
Conditional statistical inference and

quantification of relevance

Rolf Sundberg∗, Stockholm University

December 29, 2000

Abstract

We argue that it can be fruitful to take a predictive view on notions as the pre-
cision of a point estimator and the confidence of an interval estimator in frequentist
inference. This predictive approach has implications for conditional inference, because
it immediately allows a quantification of the concept of relevance for conditional in-
ference. Conditioning on an ancillary statistic makes inference more relevant in this
sense, provided that the ancillary is a precision index. Not all ancillary statistics
satisfy this demand. We discuss the problem of choice between alternative ancillary
statistics. The approach also has implications for the best choice of variance estimator,
taking account of correlations with the squared error of estimation itself. The theory
is illustrated by numerous examples, many of which are classical.
Keywords: ancillarity, confidence, precision index, precision of estimate, predictive
approach, variance estimators.

1 Introduction

In this paper we will discuss frequency-based statistical inference about a model parameter

in a statistical model. Quoting Cox (1958), we state that the aim of statistical inference

about a model parameter θ is to find out “what we can learn from the data that we

have”. When all probability statements about the parameter are interpreted as long-

run frequencies under hypothetical repetition, we should make sure that the long run

matches the given data in relevant aspects. This is often accomplished by restricting the

hypothetical repetitions to a more relevant set than the whole sample space. With the

notion of ancillarity, one (not quite precise) specification of this argument is expressed in

the conditionality principle, that inference about θ should be conditional on any ancillary

statistic, that is the conclusions should be drawn as if the ancillary statistic had been fixed

at its observed value, se e.g. Cox & Hinkley (1974, Sec. 2.3). This is a way of making the

inference relevant to the particular set of data (Cox & Hinkley, 1974, Sec. 2.4, Barndorff-

Nielsen & Cox, 1994, Sec. 2.4). On the other hand, it is well-known that we cannot argue

for conditioning using standard optimization criteria like minimum variance of estimators,
∗Research financed by the Swedish Natural Science Research Council
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minimum length of confidence intervals, or maximum power of significance tests, see e.g.

Cox & Hinkley, Sec. 4.4. Therefore it has appeared in literature as if we can only argue

for conditioning by reference to intuition and common sense (and well-behaved examples),

as expressed by McCullagh (1992):

“My own assessment of the case is that, even though the evidence is largely

circumstantial, the argument for conditioning is extremely compelling. The

fact that the theory is rooted in examples is simultaneously its strength and

its weakness.”

The motivation behind the present paper was a desire to understand better the con-

cept of relevance, the case for conditioning, and the role of ancillarity. It will be argued

that it can be fruitful to regard precision and confidence as quantities to be predicted.

This predictive approach immediately opens for a natural quantification of the concept of

relevance (Sec. 2.1). When the predictive principle is applied to situations with ancillary

statistics it tells us to make the inference conditional, provided that the ancillary statistic

is a precision index, that only affects the precision, in a sense to be specified in Sec. 2.2.

Consider for example the MLE θ̂, which is the same whether we condition on an

ancillary or not, and perhaps for simplicity assume θ̂ unbiased. The basic problems of

statistical inference are to attach to the observed value of θ̂ with maximum relevance a

standard error, a confidence interval, and perhaps also a significance level (p-value). We

will firstly and mostly discuss precision of point estimators, Sec. 2. This is not to pretend

that confidence statements should be less important than standard errors (which do not

have the same invariance properties), but variance estimation seems more primitive and

basic, and confidence results follow mostly by analogy, Sec. 3. We will discuss properties

required from ancillary statistics to make them suitable for conditioning (Sec. 2.2), and

the problem of choice between alternative ancillary statistics, when such exist (Sec. 2.5).

Variances, conditional or not, must usually be estimated. In Sec. 2.3 aspects of variance

estimation are found, taking into account possible correlation between a variance estimator

and the actual quadratic error. An extension of the quantitative criterion for relevance

from quadratic error to arbitrary loss functions is given in Sec. 2.4.

Another argument for constructing conditional procedures is the wish to obtain simi-

larity by eliminating nuisance parameters. In principle this argument applies to a different

class of situations than the one considered in the present paper, even though there is a

considerable overlap. Example 15 below illustrates such aspects.

In order not to shade the simple main theme of the paper we will avoid mathematical

formalities and intricacies. We do not want here to get involved in the mathematical

complications of exact higher moment calculations, cf. Sundberg (1994), or of higher order

asymptotics, cf. Reid (1995) for a review and Lindsay & Li (1997) for recent results.
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2 Precision of point estimators

2.1 The predictive principle

Suppose we have a statistical model with a parameter θ of interest. Let θ̂ be an unbi-

ased estimator of θ. Traditional theory and practice of statistical inference constructs a

precision value (standard error) to an observed θ̂ in two steps:

• As a measure of the squared error of θ̂, use its expected value v = E[(θ̂− θ)2]

• Typically this variance of θ̂ depends on θ and/or on nuisance parameters, v = vθ,ψ ,

so construct an estimate V for it, for example by inserting parameter estimates in

the variance v. This yields a (squared) standard error of θ̂.

Optimization is typically done separately for these two steps; thus in the second step we

will be told to estimate the variance v as precisely as possible. This is not a compelling

argumentation, however, because when doing so the aim of v has been forgotten, to rep-

resent our knowledge about the squared error of θ̂, (θ̂− θ)2. Different variance estimators

can be more or less correlated with this squared error (see Sec. 2.3). This can be taken

into account by selecting the variance estimator according to its properties as a predictor

of the actual (random) squared error (θ̂− θ)2. If we look for an (observable) statistic that

can be used to represent this squared error, we are in fact trying to predict it, since it is

random. This is the background for the following principle.

Predictive principle: A squared standard error should aim at predicting best pos-

sible the squared error (θ̂ − θ)2.

This principle is immediately quantifiable: Calculate the expected value of some mea-

sure of size of the prediction error (θ̂ − θ)2 − V , where V is a statistic to be used as a

predictor for (θ̂− θ)2, for example an estimator of v. If we use a quadratic measure of size

of this prediction error we are led to consider the quantity

MV = E[{(θ̂− θ)2 − V }2]. (1)

We will use this quantity, and it will be called the MSE of PSE for V , the mean

squared error of the predicted squared error. Alternatively (but not equivalently) we

could have used some other measure of the error than the squared error, for example the

relative squared error, or the absolute value of the error, cf. Section 2.4 where we replace

(θ̂−θ)2 by a general loss function L(θ̂, θ). Version (1) is often the only one allowing explicit

theoretic calculations, but for simulation studies we may as well use a different version.

