
Mathematical Statistics

Stockholm University

Statistical methodology in case-control 5’-nuclease
assays:

Statistical design, modeling and inference for
identification of differentially expressed genes

Rolf Sundberg
Mathematical Statistics, Stockholm University, SE-106 91 Stockholm, Sweden

e-mail: rolfs@matematik.su.se; web: www.matematik.su.se/ r̃olfs

Anja Castensson, Elena Jazin
Evolutionary Biology, Uppsala University, SE-752 36 Uppsala, Sweden

Research Report 2002:9

ISSN 1650-0377



Postal address:
Mathematical Statistics
Dept. of Mathematics
Stockholm University
SE-106 91 Stockholm
Sweden

Internet:
http://www.matematik.su.se/matstat



Mathematical Statistics
Stockholm University
Research Report 2002:9,
http://www.matematik.su.se/matstat

Statistical methodology in case-control 5’-nuclease assays:

Statistical design, modeling and inference for

identification of differentially expressed genes

Rolf Sundberg
Mathematical Statistics, Stockholm University, SE-106 91 Stockholm, Sweden

e-mail: rolfs@matematik.su.se; web: www.matematik.su.se/ r̃olfs

Anja Castensson, Elena Jazin
Evolutionary Biology, Uppsala University, SE-752 36 Uppsala, Sweden

October 2002

Abstract

With background in mRNA expression data from a case–control 5’-nuclease as-
say for the investigation of genes suggested to be schizophrenia-related, aspects on
experimental design, statistical modeling, and statistical inference in such studies are
discussed. With more individuals than positions per plate, a balanced incomplete
design will be required. Based on a multivariate (for several genes jointly) random-
effects analysis of covariance (RANCOVA) model, incorporating heterogeneity both
between and within individuals, it was found highly efficient to use reference genes to
form additional regressors. In this regression on reference gene values it was found
important first to average over the intra-individual replicates, because regressions be-
tween and within individuals are usually different. This has some consequences for
the estimation of plate effects. Topics also discussed in the paper are testing for a
significant mean disease effect, multiple genes aspects, and the difficulty to identify
genes affected in only a subgroup of cases.

Keywords: ANCOVA, cDNA, mRNA, RANCOVA, Real-time PCR, Schizophrenia,
Subgroup, TaqMan.



1 Introduction

For the understanding of the mechanisms of a disease, and the potential development of
drugs for its treatment, it is of interest to find genes which are differentially expressed
between sick and healthy individuals. The degree of expression is quantified by measure-
ments of mRNA concentrations.

The role of mRNA (messenger-RNA) is to carry the information in the DNA of a gene
to the protein synthesis of the ribosomes. If some protein synthesizing gene is expressed
at different levels in sick and healthy individuals, in their brains say, the difference might
be detected by measuring and comparing the expression of the corresponding mRNA in
brain samples from the two groups. Two techniques for mRNA measurements widely used
are microarrays and 5’-nuclease assays (TaqMan assays; 5’ refers to use of the ribosome
binding end region of the mRNA). Microarrays allow the simultaneous study of a large
number of genes, but at the expense of lower precision and fewer samples for the same
cost, in comparison with the 5’-nuclease assay, that allows many individual samples to be
distinguished but not tried on very many genes. Therefore the two study types have dual
roles. Microarrays is a natural choice for a screening study on pooled samples, which can
suggest candidate genes or gene families to be studied by more sensitive techniques. The
5’-nuclease assay is such a more sensitive technique, with a larger dynamic range and less
demand for sample material than the microarray technique. When differential expressions
are not large monogenetic, this sensitivity may be required. In this paper we shall dis-
cuss statistical models and methods for 5’-nuclease studies. The discussion will largely be
based on a concrete study, where 16 proposed susceptibility genes (candidate genes) for
schizophrenia were tested on cortical brain samples (autopsies) from 110 deceased indi-
viduals (Castensson et al., 2002). Some of these genes were suggested from microarray
studies.

In a 5’-nuclease assay the mRNA expression level in a specimen is measured by real-
time PCR (see e.g. Gibson et al, 1996, Heid et al, 1996). This means that the increasing
fluorescence intensity of accumulating PCR product is recorded during the PCR reaction
until a prespecified level is attained. The time (in number of cycles) is measured and
used as a measure linear in the log concentration of cDNA (copyDNA). A calibration by
a dilution series yields the coefficients of this linear function. The amounts of cDNA and
mRNA are proportional, and therefore the estimate of the amount of cDNA can be used
as an mRNA expression level for comparisons between samples, for a fixed gene.

