only the experimental variation
�x but also other variation in x in¯uences y in the same
way (by the same coe�cient vector �). If there is enough
variation in x not caused by the systematic experimental
variation, one can hope to see this feature after elim-
ination of the treatment e�ects. For example, by form-
ing residuals in x and y, from an ANOVA treatment
structure model, new data are obtained, which should
be una�ected by treatments if the treatment structure
was correctly modelled. Safer than residuals are di�er-
ences between replicates in �x; y�, since these do not rely
on any treatment structure model.
Fig. 4(c) generalizes structure (b) in two ways and

makes it more realistic, by allowing a direct part of the
in¯uence of the experimental factors on y, i.e. some
treatment e�ect �y on y that is not explainable through
x, and by allowing measurement errors in x, which
should of course not have in¯uence on y.
The statistical model representation extending (3)

above is

� � �x � ;
x � � � �;
y � �� �0� � �y � "

�4�

where the treatment e�ect term �y on y is added, and � is
introduced as an unobserved idealized version of x, so
that x is � perturbed by the measurement error �. Note
that the in¯uence on y goes through the � part of x only.
Can these structure elements be distinguished in data?
First inference concerning the possible presence of

substantial measurement errors in x will be discussed.
Even in the absence of a direct treatment e�ect �y on y,
the model that relates y with x is no longer a regression
model when measurement errors � are allowed in x, but
a so called errors in variables model. If a regression of y
on x is then ®tted, it will be more or less shrunk relative
to the true, error-free �. If replicates of �x; y� are avail-
able there is a chance to see di�erent degrees of such
shrinkage, freed from treatment e�ects. For a di�erence
in �x; y� between two replicates, all treatment e�ects �x
and �y would vanish from (3) and from (4). According
to model (3) there would still be a regression with the
same regression coe�cients as before di�erencing.
However, with measurement errors � allowed in x,
according to (4), these di�erences in y and x would yield
a shrunk regression, because the in¯uence of the mea-
surement errors in x would be much higher in the dif-
ferences. Hence, in the presence of replicates this
shrinkage e�ect might possibly be seen, even though the
reduced variation in x by going over to di�erences
between replicates will also imply considerably increased
statistical uncertainty.
In the apples example there are no true replicates.

However, the storage length factor on two levels seemed

to have little e�ect, and might be tried as a substitute for
a true replicate factor. Regressions of y di�erences on
x di�erences, and y residuals on x residuals in an
ANOVA model allowing two-factor interactions (that is
residuals equal three-factor interactions), gave regres-
sion coe�cient vectors as illustrated in Fig. 5. Conclu-
sions are shaky, because the ``true'' �-vectors of the
models above are not available, but only the ®rst factor
PLS estimates of �. Under this reservation, note that
di�erences and residuals yield slightly lower �-estimates
than the original data. This might be interpreted to say
that the x-variables have measurement errors, whose
in¯uence is ampli®ed in the di�erences and residuals
when most of the underlying variation, that there is in �,
has been eliminated.
Consider now how the possible presence could be

investigated of a treatment e�ect �y directly on y, as
allowed in model (4). Regressing y on x would leave
residuals without remaining treatment e�ects according
to model (b), whereas if such treatment e�ects are seen,
this is an indication that model (c) is the right one, with
a non-zero e�ect �y. In the apples example a 3-way
ANOVA on the residuals from a ®rst factor PLS
regression (for regression coe�cients, see Figs. 3 and 5,
asterisks and solid lines) shows no indication of any
treatment e�ects, as judged from a comparison of main
e�ects and 2-factor interactions with 3-factor interac-
tion, or main e�ects with all interactions. In other
words, there is no indication of any treatment e�ect �y
directly on y in the apples example.
The ®nal discussion will concern the implications for