Sandved (1968) formulated this criterion for an arbitrary loss function, even though she

called it estimation of the loss function. Her paper seems to have been largely forgotten,
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but Goutis & Casella (1995) called attention to it. The present author (Sundberg, 1994)

proposed and used the measure (1) to compare variance estimators in sample survey

inference. The criterion has also been used by Lindsay & Li (1997) to show that the inverse

of the observed Fisher information is the asymptotically optimal choice of predictor.

In Sandved’s Theorem 1 she showed that if the parametric model has a complete

sufficient statistic T , there is at most one statistic V , function of T , that is unbiased, i.e.

has expected value v, so if there is one, it is the unique best unbiased. Here is a simple

illustration of this result.

Example 1. The precision of a normal mean.

Suppose we have a fixed size n sample (y1, . . . , yn) from a normal distribution N (θ, σ2),

with unknown parameters, and let θ be estimated by the sample mean θ̂ = ȳ. Since

T = (ȳ, s2) is sufficient and complete, with s2 unbiased for σ2, Sandved’s result implies

that s2/n is the one and only unbiased predictor of (θ̂ − θ)2 that is a function of T . 2

Applications like this one ensure that a shift of paradigm to the predictive approach

would not bring us away from what we have conventionally learnt to do in standard

situations. However, we have less standard situations in mind here, and the next example

illustrates the type of results to come. There is certainly a consensus that we should

condition on an ancillary random sample size for the sake of relevance, so qualitatively

Example 2 will does not bring much new; the novel feature is that we have a quantitative

criterion (1) of the predictive principle establishing that conditioning improves relevance.

Example 2. A random size sample without nuisance parameters.

Suppose a random sample of random size N > 0 has unknown mean θ but known variance

σ2
0. To estimate θ we use the usual sample average ȳ, and we all know that conditionally

on the sample size, var(ȳ|N ) = σ2
0/N . By using this conditional variance as predictor of

the quadratic error, instead of the constant total variance var(ȳ) = σ2
0 E(1/N ), the MSE

of PSE is reduced by the quantity σ4
0 var(1/N ), from

var{(θ̂ − θ)2},

the total variance of the squared error, to

var{(θ̂ − θ)2} − σ4
0 var(1/N ).

2

The result of Example 2 is a direct consequence of Proposition 1 below. As before θ̂ is

assumed to be an unbiased estimator of θ, and even more, conditionally unbiased given a
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statistic U . The unbiasedness is not only imposed for mathematical convenience, but also

represents a necessity that there must not be serious (conditional) systematic error in θ̂,

see further Secion 2.2.

Proposition 1 Let U be a statistic such that

E(θ̂|U) = θ,

var(θ̂|U) = v(U) ,

where V = v(U) is a statistic to be used as predictor in (1). Then V has MSE of PSE

MV = var{(θ̂ − θ)2} − var(V ). (2)

Proof: Elementary, but since several analogous results will follow, the proof is written out

this first time. Adding and subtracting the expected value v = E{v(U)} within (1) we

find

E[{(θ̂− θ)2 − V }2] = var{(θ̂ − θ)2} − 2 cov{(θ̂ − θ)2, V }+ var{V }.

Here the covariance equals the last variance, since E{(θ̂ − θ)2|U} = V , and hence the

desired result follows. 2

Note that formula (2) per se does not require V to be a statistic (i.e. parameter-free).

We will later refer to Prop. 1 even when var(θ̂|U) involves parameters, and in Sec. 2.3 we

consider the modifications necessary when V is an estimator of var(θ̂|U).

Note also that the first term of (2) is independent of the choice of V , whereas the

second term quantifies the possible gain from conditioning on U . The proposition induces

a partial ordering of all possible U , as expressed in the corollary below.

Corollary 1 According to the predictive principle, the finer the partitioning induced by

U , the more relevant it is to measure the precision conditional on the observed value of U ,

for U such that θ̂ is conditionally unbiased (and var(θ̂|U) is a statistic).

Example 2 was a simple situation where Proposition 1 applies. Here is a modified

example of clear practical importance.

Example 3. Precision under post stratification.

Suppose a finite population is divided in H strata of known stratum sizes Nh,
∑

Nh = N ,

with unknown mean values Y h but strata variances S2
h regarded as known from previous

studies. Of interest are the strata mean values and the population mean value Y =∑
(Nh/N )Y h. After taking a simple random sample of fixed size n from the population,

this sample is post stratified, yielding a set n of random strata sample sizes nh, and

observed strata means ȳh. We assume the expected nh-values so large that the probability

for any nh being zero is negligible. The natural post stratified estimator of the population
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mean is Ŷ =
∑

(Nh/N )ȳh. Conventionally its precision would be expressed by the formula

for its total sampling variance, v say, but Holt & Smith (1979) argued for conditioning on

the ancillary nh-values and for using instead the usual variance under pre-stratification,

v(n) =
∑

(Nh/N )2(1− fh)S2
h/nh,

Since Ŷ is conditionally unbiased, v = E{v(n)}, and Proposition 1 applies with V = v(n).

Hence the argumentation by Holt & Smith is reinforced by the quantification of relevance

given above. An analogous argument can be given in the case of estimation of a particular

stratum mean, and approximate explicit formulae for the MSE of PSE can easily be

derived. The modifications needed when S2
h are estimated follow as in Sec. 2.3.

In less simple sample survey situations the choice of precision formula must typically

be discussed in the setting of a superpopulation model, cf. Sundberg (1994). 2

2.2 Ancillarity and precision indices

Consider a statistic U that is ancillary for θ, in the sense of having a distribution that does

not involve the parameter θ. Furthermore let us assume that θ̂ is conditionally unbiased,

given U , as in Proposition 1. Then the predictive principle supports the conditionality

principle, by implying that we should measure the precision conditionally on U .

The demand only that an ancillary statistic have a distribution not involving the

parameter θ is deliberately somewhat vague and less restrictive than for example the

definition in Barndorff-Nielsen & Cox (1994) or Cox & Hinkley (1974). They avoid some

of the counter-examples to the conditionality principle by demanding that the ancillary

statistic be part of the minimal sufficient statistic, in other words, that we first reduce

data to a minimal sufficient statistic before we look for an ancillary statistic. For a

comprehensive account of various ancillarity definitions, see for example Barndorff-Nielsen

(1978, Ch. 4). In the present approach, based on criterion 1, does not explicitly involve

the likelihood; Our use of the notion of ancillarity includes for example S-ancillarity, where

the distribution of the ancillary statistic is allowed to depend on a nuisance parameter,

variation independent of the parameter of interest (Barndorff-Nielsen & Cox, 1994, Sec.