The cDNA is generated from the mRNA in a reverse transcription (RT), which yields
an RT master plate, with the different specimens in separate positions (wells) on the plate.
Replica plates are produced by aliquoting diluted contents of the RT master plate into
TaqMan optical plates, one for each gene under consideration. On the TaqMan plates,
the cDNA amounts are amplified and measured by real-time PCR technique, as described
above.

Many applications of 5’-nuclease assay concern supervised or unsupervised classifica-
tion of individuals in groups (discrimination or cluster analysis). This was not the aim of
the schizophrenia study, which concerned possible differences in gene expression between
two groups of individuals (patients and controls). Differences to look for could be of sev-
eral types. It might be a difference in mean value between the two populations, and/or
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a difference in variance. Only the former type of difference would be detectable if pooled
samples were compared. Also, it is probably unrealistic to expect a whole population of
patients to differ from controls in a particular gene. Hence, another possibility to look
for is that only a subgroup of a heterogeneous patient population shows the differential
expression. This would affect both mean value and variance for the sample.

Measurements on biological material, such as brain samples, will of course show a
substantial natural variation between individuals. As much as possible of this variation
must be eliminated by experimental and statistical techniques, in order to increase the
power of the study, that is to increase the chances that a possible difference between sick
and healthy individuals will be revealed. Large samples of individuals may compensate for
variability between individuals. To some extent this is necessary, in order to reduce the
risk of false signals caused by particularities in the two samples compared; in fact, many
of the announcements in the literature come from studies with quite small sample sizes.
However, large samples are expensive and not very efficient for reducing variation, so more
sophisticated methods must also be utilized to reduce the need for very large samples. This
was so also in the schizophrenia study, despite the fact that the number of individuals in
it was higher than in most other studies of similar type, comprising 55 patients and 55
controls. If no covariates are used and the standard deviation between individuals is σ,
a difference in mean values must be of a magnitude as high as 2σ

√
2/55 ≈ 0.4σ in order

to make the chance 50% to detect on the 5% significance level that there is a difference
in means. If this difference only affects a subgroup, the chances will be smaller, of course.
Fortunately, as we will see, covariates allow the inference to be made much more precise.

Experimental and observational study designs have a role in this context, for example
to control for possibly confounding factors such as sex, age and brain bank. A particular
aspect to consider is the allocation of specimens to plates when such a large number of
brain specimens is available that there is not room for all of them on a single RT plate.
This was the case with the brain sample material, with its 110 individuals and replicate
samples of tissue for each individual. Design aspects are discussed in Section 2.

The introduction of explanatory covariates is a well-known statistical technique for
increasing precision by reducing the influence of natural variation. Besides the factors
mentioned above, variation in the time post mortem when the autopsy specimen was
taken contributes substantially to the variability between individuals. Measurements on
reference genes, known or expected to be unaffected, are other important covariates, see
below. In the schizophrenia study, the following factors were available as covariates. Other
studies are likely to have covariates of similar type.

• Categorical covariates: Sex and brain bank. Autopsies came from three brain banks
of quite different age distributions and presumably also other systematic differences
(racial composition, medical diagnostic criteria).

• Quantitative covariates: Age and time post mortem, but also measurements on
reference genes (to be further discussed below)

The material originally comprised three specimens of brain tissue from each individual,
taken from the same part of the brain. They will be regarded as replicate observations
on the same individual. Replicates make it possible to reduce part of the variation, by
averaging over them. It will be seen later that a dominating portion of the variation
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between specimens from different individuals is due to the variation between individuals,
so the replicates do not have a particularly large effect on the precision. However, the
replicates are beneficial in other ways. They will be needed in the design, as illustrated in
Section 2, and they help to identify gross errors and to distinguish these from values for
extreme individuals.

Statistical models are introduced in Sec. 3. Based on these models, some statistical
inference aspects are discussed in Sec. 4.

2 Design aspects

The design of the study involves aspects from both observational and experimental studies.
If differences in mRNA levels are seen between the two groups of individuals, it is of course
essential that this difference can be attributed to the fact that one group has the disease
and the other group has not. To allow such conclusions the selection of individuals should
preferably be balanced with respect to possible confounders, so that the two groups do
not differ substantially in other important respects than the disease. In the schizophrenia
study, the two groups of individuals were in fact matched within each combination of brain
bank and sex. This means that these two factors will not be disturbing confounders, but
only help to make possible conclusions more general than if they had not been varied at
all.