prediction of y by its linear regression on the vector x.
Prediction does not require causal relationships, so all
models (a), (b) and (c) will allow this prediction, pro-
vided as usual that the prediction situation is the same
as the calibration situation. The latter assumption can
be crucial when the variation in the calibration data is
generated in a designed experiment, like with the apples
data, or by some other deliberate variation of circum-
stances, as with the cheese data. This is so, even in the
causal model versions (b) and (c), because in the
experiment performed one is not likely to see variation
in more than a few dominating directions of the multi-
dimensional x. By construction, the predictor in the
apples example is good at predicting the e�ect of varied
storage conditions, but that does not at all imply that
the relation between y and x must be the same if one
later wants to predict di�erences between apple sorts or
between shiploads, for example. Analogously, in the
cheese example the variation in data was generated by
di�erent ripening times, which does not imply that the
relationship would well represent variation between
di�erent producers at the same ripening stage, if that
should be desired. The coe�cient vector � can be not
only of wrong magnitude, but also of the wrong direc-
tion. If one wants to predict a special type of variation,
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this source of variation must be well represented in the
calibration and it is risky to replace it by some other,
more easily generated variation.

5. Conclusions

This paper has discussed several problems and fea-
tures connected with explanatory variables in senso-
metrics, in particular as covariates in connection with
designed experiments. Near-collinearities among the
explanatory variables is a problem for understanding
causal relationships, but often not for prediction pur-
poses, when they rather support each other. Latent
variable methods (PCR, PLS) are popular for predic-
tion and the paper has discussed their theoretical basis
and relationships with other prediction methods (ridge
regression and least squares ridge regression). Causal
models with covariates in designed experiments have
also been discussed, and the possibilty to draw statis-
tical inference about them. The ®nal discussion con-
cerned the dangers in forming predictors from designed
experiments, when they are based on systematically
generated variation.

Acknowledgements

The author is grateful to Per Brockho� for making
the apple data available, and to the Swedish Natural
Science Research Council for ®nancial support.

References

BjoÈ rkstroÈ m, A., & Sundberg, R. (1999). A generalized view on con-

tinuum regression. Scandinavian Journal of Statistics, 26, 17±30.

Brockho�, P., Skovgaard, I., Poll, L., & Hansen, K. (1993). A com-

parison of methods for linear prediction of apple ¯avour from gas

chromatographic measurements. Food Quality and Preference, 4,

215±222.

Brown, P. J. (1993). Measurement, regression, and calibration. Oxford:

Oxford University Press.

Cochran, W. G. (1957). Analysis of covariance: its nature and uses.

Biometrics, 13, 261±281.

Frank, I. E., & Friedman, J. H. (1993). A statistical view of some

chemometrics regression tools (with discussion). Technometrics, 35,

109±148.

Hough, G., Califano, A. N., Bertola, N. C., Bevilacqua, A. E., Mar-

tinez, E., Vega, M. J., & Zaritzky, N. E. (1996). Partial least squares

correlations between sensory and instrumental measurements of

¯avor and texture for reggianito grating cheese. Food Quality and

Preference, 7, 47±53.

Martens, H., & Nñs, T. (1989). Multivariate calibration. Chichester:

John Wiley.

Fig. 5. Regression coe�cients by ®rst factor PLS for di�erent sets of data: ÐÐ�ÐÐ: preference on GC; ± ± ±+±± ±: preference pairwise di�erences

on GC pairwise di�erences (over two-level factor); . . .�. . .: preference residuals on GC residuals according to ANOVA models allowing pairwise

interactions.

R. Sundberg / Food Quality and Preference 11 (2000) 17±26 25



Smith, H. F. (1957). Interpretation of adjusted treatment means and

regressions in analysis of covariance. Biometrics, 13, 282±307.

Stone, M., & Brooks, R. J. (1990). Continuum regression: cross-vali-

dated sequentially constructed prediction embracing ordinary least

squares, partial least squares and principal components regression

(with discussion). Journal of the Royal Statistical Society B, 52, 237±

269; Corrigendum (1992) 54, 906±907.

Sundberg, R. (1999). Multivariate calibrationÐdirect and indirect

regression methodology (with discussion). Scandinavian Journal of

Statistics, 26, 161±207.

26 R. Sundberg / Food Quality and Preference 11 (2000) 17±26