2.5). It might appear a defect that we do not explicitly demand variation independence

here, but instead we assumed conditional unbiasedness of θ̂. This is a different but related

assumption, see Lemma 1 below. Essentially conditional unbiasedness is an assumption

on U to be a precision index, that affects only the precision of θ̂, not its location. This

seems to conform with what Fisher (1935, p. 48) had in mind when he wrote

“...ancillary statistics, which themselves tell us nothing about the value of the

parameter, but, instead, tell us how good an estimate we have made of it.”
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That the distribution of U does not involve θ is not a sufficient condition for an unbiased

estimator θ̂ to be also conditionally unbiased, given U , not even for the ML estimator.

The third of Basu’s (1964) examples of anomalous ancillary statistics provides a simple

but striking counter-example to such dreams. There are more of his examples in which

the conditional unbiasedness is violated, but they are not as simple as this one:

Example 4. Basu’s third example, lacking conditional unbiasedness.

Let Y be a single observation from a uniform distribution on the unit length interval

[θ, θ + 1], where the parameter θ is any real number. There is no unique ML estimator

of θ since the likelihood is constant on an interval. One unbiased estimator is θ̂ = [Y ],

the integer part of Y , and the fractional part U = Y − [Y ] is ancillary, having a uniform

distribution on the unit interval. For simplicity of writing, suppose 0 < θ < 1. Then θ̂

has a two-point distribution on 0 and 1, with probabilities (1− θ) and θ, respectively. It

follows that θ̂ is unbiased. However, given U , θ̂ has a one-point distribution on either 0 or

1, so θ̂ is far from conditionally unbiased for any value of U . 2

Basu’s example shows that conditional unbiasedness or something else is required.

Another simple such example is discussed in Sec. 3 of Helland (1995). This example can

be taken to represent classical randomization-based sampling inference in general.

Example 5. Helland’s sampling example

A coin flip decides whether Y is an observation from N (θ + α, 1) or from N (θ − α, 1),

where θ is the parameter of interest and α is a nuisance parameter. In other words, a

sample of size 1 from a population of size 2, with measurement errors, and the population

mean to be estimated. The result of the coin flip is ancillary, even in the strict sense of

being part of the minimal sufficient statistic. In this case a conditional inference provides

no information about θ, whereas inference in the total model does, with θ̂ = Y . Helland

comments on the difficulties to formulate a general principle telling why we should con-

dition in Cox’s classical example of two measuring instruments of different precision, but

not in this example (or in Basu’s examples). Based on criterion 1 we can again resolve the

problem by noting that Y is an unbiased estimator of θ that is not conditionally unbiased,

so the coin flip does not serve as a precision index. 2

Conditional unbiasedness should of course not be regarded as an absolute condition,

but we must be able to rule out statistics U yielding serious systematic conditional errors

of θ̂, like in Examples 4 and 5. The MSE of PSE criterion can do this, and the following

proposition shows how the MSE of PSE is affected by conditional bias, if we use the

conditional variance v(U) to predict (θ̂ − θ)2 in spite of the bias.
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Proposition 2 Let b(U) = E(θ̂|U)− θ and v(U) = var(θ̂|U) be the conditional bias and

conditional variance of θ̂, respectively, and suppose V = v(U) is used to predict the squared

error (θ̂ − θ)2. Then V has MSE of PSE

MV = var{(θ̂ − θ)2} − var{V }+ [E{b2(U)}]2 − 2 cov{b2(U), V }.

Proof: Elementary. 2

Example 4. Basu’s third example, cont’d.

In this example, with its unconditionally unbiased but conditionally extremely biased θ̂, it

can be quantified by Proposition 2 that it is (of course) much worse to use the conditional

variance v(U) ≡ 0 to measure precision than the unconditional variance θ(1 − θ). The

latter has MV = θ(1 − θ)(1 − 2θ)2. With v(U) = 0 instead, the MSE of PSE is always

higher, an increase by addition of the squared expected squared bias θ2(1− θ)2. We con-

clude from Proposition 2 that the predictive criterion tells us not to make the inference

conditional, in full agreement with common sense, whereas a blind conditioning on the an-

cillary statistic according to a general conditionality principle would lead totally wrong. 2

In some situations, like Example 4, we have reason to reconsider the choice of θ̂. In

other situations it might be reasonable to neglect the conditional bias, because it has a

small influence. We will return to this discussion later.

One immediate conclusion from Proposition 2 is that if b(U) = constant, be it zero or

not, we gain in MSE of PSE by replacing the unconditional variance by the conditional one

as predictor. As we have seen, not all ancillary statistics are such, but when the ancillary

U can be imagined as generated from a distribution in a complete family, unbiasedness ac-

tually implies conditional unbiasedness. We formulate this positive result in the following

Lemma, also found in slightly less generality as Theorem 3 (a) in Sandved (1968):

Lemma 1 Suppose the statistic U has a distribution that can be embedded in a complete

family g(u; ν) of distributions, with ν and θ variation independent and E(θ̂) independent

of ν. Then E(θ̂|U) does not depend on U , that is

E(θ̂|U) = E(θ̂)

for each (θ, ν). In particular, if θ̂ is unbiased, E(θ̂) = θ, it is also conditionally unbiased.

Proof: Just the definition of completeness. 2

Note that the family of distributions of U need not have been given in advance, it is

sufficient that we can embed the actual distribution of U in such a family. However, the

practical usefulness of the lemma appears to be rather limited, simply because properties

of estimators are typically analysed more easily conditionally than in the whole model.
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Example 2, cont’d. A random size sample without nuisance parameters.

Whether the distribution of the random sample size N is known or unknown, it is easy

to imagine this distribution embedded in a family of distributions on the positive integers

large enough for completeness to hold. Since θ̂ is unbiased, the lemma implies that it is

also conditionally unbiased. However, we already knew this from the construction of θ̂. 2

In all problematic examples of ancillary statistics, such as Basu’s third example and

Helland’s example above, the conditional unbiasedness fails seriously. In Helland’s exam-

ple we can easily embed U in a complete family, the Bernoulli distribution family, but the

Bernoulli parameter would go into E(θ̂) and violate the assumption that E(θ̂) must not

be affected. Basu (1964) realized that the problems in his examples appeared because U

was intrinsically defined within the experiment, and proposed that we must distinguish

between real (performable) and conceptual (non-performable) conditional experiments;

only the former type is naturally consistent with the conditionality principle. Kalbfleisch

(1975) tried to formalize this idea by his notions of experimental and mathematical an-

cillaries: An experimental ancillary represents the first stage of a two-stage experiment,

called an experimental mixture. What is and what is not an experimental mixture is to

Kalbfleisch dependent on the experiment actually performed. Buehler (1982) imposed

other restrictions, essentially demanding that the family of distributions of the MLE be

conditionally a location family in some parametrization, not dependent on U .