Given the two samples of individuals, it remains to allocate the samples on (master)
plates. Each plate has 96 wells (=positions), but some wells are reserved for various stan-
dards and checks (Negative Amplification Control, Negative Template Control). Therefore
the available number of wells per plate will not be much more than 80. Plate is an ex-
perimental block factor, to some extent analogous with the array factor in micro-array
experiments. It is certainly important to allow differences between plates, meaning that
the overall level of the signal could differ between different replica plates. We do not
recommend estimation of plate effects from internal controls only; rather the role of the
latter will be in checking for anomalies. In principle we could also imagine position ef-
fects on the plate, for example in the form of row or column effects. Our experience
from previous TaqMan experimental work had not pointed towards any position effects,
so in the schizophrenia study such effects were assumed to be absent. However, even if
row and coilumn effects are not believed to matter, it would be wise to make the design
row/column-balanced.

Since we had 110 individuals in the schizophrenia study, they could not all be allocated
to the same plate, but an incomplete design had to be chosen. To some extent this makes
the statistical analysis more complicated, but it is a cost worth paying for the advantage
of having many individuals represented. The design should preferably be chosen to be
(at least approximately) balanced. Since the variation between individuals is crucial, it is
essential that all individuals are used, in some way or another. On the other hand, it was
found less important that all three samples per individual were used, in the first round.
After discussing several balanced incomplete designs, we decided to use three plates and
only two samples per individual. This allowed more genes to be tested at the same total
cost. The third sample was kept in reserve, waiting for a promising gene, when it could
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be used for confirmation purposes, if desired.
More precisely, the following balanced incomplete design was chosen: 54 (= 3 × 18)

patients and 54 controls, with two samples per individual, were allocated to three plates
such that each plate received 36 (= 2 × 18) of the 54 individuals of each type. This was
done in a balanced way, which means that each subgroup of 18 patients was combined
once with each of the other two subgroups of 18 patients, and likewise for controls. The
allocation to subgroups was performed such that the approximate balance in the other
factors (sex and bank) was retained. The odd 55th individual was added to one of the
three groups, making it size 19 instead of 18.

Design aspects are important also in microarray studies, see Kerr & Churchill (2001a,
2001b). However, an important difference is that microarrays have typically two varieties
but many genes on the same array, where 5’-nuclease plates have many individuals but
only one gene per replica plate.

3 Statistical modeling aspects

3.1 A basic RANCOVA model

First, let us consider a single gene for the individuals of the control group, so that by
definition its mRNA expression is not affected by the presence of the disease. Partially
expressed in terms of the schizophrenia study, we found the following nested linear model
reasonable to describe the variation in the data for a single gene, taking covariates and
design effects into account and measuring the fluorescence y on a log scale:

yhij = µ + αh + β′uhi + γk(hij) + δhi + εhij (1)

with indices
h = categorical covariate index (sex, brain bank);
i = index for numbering individuals within group h;
j = index for numbering samples within individual;
k = k(h, i, j) = index for the plate number to which sample (h, i, j) is allocated.
The variables and effects in (1) are characterized as follows:
µ = constant, the overall mean value (grand mean);
αh = main effects for the systematic variation between groups;
uhi = vector of individual characteristics such as age and time post mortem, common for
all samples from an individual;
β = regression parameter vector for the uhi (age and time post mortem) effects. These
effects are believed and assumed not to depend on group (h), and to be reasonably linear
in suitable covariates;
γk = plate effect, allowing differences between the three plates. These effects could be
thought of as randomly generated. However, since these effects are of interest only in an
adjustment process, they will here rather be regarded as fixed effects;
δhi = individual deviation from group mean αh, reduced for the covariates effect β′uhi,
that is “individual pure random variation” characterized by a variance σ2

δ ;
εhij = contribution from random variation between brain samples within individual and

5



from pure random experimental and measurement errors, characterized by a variance σ2
ε .

Model (1) may be called a random-effects analysis of covariance model (RANCOVA;
Longford, 1993, Ch. 2). The only additional complication so far to a typical RANCOVA
model is the plate effect. To model log-values of fluorescence intensities additively is stan-
dard, also in microarray data analysis (Kerr & Churchill, 2001b). In the schizophrenia
study, the assumption of constant variances σ2

δ and σ2
ε was seen to be largely but not

fully correct. The variability in log-values y tends to be higher when the intensity is low.
Another problem with low intensities is that there is a detection limit for low intensi-
ties. Some individuals have overall relatively low intensities, and some genes have lower
intensities than others. Treatment of non-constant variance and measurements below the
detection limit will be discussed in Sec. 3.3.

