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SUMMARY

We consider calibration of hyphenated instruments with particular focus on determination
of the unknown concentrations of new specimens. A hyphenated instrument generates for
each specimen a two-way array of data. These are assumed to depend on the concentrations
through a bilinear regression model, where each constituent is characterized by a pair of pro-
files to be determined in the calibration. We discuss the problem of predicting the unknown
concentrations in a new specimen, after calibration. We formulate three different predictor
construction methods, a “näıve” method, a least squares method, and a refined version of the
latter that takes account of the calibration uncertainty. We give formulae for the uncertainty
of the predictors under white noise, when calibration can be seen as precise. We refine these
formulae to allow for calibration uncertainty, in particular when calibration is carried out by
the bilinear least squares (BLLS) method or the singular value decomposition (SVD) method
proposed by Linder and Sundberg (Chemometrics Intell. Lab. Syst., 42, 159–178 (1998)). By

error propagation formulae and previous results on the precision of Â and B̂ we can obtain
approximate standard errors for the predicted concentrations, according to each of the two es-
timation methods. The performance of the predictors and the precision formulae is illustrated
on both real (fluorescence) and simulated data.

KEY WORDS: bilinear regression, BLLS estimation method, calibration, fluorescence data,
hyphenated instruments, LS prediction, PARAFAC, prediction, second order calibration, SVD
estimation method

1 Introduction

For efficient quantitative analysis of multicomponent systems in analytical chemistry, hyphenated
instruments can be used, generating two-dimensional arrays of data for each specimen. For many
such instruments, including LC–UV, LC–MS, GC–MS, GC–FTIR and excitation-emission fluores-
cence, this array has a bilinear structure. This bilinear structure motivates a bilinear regression
model for the dependence on concentrations. It is not evident how determination/prediction of
new specimens should best be carried out through a calibrated bilinear regression. We will discuss
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different prediction methods suited for this situation and give formulae for their uncertainty, and
we will combine these prediction methods with two different calibration methods. A theoretical
statistical analysis will be supplemented by a simulation study and an illustration on excitation–
emission data.

1.1 Second order calibration

Sanchez and Kowalski 1 coined the terms zero, first and second order calibration. Zero order
calibration is the univariate situation, represented by for example a monochromatic photometer
and a single constituent to be quantified. The classical statistical calibration procedure is to fit
a linear regression of instrument response (absorbance, say) on concentration, motivated by the
Lambert–Beer law, and invert this relationship to determine the concentration in a new specimen.
However, in “natural calibration”, when all specimens are regarded as sampled from some natural
population, the classical procedure should be replaced by a truly predictive point of view. The
best predictor is given by the direct regression of concentration on absorbance, i.e. regression the
other way round. First order calibration is the multi-dimensional extension to several wavelengths
and one or several constituents. The predictive point of view is here dominating in practice, that is
concentrations are regressed on the spectral data, if not directly as in OLS and ridge regression, so
via some sort of latent variable representation as in PLS and PCR. However, there are alternative
multivariate regression methods for regression of the spectral data on the concentrations, extending
the classical approach from the univariate case. Such methods might be motivated if the calibration
specimens are strongly controlled. The richer data from first order calibration allow interferents
to be detected during prediction, but not to be corrected for. The data arrays of hyphenated
instruments are even richer, and one calibration specimen is in principle enough to determine
several constituents in a new specimen (GRAM 2). Also, in second order calibration it is possible
not only to detect, but also to correct for the presence of interfering species 1. This so called second
order advantage is occasionally even found as part of the definition of second order calibration.

In second order calibration three different principles can be used for determination (prediction)
of a new concentration. If the classical approach is followed, the bilinear regression should first be
calibrated on some specimens of known composition, and the fitted bilinear regression model in-
verted for the determination of the new concentrations. Linder & Sundberg 3 studied two methods
for the calibration phase, bilinear least squares (BLLS) and what they called the singular value
decomposition (SVD) methods of estimation. This principle is followed and investigated in the
present paper. Different inversion methods will be discussed, and the most näıve one will be found
theoretically inefficient under white noise.