In our much more operational setting, based on the MSE of PSE criterion and referring

to a specific estimator to be used, conditional unbiasedness (or more generally constant

conditional bias) given an ancillary will guarantee that we can gain by conditioning on

the ancillary. This property will rarely hold unless Lemma 1 can be applied, that is

unless the distribution of U can be embedded in a complete family. This condition is not

only more operational but also slightly weaker than the demands of Basu and Kalbfleisch.

For example they would hardly accept as real or experimental configuration statistics in

location–scale families in general.

2.3 Variance estimators

Typically var(θ̂|U) will also depend on the parameters, (θ, ψ), where ψ is a nuisance param-

eter. We must distinguish between the theoretical conditional variance and a statistic V

used as an estimator for var(θ̂|U). Next proposition tells the MSE of PSE for a condition-

ally unbiased V , and shows that in a choice between variance estimators the most precise

one is not necessarily the best one, because alternatives can be more or less correlated

with the actual squared error. Examples follow.
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Proposition 3 Let U and V be statistics such that

E(θ̂|U) = θ,

E(V |U) = var(θ̂|U).

Then the predictor V has MSE of PSE

MV = var{(θ̂ − θ)2} − var{var(θ̂|U)}+ E{var(V |U)} − 2 E[cov{(θ̂ − θ)2, V |U}].

Here the first term is independent of how V and U are chosen, the second term represents

the ideal gain from conditioning on U (when var(θ̂|U) is known), the third term represents

the cost paid for estimating the unknown var(θ̂|U), and the last term quantifies the gain

or loss when V is conditionally correlated with the actual squared error.

Proof: Elementary. 2

It is helpful to see explicitly the simple version for an empty U :

Corollary 2 Let θ̂ be an unbiased estimator of θ and V an unbiased estimator of var(θ̂).

Then V regarded as predictor has MSE of PSE

MV = var{(θ̂ − θ)2}+ var(V )− 2 cov{(θ̂ − θ)2, V }.

Remark: An example from sample survey inference, where the best choice of V (least

MSE of PSE) depends crucially on the correlation between V and (θ̂ − θ)2, is analysed in

Sundberg (1994), cf. also Example 7 below.

Example 6. A random size normal sample with nuisance parameter.

Let a random sample of random size N be taken from N (θ, σ2), and let the parameters

be estimated by the usual sample mean ȳ and the sample variance s2, respectively, both

conditionally unbiased. The usual estimate of the conditional variance var(ȳ|N ) = σ2/N

is V = s2/N and since var(s2|N ) = 2 σ4/(N − 1), the corollary yields the MSE of PSE

M(s2/N ) = var{(θ̂ − θ)2} − σ4 var(1/N ) + 2σ4 E[1/{N 2(N − 1)}].

In comparison with Example 1, the last term here is new, representing the unavoidable

cost for having to estimate the nuisance parameter σ2 in var(θ̂|U). The covariance term

of Proposition 3 does not appear since s2 and ȳ are conditionally independent. Note also

that the distribution of N need not be known for the result to hold. 2

Example 7. Inference about the variance of a normal distribution.

Now let the variance be the parameter θ of interest in a normal distribution. Suppose that

we have a sample of size n from N (µ, θ), with θ̂ = s2. As well-known,

var(θ̂) = 2 θ2/(n− 1),
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an unbiased estimator of which is V = 2s4/(n + 1). In this case V and θ̂ are correlated,

and the result of Corollary 2 (with the three terms in the same order) reads

MV = var{(θ̂ − θ)2}+ 32 θ4(n + 2)/{(n− 1)3(n + 1)} − 96 θ4/(n− 1)3.

Note the remarkable fact that the covariance term (the last term) dominates the preceding

term (cost for estimating var(θ̂)). In other words, V is so highly positively correlated with

the squared error (θ̂ − θ)2 that we gain by using the estimate V instead of its expected

value E(V ) = var(θ̂)! 2

Example 8. Simple linear regression.

Let (Xi, Yi), i = 1, . . . , n, be a sequence of n independent bivariate normally distributed

pairs of random variables, and write

E(Y |X) = α + βX,

var(Y |X) = σ2 .

Thus the conditional distribution of Y has three parameters. The mean and the variance

τ2 of the marginal distribution of X may be regarded as known or fully unknown. In the

former case U = {Xi} is ancillary in the simple sense, in the latter case it is S-ancillary

for inference about α, β and σ. Let us consider inference about β based on the usual least

squares estimator β̂ = sxy/sxx, which is conditionally unbiased with conditional variance

σ2/sxx (sxx is the sum of squares). A conditionally unbiased estimator of this variance is

V = σ̂2/sxx, with the usual σ̂2. Application of Proposition 3 yields the MSE of PSE

MV = var{(β̂ − β)2} − σ4 var(1/sxx) + 2 σ4 E(1/s2
xx) / (n− 2) (3)

= var{(β̂ − β)2} − 2 (σ/τ)4/{(n− 3)2(n− 5)}+ 2 (σ/τ)4/{(n− 2)(n− 3)(n− 5)}.

The near-equality for large n of the estimation cost and the gain from conditioning can

be understood from the form of V as proportional to the ratio σ̂2/τ̂2 of two mutually

independent variance estimators with almost the same degrees of freedom, and the latter

representing U .

If we knew τ2, could we gain by using Vτ = σ̂2/τ2 instead of V = σ̂2/sxx? Corollary 2

yields the MSE of PSE for Vτ as

var{(β̂ − β)2}+ 2 (σ/τ)4/{n2(n− 2)},

corresponding to the first and last terms in (3). The missing gain from conditioning term

confirms that V is preferable to Vτ . 2
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2.4 Extension to general loss functions

The choice to measure the error of θ̂ by its squared deviation from θ, (θ̂ − θ)2, is to some

extent arbitrary. We could choose any loss function L(θ̂, θ) and formulate the predictive

principle and subsequent criteria and results in terms of L, following Sandved (1968).

Our ‘standard error’ should then be judged according to how well it predicts L(θ̂, θ), and

we will still use a quadratic measure of the prediction error. In particular, the following

analogue of Proposition 1 is easily demonstrated.

Proposition 4 Let L = L(θ̂, θ) be a loss function such that its second order moment

exists, and let U be such that E{L(θ̂, θ)|U} = l(U) is a statistic that might be used to

predict L(θ̂, θ). Then,

E[{L(θ̂, θ)− l(U)}2] = var{L(θ̂, θ)} − var[l(U)]. (4)

Hence, according to the predictive principle for loss function L it is more relevant to

measure the precision conditional on the observed value of U (unless l(U) = constant).