With data from several genes jointly, the model becomes multivariate. We still use
expression (1), but now we interpret yhij as a vector of the corresponding dimension.
Likewise, α, γ, δ and ε are vectors, and β is a matrix of regression coefficients. We must
expect and therefore allow (and utilize) correlation between genes in their inter- and intra-
individual variation, i.e. correlation between components in the vector δ as well as in ε.
In other words, for δ and ε we have to generalize the variances σ2

δ and σ2
ε to variance–

covariance matrices Σδ and Σε, respectively, of the same dimension as the number of genes
considered jointly.

Turning now to the patient group, the same model (1), with the same parameter values,
should hold as long as the model is restricted to genes not differentially expressed between
patients and controls. A disease effect in a candidate gene might appear in some or (in
the extreme case) all individuals of the patient group. A constant disease effect could be
represented by a shift in µ, but it is unlikely that an effect would only or even dominantly
affect the mean value. A disease effect in a candidate gene might interact with other
factors in the study, for example its presence/absence directly with sex, or its magnitude
with age. By dependence on the individual overall intensity level, the disease effect might
be seen to interact indirectly with reference gene intensities. It does not appear sensible
to allow all imaginable such interactions explicitly in the model.

The following might be a more reasonable modeling procedure, at least for an ex-
ploratory analysis. Let the systematic parameters µ, α, β and γ be as defined for the
controls, and estimated from the controls data. Allow the patients to have a different dis-
tribution for δ than the controls, including in particular a possibly different mean value.
We shall express this by replacing δhi by δ∗hi for the patient group and a candidate gene.
That is, corresponding to model (1) for the controls, the model for the patients is

yhij = µ + αh + β′uhi + γk(hij) + δ∗hi + εhij , (2)

with a possibly different distribution for δ∗hi than for δhi when the gene under consideration
is a candidate gene, and with interaction allowed between δ∗hi and other factors. There is
a possibility to think of δ∗hi as the combined result of two effects, δ∗hi = δhi + ηhi, where
δhi for these individuals is a hypothetical (contrafactual) random effect that would have
been realized, had the patient not got the disease, and ηhi is an individual disease effect,
whose mean value and distribution we are interested in. This interpretation involves
conceptual difficulties, however, and will be avoided in the sequel, but is close to the
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natural temptation to interpret an apparently large value of an individual δ∗hi as showing
an individual disease effect.

For a given candidate gene, it is thus of primary interest to compare the distributions
of δ∗hi and δhi over the populations of patients and controls, respectively. However, δ∗hi

and δhi cannot be separated from the measurement noise represented by ε. For simplicity,
let us provisionally not bother about the fixed effects in (1) and (2), whether they are
known or estimated, but consider µ, αh, β and γk as given. When we adjust the observed
y-values, forming residuals by subtracting the fixed effects from ȳhi., we will see the sample
distribution of δ + ε̄ for the control group and of δ∗ + ε̄ for the patient group. These two
distributions are of course equal precisely when the distributions of δ∗ and δ are equal.
The distributions should be compared, to see if there is any systematic difference or extra
variability in δ∗ + ε̄, that can be seen above the background level of variability of δ + ε̄.
When a disease effect has been established for a candidate gene, we can next look for
possible interaction with other factors, in order to understand the effect better.

It is a further complication that the parameters of model (1) must be estimated,
and due consideration paid to the degrees of freedom lost in this process. Note that by
reduction to average values per individual we retain all information for estimation of the
fixed parameters except the plate effects γ. This is seen by observing that the full data
of model (1) are equivalent to the averages ȳhi over replicates jointly with the differences
�yhi = yhi1 − yhi2 (or more generally the corresponding deviations from the averages),
following the model equations

ȳhi = µ + αh + β′uhi + γ̄k(hi) + δhi + ε̄hi, (3)
�yhi = �γk(hi)+ �εhi, (4)

with analogous average/difference definitions for γ̄k(hi), ε̄hi, �γk(hi), and �εhi.
The inter-individual information from model part (3) about the plate effects γ is likely

to be much less than the intra-individual information from part (4). This can be quantified
as follows. In least squares estimation of plate effects under a balanced incomplete design
as proposed above, with three plates and two replicates per individual, the intra-individual
differences yield a plate effect estimation variance of size 4σ2

ε /n, with n as the number
of individuals, whereas after averaging, the variance would be 3(2σ2

δ + σ2
ε )/n, with a

contribution from the component of variance between individuals, σ2
δ , that is likely to

make the latter variance substantially larger than the former one.