Another two-stage principle is represented by methods of PARAFAC type, see Bro 4 for a
review (in particular its Section 10). The idea is then first to fit a model with all concentrations
regarded as unknowns, and next for the prediction phase to calibrate the PARAFAC solution
against known concentrations by multiple regression of scores (“estimated” concentrations) on
true concentrations. Two designs of PARAFAC are obtained depending on whether the unknown
specimens are included already in the model fit, or predicted separately. The present approach is
relevant for the latter design. This design is necessary if specimens arrive sequentially after the
calibration, but could be advocated also in other cases.

The third principle is represented by PLS and PCR type procedures, where the concentrations
are regressed on the instrument data 5,6,7. In their simplest versions these methods do not utilize
the bilinear structure of the instrument data. This implies that they do not yield estimates of
the true profiles (curve resolution) for the two modes of the instrument. They also (implicitly at
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least) assume that the calibration specimens come from the same natural population as the new
specimen. This is for example not satisfied in the illustration of Section 7 below.

All these methods and method types have their pros and cons. Their statistical efficiencies are
compared in a large scale simulation study in a separate paper by Linder 8. Anticipating the results
found there, the bilinear least squares (BLLS) regression method for calibration in combination
with one of the inversion methods to be designed in the present paper, usually will have the highest
statistical efficiency of all methods. It might come as a surprise that PARAFAC is generally
less efficient, since PARAFAC is also based on least squares, albeit in two steps, and standard
PARAFAC uses all data already in the model fitting. One explaining factor is that PARAFAC is
less parsimonious than bilinear regression, because of the multiple regressions in the calibration
of it. However, with calibration by simple proportional regression instead of multiple, PARAFAC
is parsimonious but much less efficient. The SVD method 3, as an alternative, is somewhat less
efficient than BLLS, but is theoretically simpler and easier to use. Another important advantage
of both these methods to their competitors is the availability of precision formulae in the form
of estimated standard errors and variance–covariance matrices for the instrument profiles. These
results will be used in the present paper to develop precision formulae for the predicted composition
of a new specimen, taking account of the calibration uncertainty. With other calibration/prediction
methods like PARAFAC, TLD 9 and PLS-type methods, precision formulae are lacking. GRAM 2

is an exception, for which Faber et al 10 derived standard errors. Indirect quantification of type
cross-validation, which is the standard tool in first order, is not a good idea when the calibration
involves only few specimens. On the other hand, the precision formulae of course require that the
statistical model is reasonably adequate. An algorithm will be proposed that may correct for one
type of model error, namely an interferent in the new specimen (i.e. the second order advantage).

The number of calibration specimens is typically small. At least for the calibration part of the
problem we prefer the word specimen, rather than sample, since when calibration specimens are few
they will typically have been generated systematically, rather than by random sampling. For the
new specimen of unknown concentrations we will use the term prediction rather than estimation
for the determination of the composition of the new sample, even if the composition of the new
specimen is not regarded as inherently random.

Next we describe the bilinear regression model which the data from the hyphenated instrument
are assumed to follow. In Section 2 we then suppose that calibration using chemical mixtures of
known composition has been carried out separately, and we introduce and compare three different
methods of prediction. General formulae for their approximate precision are given in Section 3. A
procedure to correct for interferents is suggested in Section 4. In Section 5 we give a brief account
of two methods (BLLS and SVD) for the calibration part of the problem. In Sections 6 and 7
comparisons of methods are carried out on simulated and on real data, and the precision formulae
are tested against data.

1.2 The bilinear regression model

To have a hyphenated instrument in mind, we use LC–UV as model example. Ideally its response
should follow a bilinear model, albeit in practice there can be chromatographic synchronization
problems and other causes of bilinearity deviations. Let us consider how data are generated in
an LC–UV instrument. First the constituents are partially separated in time by the LC, and
then a UV spectrum is recorded for each chromatographic time, so we get a matrix or array of
absorbances, a spectro-chromatogram, indexed by time and wavelength for each specimen. Each
constituent is characterized by its elution profile and its UV-spectrum profile.
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For each pure constituent, the Lambert–Beer law implies that the absorbance spectrum is
proportional to the concentration. Theory also says that elution peak areas are proportional to
concentration. We thus assume that concentrations are not so high that they violate these laws,
and that the response is additive over constituents. Also we assume there are no chromatographic
synchronization problems, and that the background has been eliminated; else we would have to
add some type of intercept parameter. We will denote the absorbance z at time i and wavelength
j in specimen k by z(k)

ij , forming matrices Z(k); constituent will be indexed by r = 1, . . . , R.
The proportionality in each instrument response implies that a pure constituent should yield a

rank 1 response matrix of type crrαrβTr , where crr is the concentration and the column vectors αr
and βr represent the chromatographic and spectrum profiles for constituent r. The additivity over
the R constituents implies that a mixture of them will yield a rank R response matrix Z, that can
be expressed as Z(k) =