Proof: Immediate. 2

Proposition 1 is retained for quadratic loss L and l(U) = var(θ̂|U), when additionally

E(θ̂|U) = θ. Proposition 4 shows that in principle the previously established relevance in

conditioning on ancillary information is not dependent on a quadratic loss. In particular,

Proposition 4 can be applied in some non-regular situations where the second moment

of the quadratic loss does not exist. The Cauchy location model with n = 2 provides a

relatively simple such example:

Example 9. Cauchy models.

In the Cauchy location model, with density

p(y; θ) =
1
π

1
1 + (y − θ)2

,

the configuration U of an iid sample is ancillary. With a sample size n = 2 explicit

calculations are possible. The MLE is then

θ̂ = Ȳ .

This estimator does not have finite mean and variance, since Ȳ has the same Cauchy

distribution as the individual Yi. Conditional moments exist, however. The configuration

can be represented by

U = (Y1 − Y2)/2 ,
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which is also Cauchy. The pair (θ̂, U) is minimal sufficient and the distribution of U does

not depend on θ. For given U , the conditional density of θ̂ is

p(θ̂|U = u) =
2
π

1 + u2

{1 + (θ̂ − θ + u)2}{1 + (θ̂ − θ − u)2}
,

so in particular θ̂ is conditionally unbiased for each fixed u, Also the conditional variance

v(U) exists, albeit not its expected value over the distribution of U . Since necessary mo-

ments thus do not exist we cannot apply Proposition 1 to motivate that inference should

be conditional. However, Proposition 4 is applicable as soon as the loss function has a

second moment. Thus we conclude even in this non-regular example that we should make

the inference conditional on the value of U . In the Cauchy location–scale model (with

n ≥ 3), the problems are more intricate, however, see the continued discussion in the next

section. 2

2.5 Choice between ancillary statistics

Consider an estimator θ̂ in a model, e.g. the ML estimator. The MSE of PSE measure (1)

can be used to find among a number of potential error predictors the one which is most

relevant for the inference about θ̂. Particular candidates are based on the conditional

variance given a conditioning statistic U , v(U) = var(θ̂|U), cf. Proposition 1.

The conditioning statistic U need not be an ancillary statistic, even though it frequently

will be. The problem of choice of an ancillary U has been particularly discussed in the

literature, since the conditionality principle is formulated for ancillary statistics. If U is a

function of another ancillary U1 that is a precision index, it follows from Corollary 1 that

U1 is preferable to U , at least when we neglect the possible problems caused by parameter

estimation in the conditional variances (cf. Proposition 3). The serious problems appear

when there is no maximal ancillary statistic, but two or more statistics are individually

but not jointly ancillary. That such anomalous situations exist was first pointed out by

Basu (1964). Example 12 below shows that they can also occur is statistical practice.

As a resolution of the problem of choice between ancillary statistics for conditioning, Cox

(1971) proposed that the variance of the conditional Fisher information should be used as

criterion, a higher such variance indicating a higher potential to distinguish between out-

comes of more or less information about the parameter, and in this way best representing

the relevance. Related discussion can be found in Fraser (1973), Becker & Gordon (1983),

Lloyd (1992), McCullagh (1992).

From a principle point of view the predictive approach makes the problem much simpler

and makes the anomaly less disturbing, since the role of ancillarity is diminished. Accord-

ing to Proposition 1 (assuming its requirement of conditional unbiasedness satisfied) the
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predictive principle says that among precision indices we should select that particular con-

ditional variance v(U) = var(θ̂|U) which has the largest variance, var{v(U)}. According to

the Cox (1971) criterion we should select the U that maximizes var{i(θ|U)}, where i(θ|U)

is the conditional expected Fisher information. In regular cases the conditional informa-

tion will be exactly or approximately equal to the inverse of the conditional variance of

the ML estimator, so the Cox criterion may then be written approximately as ‘maximize

var{1/var(θ̂|U)}’. This is not identically the same criterion as in Proposition 1, since the

conditional variance has now been inverted. However, both criteria will typically yield the

same ordering. Specifically, a propagation of errors calculation gives

var{1/var(θ̂|U)} ≈ var{var(θ̂|U)}/E{var(θ̂|U)}4 = var{var(θ̂|)U}/var(θ̂)4 .

The equality to the right holds provided θ̂ is conditionally unbiased.

In the predictive approach we can also easily incorporate the effects of estimated pa-

rameters in the variances, as shown in Proposition 3 above. To the contrary, it is certainly

not evident how Cox’s criterion should be regarded and modified in the light of parameter

uncertainty.

The discussion above assumed that each U was a precision index, so that (conditional)

unbiasedness was satisfied. Otherwise neither variance nor Fisher information would be of

relevance on its own. Going now to known examples of non-uniqueness of ancillary statis-

tics (i.e. lack of maximal ancillary), it turns out that in none of them is this requirement

satisfied! We will discuss some examples here, but must leave open the question whether

there exist situations without a maximal ancillary in which the competing ancillaries are

proper precision indices.

Example 10. Multinomial 2× 2 table with separately but not jointly ancillary marginals.

Consider n observations multinomially distributed in a 2× 2 table with cell and marginal

probabilities as shown. The parameter θ is of course restricted to the interval [-1,1].

(2 + θ)/6 (2− θ)/6 2/3
(1− θ)/6 (1 + θ)/6 1/3

1/2 1/2

From the marginal probabilities it is seen that both row sums and column sums are

ancillary — they are not jointly so, however. This is the example used by Cox (1971) to

illustrate the use of his criterion, and from which he concluded that we should condition

on rows rather than on columns. It has been much discussed in the literature ever since it

appeared in Basu (1964) in a slightly different version. The question whether the ancillary

statistics are precision indices has typically been neglected, however. Strictly speaking

they are not. Therefore this discussion is not valid for small samples, when bias is not

negligible, with the paper by Barnard & Sprott (1971) on transformation invariance and

likelihood shape aspects as an exception.
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A numerical study of relevance for sample sizes up to n = 50 has been described in

some detail in Sundberg (1996). In this study conditional and unconditional variances and

inverses of expected and observed informations were compared as virtual predictors (that

is with true θ instead of θ̂). Except for very small samples, conditioning on row sums was

found uniformly (in θ) more relevant than conditioning on column sums, in agreement with

Cox’s criterion, and also more relevant than not conditioning at all. On the other hand,

for parts of the parameter space, widening with increasing n, it was even more relevant to

condition on row and column sums jointly, even though they are not jointly ancillary, or

to use the inverse of the observed information. For some set of θ-values relatively close to

1, the inverse observed information was much worse, however.

A general conclusion drawn from this observation is that the asymptotic behaviour (as

n → ∞) of the inverse observed information demonstrated by Lindsay & Li (1997) need

not be uniform in θ, so the asymptotic result need not carry over to finite n. 2

Example 11. Bivariate normal with only correlation unknown.