3.2 Correlation results

The multivariate version of model (1) was fitted to data from 12 genes, two of which were
going to have the roles of reference genes and the others were the ten earliest candidate
genes. The covariances and correlations between genes were estimated with respect to
variability between and within individuals, Σδ and Σε, respectively. The correlations were
high, indeed, in particular in Σδ. A MANOVA analysis primarily gave estimates of Σε and
of approximately Σε +2Σδ. An estimate Σ̂δ of Σδ was obtained by subtraction. A PCA on
the corresponding correlation matrix estimate showed that its first principal component
explained 94% of the total variability. This PC was quite close to proportional to a vector
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of ones. This means that the variability between individuals could be described by a
common factor influencing all genes similarly. As a consequence, the technique of using
reference genes should be able to increase precision substantially.

3.3 Covariates from reference genes

The natural background variability of δ+ε̄ is likely to be large, mostly because of biological
heterogeneity, both of natural type and of more or less artificial character (e.g. different
medical treatments, different tissue storage times). By utilization of some (highly) corre-
lated reference gene, or a couple of such genes, the precision can be increased considerably.
We reduce the variability in δ + ε̄ for the candidate gene by using the reference gene to
adjust for the predictable part of δ+ε̄. This is done by regressing the candidate gene values
on reference gene values, and in this way replacing ‘original’ δ-values by their residuals in
this regression. In other words, we use the reference genes to form additional covariates
in models (1) and (2). This causes some statistical complications.

A candidate gene and a reference gene can both be represented by model equations of
type (3–4), with response variables represented by notations y and x, respectively. Since
averages and pairwise differences are mutually uncorrelated, also between genes, we need
only consider regression of average on average and of difference on difference,

ȳhi = µ + αh + β′uhi + γ̄k(hi) + θbx̄hi + δhi + ε̄hi, (5)
�yhi = �γk(hi) + θw �xhi+ �εhi. (6)

With x inserted on the right hand side of the model, µ, α, β and γ change their meanings
and values from those in model (3–4), since the model for x has the same explanatory
variables as the model for y. This need not be a problem, however, since we are not
interested in these parameters per se. Of more importance is to note that the regression
coefficients θb and θw in the x-terms are not likely to be the same ‘between individuals’
in (5) as ‘within individuals’ in (6). This has consequences for the plate effect estimation
when blocks (plates) are incomplete. In analogy with the discussion ending Section 3.1,
the difference data following (6) will provide a relatively precise estimate of the linear
combination γ(y)− θwγ(x) of the plate effects γ(x) and γ(y) in x and y. On the other hand,
analogously, the term involving plate effects in model (5) is based on γ(y)− θbγ

(x). Hence,
if θb �= θw, the ‘within’ data in (6) do not provide an estimate of the plate effect desired
in (5).

Our experience from real data is that θb and θw typically differ substantially. For most
genes in the schizophrenia study, θb was about 50% higher than θw (albeit one exceptional
gene showed remarkably little variation between individuals and had a θb-value close to θw).
Since the utilization of reference genes is so important for the precision, we conclude that
we must be content with the less efficient ‘between individuals’ estimate of the average
plate effects appearing in model (5). Even though they are not as precise as could be
desired, note that if we are interested in the average disease effect on a candidate gene,
this average will be unaffected by possible plate effects in x as well as in y, by the balance
properties of the design.

Note that the assumption θb = θw should not only be generally distrusted, it would
also be more complicated to fit models (5) and (6) jointly, with θb = θw = θ, than model
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(5) separately. This is because there would be information about θ to combine from (5)
and (6). The estimates of θb and θw should optimally be weighed together by weights
depending on the ratio σw/σb, which must be jointly estimated from the same data, see
Longford (1993, ch. ). If θb and θw are the same, we would gain in precision for their
common value. This would be important if, by chance, their estimates differed much,
but on the other hand, if the two estimates differ substantially, we should distrust the
assumption that the parameters are the same.

The role of the pairwise differences, by model (6), will thus not be for direct inference
about the disease effects. Their role in the inference is rather in outlier detection. Gross
errors must be reckoned with, for example caused by DNA contamination, but usually
such errors are signalled by a too large pairwise difference. Typically in such cases, one of
the response values is relatively close to the estimated or predicted value, and then it will
be clear that the other one is the outlier.