∑R
r=1 c

(k)
rr αrβ

T
r with elements z(k)

ij =
∑R

r=1 c
(k)
rr αirβjr for specimen k. In

matrix form this model can be written

Model for data: Z(k) = AC(k)BT +E(k). (1)

Here A and B have columns αr and βr , respectively, r=1,. . . ,R, C(k) is an R×R diagonal matrix
with the concentrations c(k)

rr along the diagonal, and E(k) represents noise, k=1,. . . ,K. When it
comes to precision results below, we assume additive white noise with variance σ2. For examples
of data matrices simulated under this model, see Figure 1.

An alternative form of the model would be obtained by writing the whole set of K two-way
arrays as a three-way array, with three exchangeable “ways” (modes), as in PARAFAC. However,
this would obscure the special role of the concentrations in a calibration–prediction situation, so
we will keep to the form (1).

Model (1) is not identifiable, since we can choose an arbitrary scaling for αr and βr . However,
as long as we do not need indentifiability, we will use this model representation (1). When it comes
to precision of estimation of the model parameters, we will need unique parameters. To this end
we introduce scale parameters γrr and the constraints |αr| = |βr| = 1 to get the constrained model
representation Z(k) =

∑R
r=1 c

(k)
rr γrrαrβ

T
r . In matrix form this modified formulation is

Constrained model representation: Z(k) = AC(k)ΓBT + E(k), |αr| = |βr| = 1. (2)

The identifiability of this model follows from the constraint that C(k) and Γ are both diagonal
matrices, and that no rotation of A or B can be done without destroying this property.

2 Prediction methods

We here discuss the prediction phase from a relatively general point of view, without specifying the
calibration method used, but assuming that calibration has been carried out, resulting in estimated
profiles Â and B̂ of model (1). A new specimen of unknown diagonal concentration matrix C0,
with concentration vector c0 along the diagonal, yields a response matrix Z0, which is supposed to
follow the same bilinear model (1) as the calibration samples, but with unknown c0:

Z0 = AC0B
T + E0. (3)

We will formulate three different methods for determination of the new composition c0. This
is because these methods all have their advantages and disadvantages, and because they can be
regarded as forming a sequence of successive refinements. We will discuss their relationships, and
in later sections give formulae for their precision and illustrate the use of them.
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2.1 The näıve prediction method

An intuitively natural way to form a predictor of the diagonal c0 of the concentration matrix C0

is to start by largely eliminating A and B from the right hand side of (3), by multiplication from
left and right by suitable inverses of the corresponding estimated coefficient matrices. We use left
inverses Â− and B̂− of Â and B̂, respectively, such that (by definition) Â−Â = B̂−B̂ = I. This
results in an approximately diagonal matrix of form,

C̃0 = Â−Z0B̂
−T = Â−AC0B

T B̂−T + Â−E0B̂
−T . (4)

If calibration has been precise, E0 in the last term is the dominating source of randomness,
and then we aim at selecting left inverses that minimize the variances of the elements of this term,
under the assumption of uncorrelated homoscedastic noise (for simplicity). In Appendix A we show
the not very surprising result that the best choices are the Moore–Penrose generalized inverses, Â+

and B̂+. In the sequel, by the näıve predictor c̃0 we will mean the diagonal of C̃0 in (4), furnished
with the Moore–Penrose inverses, that is

c̃0 = Diag[C̃0] = Diag[Â+Z0B̂
+T ]. (5)