Suppose we have a sample {xi, yi}n1 from N (0, 0, 1, 1, θ), that is a bivariate normal with

correlation coefficient θ, whose marginals are standard normal, N (0, 1). This is Example 1

of Basu (1964). The minimal sufficient statistic can be represented by t = (sxy, sxx+ syy),

where sxy =
∑

xiyi /n and sxx and syy are defined analogously. The MLE θ̂ = θ̂(t)

is the solution of a third degree equation, so it cannot be explicitly studied. There is

no ancillary statistic that is a function of t. If we allow ancillary statistics which are

not functions of t, we could choose any of the two equivalent statistics sxx and syy , but

then the new problem appears that, for symmetry reasons, there is no criterion that helps

choosing between them. This was the dilemma pointed out by Basu (1964). For situations

when there is no exact ancillary function of t, much intricate work has been devoted to

the construction of approximately (asymptotically, locally) ancillary statistics by second

order asymptotics, (Efron & Hinkley, 1978, Barndorff-Nielsen, 1980, Cox, 1980, Hinkley,

1980, McCullagh, 1984, 1987, Severini 1993, Barndorff-Nielsen & Cox, 1994). If we look

for approximate ancillary statistics in this case, the statistic sxx+syy is not ancillary since

sxx and syy are correlated to an extent that depends on θ, but it is second order locally

ancillary at the parameter point θ = 0 (since its expected value is constant, = 2, and its

variance is locally quadratic at θ = 0, being 4(1 + θ2)/n).

For precision estimation local ancillaries are more problematic than for hypothesis

testing, when the hypothesis specifies a particular parameter value of interest. Also, the

adequacy for moderately sized samples is unclear. In Sundberg (1996) was demonstrated,

by referring to a simulation study with moderate n and to asymptotics, including Cox’s

criterion without the ancillarity requirement, that conditional precision given the approxi-
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mate ancillary sxx+syy was more relevant than given either of the exact ancillary statistics

sxx or syy . 2

Example 12. A 2 × 2 table from genetic linkage analysis, with separately but not jointly

ancillary margins.

A classical crossing trial in genetic linkage analysis combines features of Examples 10 and

11, having exchangeable ancillary statistics like in Example 11. Individuals having alleles A

and B at two loci on a chromosome and a and b on the other one in the chromosome pair are

cross-fertilized. If A and B are dominant over a and b respectively, the corresponding four

different offspring phenotypes have multinomial probilities according to the following table,

with θ being the single parameter of interest, θ = (1− p)2 in terms of the recombination

probability p. Independence between loci corresponds to p = 1/2, that is θ = 1/4, and

only values 1/4 ≤ θ ≤ 1 are genetically reasonable.

(2 + θ)/4 (1− θ)/4 3/4
(1− θ)/4 θ/4 1/4

3/4 1/4

This model has been used in genetics since the 1920’s and is for example discussed in two

of Fisher’s books (Fisher, 1990, Statistical Methods 57.1-2 & Experimental Design 71).

Later it appears to have become a favourite example in introductions to the EM algorithm,

despite the fact that the MLE can be explicitly written down. However, it appears not

to have been discussed from the point of view of ancillarity and conditional inference, in

contrast to the related artificial Examples 10 and 11 above.

The model is a curved exponential family, index (2,1). Minimal sufficient statistic

is any pair of components of the three statistics n11, n12 + n21, and n22, with obvious

notations nij, and with
∑

nij = n fixed. There is no ancillary component of it. However,

the row sums, r = n̄1. (and n− r), or the column sums, s = n̄.1 (and n− s), are ancillary

in the (weaker) sense of having distributions free from the parameter, as obvious from the

margins of the probability table. Hence, we may pose the question whether it pays to

condition on one of them. But then, on rows or columns? For symmetry reasons, Cox’s

criterion does not help us select. If we select for example r, is r a precision index?

Complete enumeration studies for some n-values up to n = 50 were carried out to

compare the MSE of PSE for different information statistics, as functions of the true θ.

Consider first the conditional V = i(θ̂|r)−1 and the unconditional V = i(θ̂)−1, with the

MLE θ̂ inserted. At least for n ≥ 25 the conditional bias of θ̂ was negligible, so r could

well be regarded as a precision index. However, the MSE of PSE showed only a very tiny

gain from conditioning on r, irrespective of θ. From a practical point of view, it could be

concluded that the single margin r (or s) was essentially irrelevant for precision. This in
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a sense resolved the ambiguity of choice between r and s.

The asymptotic result by Lindsay & Li (1997) speaks for the inverse of the observed

information, V = j(θ̂)−1 as an alternative, and in between we could also imagine a con-

ditioning on {r, s} jointly, V = i(θ̂|r, s)−1, even though this statistic admittedly is not

ancillary and is numerically inconvenient. It turned out that these two statistics had a

clearly reduced MSE of PSE over a large central part of the parameter space, but in other

parts they showed the opposite behaviour. Hence none of them could be advocated as

uniformly more relevant than the ordinary Fisher information for these finite samples.

Going over from θ to p as parameter of interest, the MSE of PSE curves changed, of

course, but qualitatively the results and conclusions remained the same. 2

The previous examples concerned situations with two ancillary statistics to choose be-

tween. Lloyd (1992) in his Example 1 has a variation with one exact and one approximate

ancillary, where only the latter is informative. If an MSE of PSE type criterion is followed,

the more informative conditioning variable will be selected.

Example 9. Cauchy models, cont’d.

Another problem appears in the Cauchy location-scale family (McCullagh, 1992). If Y

is Cauchy, so is also 1/(Y + c) for any c, but the ancillary configuration statistics for all

these Cauchy families are different, and not jointly ancillary. McCullagh notes that for

symmetry reasons Cox’s criterion does not help us choose between them. However, as

soon as a specific θ is declared to be the parameter of interest, the predictive principle

should (at least in principle) be able to resolve the problem, because different ancillary

statistics will yield different conditional distributions of θ̂, and therefore different MSE of

PSE values. In practice, the numerical problems of carrying out such comparisons might

be substantial, however. 2

3 Interval confidence and test significance

To a point estimate we attach a measure of its error in the long run. To an interval estimate

we attach a confidence number between 0 and 1 telling how well the interval construction

succeeds in covering the true parameter value in the long run (the probability that the

interval covers the true parameter value). Conventionally this interval is chosen such that

the confidence level has a constant prespecified value. For discussion of ancillary statistics

and relevance of conditional inference it is natural to allow non-constant confidence levels,

and the confidence level is then naturally regarded from the predictive point of view, in

analogy with the predictive principle for the error of a point estimator. We predict whether
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the interval covers the parameter or not, and a constant confidence level will then be the

best constant predictor in the sense of minimizing among constants a mean squared error

criterion, see below. However, in some situations better predictors exist.