For low-expressing genes, frequent response values will already initially be missing, be-
cause they are too low to be detected, that is a case of left censoring. For the schizophrenia
data it was difficult to specify a detection limit in each case, and as a pragmatic way of
avoiding the complications with left-censored data, such missing values were replaced by
the low value log 1 = 0, corresponding to a single observed copy. Likewise, estimated
or predicted values below this limit were replaced in the same way. This reduced some
residuals, but this effect was to some extent positive, because the random variability on
the log-scale was somewhat larger for very weak responses than for moderate or strong
responses. See the upper diagram in Figure 2 for an illustration.

For genes with a wide span in response values, it is perhaps generally advisable to let
the variance in model (3) be some negative power or some other function of the expected
value. We would then use a recursively weighted regression fitting method, in which the
weights are updated in each step. The problem is to determine the form of this variance
function. No such generalised variance model was tried in the schizophrenia study.

4 Statistical inference aspects

4.1 Identification of differentially expressed genes

As stated in Section 3.1 above, we want to compare the distribution of δ∗ for patients
with the reference distribution of δ for controls. We here concentrate on testing for a
difference in mean values, because a systematic difference between patients and controls
in a particular gene is regarded as being of primary interest. Note that the unvoidable
error term ε̄ will not affect the mean difference, but only the test power.

Under the null hypothesis of no disease effect, both patients and controls should follow
the same covariance analysis (ANCOVA) model, formula (5). A conventional and simple
test for a null disease effect would be a standard ANCOVA t-test, testing for equality of
intercepts when patients and controls are allowed to follow models with different intercepts,
but all other parameters in common. This test can be carried out by use of standard
software. However, the test would be optimally efficient only under the assumption of a
constant disease effect. With a highly variable disease effect, in particular with only a
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subgroup affected, such a test would not be very efficient at all, because it would pool the
two groups together in all other parameters and it would use the pooled residual variance.
In a simple two-sample situation without covariates, the standard two-sample t-test suffers
from the same inefficiency for detecting when only a subgroup is affected. Alternative tests
will be discussed below.

When we go from testing a null hypothesis to constructing confidence intervals for
the mean disease effect, we must specify the alternative model, and in practice we will
then be more or less forced to rely on such a vulnerable assumption of a constant disease
effect η. The other fixed effects will be assumed to be the same for the two groups,
and the residual variance to be constant (according to the relation δ∗hi = δhi + η). The
magnitude of a possible disease effect is certainly of importance, but a fully meaningful
confidence interval for the population difference also requires representative samples from
two well-defined populations of interest. A significance test is less demanding.

Now, consider testing the null hypothesis against alternatives allowing not only a
mean value shift but also an increased variance, Var(δ∗) > Var(δ), and allowing possible
interactions with other factors in the model. Then it can be more efficient to let the
model parameters be estimated from the control group alone, so that they are unaffected
by possible variability in disease effects. Two different approaches to the problem will here
be seen to yield the same test statistic.

For the sequel it will be convenient to simplify the description of the model, by imagin-
ing dummy covariates for the parameters αh and bringing them into the regression, at the
same time omitting the index h and the bar over y and x, and incorporating all regression
into the term θ′x, where θ and x are now vectors. Under H0, the model can then be
written, for controls and patients respectively, as follows:

E(y(c)
i ) = µ + θ′x

(c)
i (7)

E(y(p)
i ) = µ + θ′x

(p)
i (8)

var(y(c)
i ) = var(y(p)

i ) = σ2 . (9)

Directing the interest towards tests for a difference in µ-values between patients and con-
trols, we are led to a test statistic of the form

ȳ(p) − ȳ(c) − θ̂′(x̄(p) − x̄(c))
{σ̂2/np + σ̂2/nc + (x̄(p) − x̄(c))′v̂ar(θ̂)(x̄(p) − x̄(c))}1/2

, (10)

where θ̂ and σ̂ are suitable estimates of θ and σ, respectively, and the denominator repre-
sents the standard error of the numerator.