2.2 The least squares prediction method

The concentration matrix C0 is diagonal by definition, but the matrix C̃0 computed from data as
in (4) will not be exactly diagonal. The off-diagonal elements can actually contain much useful
information about the errors in ĉrr, because the elements of C̃0 are more or less strongly correlated.
One method that utilizes the whole of matrix (4) is the least squares method, neglecting the
calibration errors in the estimated profiles Â and B̂. With unknown parameters only in c0 =
Diag[C0] we have a linear model for Z0 in terms of these R concentrations. The normal equations
for OLS estimation in this linear model are obtained by identifying the diagonal elements of ÂTZ0B̂
with their expected values,

Diag[ÂTZ0B̂] = Diag[(ÂT Â)C0(B̂T B̂)]. (6)

Solving this equation system for c0 yields the desired LS predictor. With the notation � for the
elementwise (or Schur, or Hadamard) product of two matrices, the solution of (6) can be explicitly
written down as

ĉ0 = {(ÂT Â)� (B̂T B̂)}−1Diag[ÂTZ0B̂], (7)

Since the elementwise product is directly available in for example MATLAB, the form (7) is easily
programmed for the computer.

In order to see how the LS predictor (7) is related to the näıve predictor c̃0, note that the
right-most factor of (7) may also be written

Diag[ÂTZ0B̂] = Diag[(ÂT Â)C̃0(B̂T B̂)]. (8)

The right hand side here shows how the LS predictor makes use of the whole matrix C̃0, and not
only of its diagonal.
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2.3 A refined least squares prediction method

The simple LS predictor above is best (minimum variance) linear unbiased (BLUE) under the
assumption of no uncertainty in the profiles (and the zij having homoscedastic white noise). If we
know (or have formulae for) the profile uncertainties, a refinement c∗0 can be constructed theoret-
ically from a regression of each diagonal element in C̃0 on the set of off-diagonal elements. This
regression will then utilize the covariance matrix for C̃0, to be found in the next section.

To demonstrate how the regression is carried out, in principle, we provisionally introduce the
notation X for the set of off-diagonal elements of C̃0, that is X = {c̃r1r2}r1 6=r2 . Denoting the
variance–covariance matrix for (c̃rr , X) by(

Σrr Σrx
Σxr Σxx

)
,

see Result 3.3 for explicit formulae, the linear regression of c̃rr on X is the expected value

E[c̃rr|X] = crr + ΣrxΣ−1
xxX.

This motivates the refinement
c∗rr = c̃rr −ΣrxΣ−1

xxX. (9)

The precision of the predictor will be reduced from V(c̃rr) = Σrr to

V[c∗rr|X] = Σrr − ΣrxΣ−1
xxΣxr (10)

Primarily this refinement can be worth-while if there is considerable calibration uncertainty. If
calibration uncertainty is negligible we just get the LS predictor again. This is most easily seen
indirectly, from the fact that both are based on the same data and have minimum variance.

3 Precision formulae for the predictors

The precision of the näıve predictor c̃0 and the LS predictor ĉ0 are expressed by the variance–
covariance matrices of the stochastic vectors (5) and (7), respectively. For the refined LS predictor
c∗0 of the previous section, already the construction requires the variance–covariance matrix for
C̃0. We start by giving the relatively simple precision formulae when calibration errors can be
neglected. In this case ĉ0 and c∗0 are the same. From now on all results will be expressed in terms
of the constrained model representation (2), that is with B replaced by BΓ, and the columns of B
having unit length. The parameterization uniqueness implied by this constraint will be necessary
from Result 3.2 onwards. Except in the most general Result 3.3, we also assume from now on
that measurement noise is white with variance σ2. As before � denotes the elementwise matrix
product.
Result 3.1: Prediction variance–covariance matrices when calibration is precise
When calibration errors can be neglected, the variance–covariance matrices for the näıve and LS
predictors are given by the formulae

V[c̃0] = σ2 (ATA)−1 � (ΓBTBΓ)−1,

V[ĉ0] = V[c∗0] = σ2 {(ATA) � (ΓBTBΓ)}−1.

Justification: For the näıve predictor c̃0, this result is essentially included in the proof of the
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optimality of the Moore–Penrose inverse, given in Appendix A, see (14) and (15). More generally,
the result is just an application of the rules for calculating variances and covariances of linear
expressions, in contrast with the nonlinear results to follow. Details are omitted.