Suppose data represented by (θ̂, ψ̂, U) are observed, where θ̂ and ψ̂ are estimates of the

parameter of interest, θ, and a nuisance parameter ψ, respectively, and U is an ancillary

or other potential conditioning variate. In contrast to Section 2, we need no longer assume

that θ is scalar. Let R(θ̂, ψ̂, U) be a confidence region for θ, and let

ξ =

{
0 if θ ∈ R(θ̂, ψ̂, U)
1 otherwise

If R(θ̂, ψ̂, U) is a 1− α confidence procedure in the total model, then

P (ξ = 0) = 1− α for any θ.

As an alternative consider now confidence statements conditional on U for the same region

R(θ̂, ψ̂, U). Suppose we can attach a confidence level 1− α(U) to R(θ̂, ψ̂, U) for given U ,

that is suppose there is a function α(U) independent of θ such that

P (ξ = 0|U) = 1− α(U) for any θ. (5)

The crucial requirement (5) is essentially the same as Property P5 in Buehler’s (1982) list

of properties which can (but need not) be possessed by an ancillary statistic U .

That U be ancillary is neither necessary or sufficient for (5) to hold, of course. Also, (5)

trivially implies E{α(U)} = α, be U ancillary or not. This has been stressed for example

in the reflective paper by Dawid (1991).

To answer whether a conditional confidence statement is more relevant than an uncon-

ditional one we use the predictive principle as basis and consider α or α(U) as predictor

of ξ. To judge a predictor α(U) we will use the MSE of predicted confidence, MSE of PC,

and calculate

E[{ξ − α(U)}2]. (6)

This MSE type measure is chosen for convenience and is analogous with the MSE of PSE

studied in Section 2. From different perspectives it has been used in several papers from

Robinson (1979) onwards, see Goutis & Casella (1995, Sec. 4). Among constant predictors

of ξ, α yields the minimium value α(1−α) of the measure (6). The next proposition shows

that a variable α(U) satisfying (5) is a more efficient predictor, i.e. is more relevant. The

result is essentially a special case of Proposition 4.

Proposition 5 Under the set-up formulated above, with condition (5) satisfied, we have

E[{ξ − α(U)}2] = var(ξ)− var{α(U)} = α(1− α)− var{α(U)},
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so α(U) is more relevant than a constant α, and the finer the partitioning induced by U ,

the more relevant is α(U).

Proof: Elementary, and quite analogous with Proposition 1. 2

A classical simple and drastic example for the application of Proposition 5 concerns the

conditional confidence level of an unconditional construction for the location parameter of

a fixed length uniform distribution. The sample range is a conditioning ancillary statistic.

For recent literature, see Barndorff-Nielsen & Cox (1994, Ex. 2.17) and Goutis & Casella

(1995, Ex. 4) . We will not go into details here.

If we have a confidence interval construction of total confidence level 1− α, for which

Proposition 5 states that a variable confidence level 1−α(U) is more relevant, we may of

course respond by changing the construction to be conditionally of constant level 1− α.

This is what we should do if we want to specify the confidence level to be α already before

we have observed U . Examples 13 and 14 below illustrate this principle.

Example 13. A normal sample confidence interval.

Suppose we have a sample from N (θ, 1), and suppose we do not utilize the known variance

in the confidence interval construction for θ, but form a conventional t-interval around the

sample mean, based on the sample variance s2. The conditional confidence level given s

will exist and depend on s, being α(s) = Φ(t1−α/2 s) − Φ(tα/2 s), where tα denotes the α

quantile of the t distribution in question. Proposition 5 states that if we use this confi-

dence interval construction in the given model, and believe in the model, we should better

tell the conditional level 1 − α(s) than the total level 1 − α. If we next realize we want

a conditionally constant level, we modify the width of each conditional interval to obtain

this desired level. We should of course not be surprised to find that the new interval is

now simply the standard interval for known variance. 2

As far as significance tests concern parameters and can be represented as inverse con-

fidence procedures the results on conditioning will be applicable to testing as well. For

other types of hypothesis testing, for example goodness-of-fit tests, the present ideas seem

not applicable, because test procedures per se do not have quantities to be predicted. Our

treatment of significance tests goes through their relationship with confidence regions and

confidence levels. Suppose we have constructed a size α test of the hypothesis θ = θ0 by

rejecting the hypothesis if θ0 is outside the confidence region R(θ̂, ψ̂, U). Let ξ be defined

as above, and α(U) the conditional size of the test, given U. Then, in the same way as for

confidence levels Proposition 5 follows for tests of size α:

Corollary 3 Confidence regions and rejection regions for which we can split the sample

space according to the values of a statistic U and obtain conditional confidence levels
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(5) and corresponding conditional tests, respectively, should be performed as conditional

procedures. Thus, if we want to state a fixed confidence level 1 − α or test size α, the

region should be constructed to be conditionally 1− α and α, respectively.

Example 14. Two measuring instruments.

This much quoted example appears in slightly different versions in Cox (1958) and Cox

& Hinkley (1974). Two measuring instruments are known to have high and low precision,

respectively. One instrument is selected by coin tossing and a measurement is obtained for

testing whether the mean value is some θ. The most powerful size α test approximately

rejects as a size 2α test when we have chosen the precise instrument, and as a size ≈ 0

test in the other case. Analogously, the confidence procedure of total confidence level

1− α that yields intervals of constant length or smallest expected length will have a very

high conditional confidence when the precise instrument is used, but confidence close to

1−2α when the imprecise instrument is used. According to Corollary 3 we should instead

construct the most powerful conditional size α test, or the equivalent best conditional

level 1− α confidence interval procedure. This is in full agreement with the result of the

qualitative reasoning about relevance found in the references cited. 2

Example 15. Test for association in a 2× 2 table.

Suppose a random sample of individuals from a large population are sorted in a 2 × 2

table according to two binary criteria, and that we want to test for independence between

the two criteria, or more generally for a specified degree of association. Typically the

marginal probabilities are unknown nuisance parameters, but they can be eliminated by

conditioning on the margins U (which under independence are jointly sufficient for the

marginal probabilities). This leads to Fisher’s hypergeometric exact test, but even its

asymptotic χ2 version may be regarded from the conditional point of view, as stressed by

Yates (1984). The margins are not ancillary in the simple sense, but only in a generalized

meaning, see Barndorff-Nielsen & Cox (1994, Ex. 2.22), Zhu & Reid (1994), or Yates

(1984): “margins provide virtually no information on the existence of association”. This

has influenced arguments against conditional testing, see for example the review given by

Yates (1984) and the two papers by Upton (1982, 1992), who converted in the mean time

from the unconditional to the conditional standpoint.