If θ and σ are estimated from the joint patients and controls data, we have the standard
ANCOVA t-test statistic, mentioned above. If θ and σ are estimated from the controls
alone, to be written θ̂c etc., we also have a t-test statistic, but with reduced degrees of
freedom. The latter test may be more powerful under such alternatives where the variance
σ2 is higher for patients, and under alternatives in which θ differs betwen patients and
controls due to the disease. If nc is large, the resulting loss of degrees of freedom in σ̂2 is
unimportant, but the higher variance in var(θ̂c) may possibly cost more, unless x̄(p) − x̄(c)

is small.
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A more predictive approach, leading to the same test statistic as the last one, is to
compare the observed patient responses with their predicted values, as predicted under a
model fitted to the controls,

y
(p)
i − ŷ

(p)
i , (11)

where ŷ
(p)
i = µ̂c + θ̂′cx

(p)
i . The average of these prediction errors is

ȳ(p) − µ̂c + θ̂′cx̄
(p) = ȳ(p) − ȳ(c) − θ̂′c(x̄

(p) − x̄(c)), (12)

that is the numerator in (10) above, with θ̂ from the controls. Hence, we obtain the same
test statistic again.

When θ̂c is used in the statistic (10), it can be difficult to compute the denominator
from standard package output. A simpler alternative is to approximate the denominator
by its expected value over a distribution for x assumed to be the same for patients and
controls:

E{(x̄(p) − x̄(c))′v̂ar(θ̂c)(x̄(p) − x̄(c))} = tr E{v̂ar(θ̂c)(x̄(p) − x̄(c))(x̄(p) − x̄(c))′}

≈ σ2

(
1
nc

+
1
np

)
dim(x)

nc
,

neglecting second order terms in dim(x)/nc. This yields the approximation for the de-
nominator of formula (10) as the square root of

σ̂2

(
1
nc

+
1
np

) (
1 +

dim(x)
nc

)
. (13)

This approximation was used in Castensson et al. (2002). It will tend to be conservative
if the x-variables are balanced by design. It is instructive to compare (13) with the
corresponding approximation when the full data estimator θ̂ is used. With this estimator,
the last factor of (13) is reduced to (

1 +
dim(x)
nc + np

)
.

This is the gain in precision from using all data in the estimation of θ, valid under the
null hypothesis.

In order to look for a difference between patients and controls in a more exploratory
way, we could compare a histogram of the prediction errors (11) for the patients with
a histogram of the residuals for the controls. However, a direct such comparison has
several defects. Residuals are not i.i.d., nor are prediction errors, since their variances
depend on the regressor x and they are all correlated in their dependence on θ̂ (or θ̂c).
Furthermore, residuals have smaller variances than prediction errors, not only for a fixed
x but typically also on the average. So if histograms should be compared, they should
be histograms for variance-standardized residuals and variance-standardized prediction
errors, respectively. This is illustrated in Figure 1 for those two genes, denoted HTR2C
and MAOB, which were classified as showing significant differences between controls and
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patients in the schizophrenia study. However, the variance standardization did not change
the picture much for these genes.

We have also found it informative to display data in the form of a scatter-plot of
observed responses against predicted values, y

(p)
i against ŷ

(p)
i , over-laid the analogous plot

for the controls. See Figure 2 for illustrations, for the same two genes as in Figure 1. The
HTR2C gene is seen to be more problematic than the MAOB gene, by showing a large
spread in responses and predicted values, with several values below the detection limit,
both for patients and controls. This was discussed near the end of Section 3.3.

Since the predicted values are linear in the covariates x, Figure 2 type of plots reveals
the extent to which y is explained by x. The reader can judge residuals and prediction
errors with respect to the position of the predicted value ŷ, for example informally putting
less weight on very low predictions or response values. Not only do outliers in y given x
stand out, vertically from the line y = ŷ, but also do outliers in x, via both y and ŷ, along
the line y = ŷ. More diagrams of this type are found in Castensson et al. (2002). With few
or a moderate number of genes, the plot for each gene may be looked at, whereas if the
number of genes is very high, consideration is likely to be confined to those genes which
are to some degree significant.

When regarding Figure 2 it should be kept in mind that residuals are slightly less
random than prediction errors. An attractive alternative plot, in which controls and
patients are more on the same footing, is formed if, for the controls, we plot yi against
leave-one-out cross-validated ŷi. This will be much more computer intensive, however.