The following results will incorporate the statistical uncertainty from the calibration. We first
give the relatively simple variances of the näıve predictor (5), as yet not with any specific calibration
method in mind.
Result 3.2: General prediction variances, näıve predictor
The prediction variance for the concentration of constituent r is

V[c̃rr] ≈ c2rr{(A+V[α̂r]A+T )rr + (B+V[β̂r]B+T )rr + (Γ−1V[γ̂rr]Γ−1)rr
+ 2[(A+Cov[α̂r, β̂r]B+T )rr + (Γ−1A+Cov[α̂r, γ̂rr ])r + (Γ−1B+Cov[β̂r , γ̂rr])r]}
+ σ2 {(ATA)−1}rr{(ΓBTBΓ)−1}rr.

Justification: For a mathematical justification, see Appendix B.
Remark: Note that all terms due to the calibration uncertainty are proportional to the concen-
tration squared, c2rr.

We now turn to the whole variance–covariance matrix for the matrix C̃0. To be able to write
down the variance–covariance matrix for C̃0, we vectorize this matrix. We use the conventions
V[M ] = E[Vec(M)Vec(M)T ] − E[M ]E[M ]T for the variance of a matrix M , and analogously
Cov[M,N ] = E[Vec(M)Vec(N)T ] − E[M ]E[N ]T for the covariance between matrices M and N ,
where E[M ] = E[Vec(M)]. The following rules can be established for the calculation of variances
and covariances for compound matrices as follows, see Graham 11:

V[AMB] = (BT ⊗A)V[M ](BT ⊗ A)T

Cov[AMB,CND] = (BT ⊗A)Cov[M,N ](DT ⊗C)T

V[MT ] = UV[M ]UT

Cov[MT , N ] = UCov[M,N ]
Cov[M,NT ] = Cov[M,N ]UT ,

where ⊗ is the direct (or Kronecker) matrix product and U is the permutation matrix associating
Vec(M) and Vec(MT ), i.e. Vec(MT ) = UVec(M) defines U .

Now we can present the results from application of these rules to yield the variance–covariance
matrix of C̃0. It is obtained by analogous calculations to those of the special case above, Result
3.2.
Result 3.3: General variance–covariance matrix for the näıve predictor

V[C̃0] ≈ (C0 ⊗ A+)V[Â](C0 ⊗ A+)T +

(C0 ⊗ A+)Cov[Â, B̂]UT (Γ−1B+ ⊗C0Γ)T +

(C0 ⊗ A+)Cov[Â, Γ̂](Γ−1 ⊗ C0)T +

(Γ−1B+ ⊗C0Γ)UCov[B̂, Â](C0 ⊗ A+)T +

(Γ−1B+ ⊗C0Γ)UV[B̂]UT (Γ−1B+ ⊗C0Γ)T +

(Γ−1B+ ⊗C0Γ)UCov[B̂, Γ̂](Γ−1 ⊗ C0)T +

(Γ−1 ⊗ C0)Cov[Γ̂, Â](C0 ⊗A+)T +
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(Γ−1 ⊗ C0)Cov[Γ̂, B̂]UT (Γ−1B+ ⊗C0Γ)T +

(Γ−1 ⊗ C0)V[Γ̂](Γ−1 ⊗ C0)T +
(Γ−1B+ ⊗A+)V[E0](Γ−1B+ ⊗ A+)T . (11)

This is a long expression, but it is quite convenient for computer implementation. Note also
that all terms except the last one represent the calibration uncertainty.

The least squares and refined least squares predictors ĉ0 and c∗0 are linear in the elements of
C̃0, see (7) and (8) for ĉ0 and (9) for c∗0. Admittedly the coefficients in these linear expressions
involve the estimated parameters from the calibration, but if the uncertainty in these coefficients
is neglected the variance–covariance matrices of the predictors are linearly given in terms of the
elements of V (C̃0). For c∗0, see (10) for the explicit expression which was used in the simulation
study to be described in Section 6.

4 The second order advantage.

As mentioned in the Introduction, second order calibration has the advantage that the presence of
a new substance, that was not calibrated for, in a specimen whose contents are to be determined,
can be detected and corrected for. We have designed an algorithm that may add such a second
order advantage to our proposed prediction methods. As also in for example PARAFAC, interfering
constituents can be found by fitting more components than calibrated for.