The predictive approach yields some support to using a conditional test. The hypoth-

esis of independence may be parametrized by the log odds ratio as parameter θ of interest.

Suppose we consider a test for θ = 0 that has a conditional interpretation given U , i.e. that

satisfies condition (5) for some size α(U). We may extend this test to a conditional test

of the same size α(U) for any θ = θ0 (randomization can cope with the discreteness), and
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regard the equivalent confidence region interpretation. Proposition 6 states that for sake

of relevance the conditional confidence or significance level should be stated. This is the

support given by the predictive approach. On the other hand we cannot use the predictive

approach to argue against another test that does not allow a conditional interpretation.

This corresponds to the fact that the predictive approach does not tell us what estimator

θ̂ to use for θ, only about how its precision should be quantified. 2

A frequent complication for the application of Proposition 5 is that the degree of con-

fidence/significance to be attached is often known only approximately or asymptotically,

based on a normal or χ2 approximation of a pivotal or test statistic. This will add squared

bias contributions and additional variance and covariance terms to the expression for the

MSE of PC in Proposition 5, like in Proposition 3 above, cf. next example (Ex. 12 cont’d).

For example, it might be better to use a known and accurate fixed α than an inaccurately

known α(U). However, often when U is an ancillary statistic only affecting the precision,

like the random size examples above, α(U) will be known more accurately than α.

Example 12. A 2× 2 table from genetic linkage analysis, cont’d.

This example was discussed in Section 2.5 from the point of view of variance estimators

and their MSE of PSE functions. Here we give some results on confidence prediction from

the same enumeration studies, n = 25 and n = 50. For more details, see Sundberg (2000).

An interval estimator was constructed by simply approximating the distribution of

θ̂ by a N (θ, i(θ)−1). Comparisons were carried out for confidence predictors based on

normal distributions with inverse variance i(θ), i(θ|r), i(θ|r, s), or j(θ). In a central part

of the parameter space the choice of variance had not much influence on either coverage

probabilities or MSE of PC. Even outside the central region, i(θ|r) agreed almost perfectly

with i(θ). For small θ there was some advantage in using i(θ|r, s) or j(θ), but for large θ

on the other hand, they behaved much worse in coverage and MSE of PC. These effects

could be well explained from the magnitudes and signs of the variances and covariances of

the predicted confidence α(U) and the indicator variable ξ. The bias had generally little

influence. Hence the conclusion is analogous with that for the MSE of PSE:

• It does not pay to base confidence statements on i(θ|r) (or i(θ|s))

• In some parameter interval, i(θ|r, s) or j(θ) can yield an increased relevance, but in

other intervals the opposite holds. Hence, their usage cannot be generally recom-

mended over i(θ), either.

This means again that the asymptotic advantage of the observed information (Lindsay &

Li, 1997) does not carry over immediately to the finite sample situations. The example
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also asks for a statistic that is better approximated by the normal than θ̂ itself.

4 Concluding discussion

In this paper we have argued that precision (variance) of a point estimator and confidence

of an interval estimator represent quantities to be predicted. This predictive approach

could be regarded as a new paradigm for frequency-based statistical inference. However,

it must be stressed that the principle does not tell what estimator or interval (region) to

use, only how we should look at its precision/confidence. Also, the principle does not imply

that we should change standard methodology. Its most important aspect might be that

it admits a natural MSE type quantification of the concept of relevance, which has impli-

cations for when precision/confidence should be stated conditionally. Ancillary statistics

often qualify for this, but not necessarily (they need also be precision indices). The clas-

sical ancillarity paradoxes become less paradoxical in the light of the pragmatic relevance

criterion. On the other hand non-ancillary statistics may qualify, depending on the situ-

ation and on the particular estimator or interval construction in question. In connection

with ML estimators the observed Fisher information is an obvious candidate, because it

may be taken as approximately ancillary, see Efron & Hinkley (1978) and Lindsay & Li

(1997) for asymptotically valid results supporting the observed Fisher information over

the expected. However, the exact calculations in Examples 10 and 12 indicated that the

asymptotics were not uniform, which means that the asymptotic results do not necessarily

carry over to finite samples.

The theory given might seem largely unrelated with the concepts of likelihood and

invariance, and in a strict sense it is. Standard errors and interval estimates as concepts

are not directly connected with likelihoods and they are often not constructed to be invari-

ant under nonlinear reparametrizations (e.g. standard-error-based confidence intervals).

However, there is no conflict between the predictive approach and desires to use proce-

dures derived from likelihoods (MLE, Fisher information, likelihood-based intervals) or to

use invariant procedures. Specifically, note the role of likelihood for suggesting statistics

to condition on. Cox’s criterion would not have been less likelihood-based if it had been

formulated in terms of the inverse conditional information instead of the conditional in-

formation itself. For precision indices it would then have been even more like the MSE of

PSE criterion, but much less tractable for theoretical calculations than it is now. More

important, it would remain to connect Cox’s criterion with a demand for the ancillary

to be a precision index, and then we would be even closer to the predictive approach.

The deviation from likelihood and invariance comes when we specify the MSE of PSE or

some similar quantitative measure for assessing relevance. The main motivation for the
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quadratic form of the measures used above is that it makes them relatively easy to deal

with theoretically. For enumeration or simulation studies other measures could be used,

according to taste.

It must be admitted that many of the examples given in the paper are artificial,

aimed at being either simple or classics. Several of the classics have turned out to require

extensive studies for a more complete understanding. The same is true for many realistic

situations of practical interest, like the genetics example, Example 12. Another type

of situations where an extensive numerical study sometimes could contribute further to

the question of conditional inference, are those with approximate ancillary statistics. An

example is the three-parametric generalized extreme value distribution, studied by Dixon

et al. (1998) and applied to sea-levels and insurance claims data. But in each such case

one must ask whether the calculations could be worth-while.

Some examples which first looked fruitful for a predictive study of conditional inference

have turned out to be dominated by the bias aspect. As an example, in an exponential

life test study with censoring, should precision be measured conditionally, given the total

time on test? It turned out that bias in coverage probabilities was the factor of main

importance (Sundberg, 2001).

For some sample survey estimators of population characteristics, proposed variance

estimators exist in abundance in the literature. The MSE of PSE criterion makes it

possible to rank them, see Sundberg (1994) for a study of variance estimators for use with

the ratio estimator. The result of that paper was that some of the variance estimators

could be ruled out as unsatisfactory, and previous rankings based only on the variances

of the variance estimators could be revised. Other situations which could be analysed in

the same way include the regression estimator, quite analogous to the ratio estimator, and

estimators used in subsampling designs.
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