With several genes tested we must pay consideration to the multiple testing effects,
of course. Castensson et al. (2002) used simple Bonferroni-corrected significance levels.
Since the number of genes studied here is of a much smaller magnitude than in microarray
studies, the mass significance problem is not at all as severe as with microarrays, cf. Dudoit
et al. (2002) for a recent discussion of p-value adjustment methods in the latter case. Even
if the number of genes is not very high, a quantile–quantile-plot could be suggested as an
informal way to judge the lower p-values. Also, even if each gene has been selected for
testing on its own merits, we are not likely to be helped by an outcome signalling a large
number of moderately significant genes, but only the most significant ones will then be
of much further interest. An alternative to ranking the significant genes with respect
to their p-values is to order and evaluate them according to their average effects, (12),
normed by their corresponding residual standard deviation, σ̂, as an indication of the
natural level of variation of y given x. To norm by the total variation in y could be
seriously misleading, since there are several irrelevant sources for the apparent variability
seen between individuals.

4.2 Multivariate aspects for multiple genes

Multivariate T 2 test extensions of the univariate t-tests from Section 4.1 are immediate.
They will be more powerful tests than the univariate ones if most genes contribute a little
to the difference between the two groups. However, if the groups differ only in a few genes,
those few effects might be so diluted by the other genes that the difference is not seen
in the multivariate test. Also, note that the aim of the assay is not to demonstrate a
significant difference between patients and controls, but to find those genes which possibly
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show a difference. The multivariate aspect concerns whether patients showing relatively
high (positive or negative) effects in one gene tend to show corresponding effects in some
other gene, to a higher extent than the controls. This would be expressed as a differential
co-regulation. To this end, we could look for the direction, that is the linear combination
over genes, which maximises the ratio of mean squares in the standardized residuals,
with the patients mean square in the numerator and the controls mean square in the
denominator. This is the eigenvector with largest eigenvalue of the corresponding ratio of
sums of squares and products matrices.

If we neglect the difference between true mean values and estimated mean values, with
estimates based on the controls, this would also be an invariant test statistic for testing
equality of two covariance matrices, but here used to identify a combination of mean value
effects and covariance effects. However, as taken over the whole set of genes, this criterion
turned out to be useless. Too much, the criterion appeared to favour directions of low
variation by chance in the controls.

When attention was restricted to the relatively few significant genes, it was easier
to make relevant comparisons of the correlation structure between patients and controls.
In the schizophrenia study only two genes were identified as significant. The variance-
standardized residuals turned out to be uncorrelated for the controls (r = −0.02), but
the corresponding standardized prediction errors for the patient group were substantially
negatively correlated (r = −0.45). This corresponded to one high eigenvalue in the matrix
ratio of sums of squares and products matrices mentioned above. Its eigenvalues were 2.9
and 1.0. The difference in covariance structures is clearly seen in a two-dimensional plot
of the variance-standardized residuals, Figure 3. The scientific conclusion is that there
is largely a joint reason behind the increased values of MAOB and the reduced values
of HTR2C for the patient group. In other words, the two genes are co-regulated for the
patients exclusively.

5 Discussion

In this paper we have discussed aspects of design and statistical inference in 5’-nuclease
assays. An analogous discussion concerning design and analysis of microarray studies
has been provided by Kerr & Churchill (2001b). The design problems are different, as
remarked in Section 2. In the analysis phase, Kerr & Churchill also fit linear (ANOVA)
type models for experimental factors. However, there are major differences. For example,
in microarray analyses heteroscedasticity between genes is a problem, because gene is a
factor with all its levels represented on the same plate/array, whereas in 5’-nuclease assays
the genes are represented by components of a multivariate vector, for which it is just
natural to allow an arbitrary covariance matrix.

Multivariate linear models with a nested error structure (RANCOVA) has a natural
role in the first stage of modelling. The high mutual correlation between genes in their
random model errors motivated the use of reference genes, to form additional covariates.
However, this also required some care, in order to avoid systematic errors due to different
regressions between and within individuals.

The statistical inference problem appears to have some nonstandard features, as com-
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pared with ordinary ANCOVA type situations. In particular, a differential effect need not
be seen in or is not even likely to be seen in the whole patient population, but rather
only in a patient subgroup, if it is a genetic effect. For the latter reason reason, a some-
what more powerful modification of the standard ANCOVA t-test was proposed, in which
parameters are estimated from controls only.
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Figure 1: Histograms for genes HTR2C and MAOB of standardized residuals/prediction

errors for controls/patients.
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Figure 2: Observed against predicted for genes HTR2C and MAOB for controls/patients.

Circles denote residuals for controls, and asterisks denote prediction errors for patients.
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Figure 3: Plot of variance-standardized residuals/prediction errors for genes HTR2C and

MAOB against each other. Circles denote residuals for controls, and asterisks denote

prediction errors for patients. Correlations are −0.08 for controls and −0.42 for patients.
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