Our algorithm proceeds as follows, after a rank check on Z0 or a smallness check on the
nondiagonal elements of C̃0 has indicated the presence of an interfering constituent in the new
specimen. Given estimates of the profiles and the scaling matrix, Â0 and B̂0 and Γ̂0, and the new
specimen data Z0, predict its diagonal concentration matrix C0 by the selected predictor, here
denoted Ĉ0. Then repeatedly go through the following steps until convergence or divergence:

1. Calculate the matrix of nonnegative residuals, R+ = max{0, Z0 − Â0Ĉ0(B̂0Γ̂0)T }

2. Make a singular value decomposition of R+ to find its first singular vectors u0 and v0, corre-
sponding to the largest singular value. These are estimates of the profiles of the interfering
constituent.

3. Extend the original estimated profiles Â0 and B̂0 with the profiles u0 and v0, and predict a
correspondingly extended c0 from (Â0, u0) and (B̂0Γ̂0, v0)

4. Restrict the extended c0 to the original size, form the corresponding Ĉ0, and go back to the
first step to calculate a new R+.

If there is a substantial contribution from an extra substance, that clearly exceeds the noise
level, the algorithm can be expected to pick out this substance. Our limited experience tells that
the algorithm works well when there is relatively little noise in the data. The different prediction
methods are not equally sensitive to an interfering substance, and also the algorithm will converge
at different speed for different methods, but the results are too premature to be reported in any
further detail in the present paper.

5 Two profiles estimation procedures

In Section 3 formulae were given for the precision of various predictors of the concentrations in
a new specimen, not only when calibration was assumed precise, but also when attention was
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paid to the calibration uncertainty, in general terms. Here we present two different calibration
methods which allow us to specify this calibration uncertainty. These methods are the bilinear
least squares (BLLS) method and what we have called the singular value decomposition (SVD)
method, both introduced and described in detail in Linder and Sundberg 3. We here just give
a sketchy introduction to these methods and refer to Appendix C for some more details, and in
particular for the precision formulae we require.

In bilinear least squares estimation we fit the bilinear regression model by minimizing the sum
of squared deviations between all the elements of all the data matrices Z(k) and their expected
values according to the model (1) or (2). Differentiation yields the normal equations. It turns out
that these involve data only in terms of the R matrix statistics

T (r) =
K∑
k=1

c(k)
rr Z

(k), (12)

one for each constituent. These are concentration-weighted sums of the primary Z(k) arrays. The
normal equations are obtained by forming the parameter-weighted sums of the rows and columns of
these matrices, T (r)βr and αTr T (r), and set them to their expected values, see Result C.1. Because
the weights are parameter-dependent in this way, the normal equations cannot be solved explicitly,
but in analogy with PARAFAC an alternating least squares (ALS) algorithm can be used, and it
usually works without problems. The analogy with PARAFAC can be made explicit by saying that
BLLS on the calibration data is the same as PARAFAC with one mode fixed, cf. Kroonenberg 12,
chapter 5, pp 113-114.

The SVD method refrains from forming the parameter-weighted sums by instead setting the
T (r)s themselves to their expected values. The resulting equation system can be reexpressed and
shown to be equivalent with R singular value decompositions, each estimating the corresponding
pure component rank 1 matrix αrβTr (or γrrαrβTr under the constraints |αr| = |βr| = 1), see Result
C.3.

As for precision, the variance–covariance matrix of the BLLS estimates cannot be exactly given,
since the model is nonlinear, but an approximate version can be obtained by local linearization
of model (2) and of its constraints, see Result C.2. For the SVD method an explicit approximate
variance–covariance matrix can be written down, see Result C.4. These results are derived under
the assumption of white noise with variance σ2. For both methods the approximations are good if
σ is small enough or the number of adequate calibration specimens is large enough.

The BLLS and SVD methods assume that the calibration is done with at least as many spec-
imens as constituents. This condition is likely to be satisfied in most cases, but it is not really
necessary for the quantitative prediction of the same constituents in a new specimen, as shown by
the GRAM method 2. It is also not always necessary for identifiability in the estimation problem 13.

In principle the least squares estimation method could refer to all data jointly, if only the
unknown concentrations of new specimens are regarded as additional parameters to be estimated,
besides the profiles. That is, what we here have referred to as separate estimation and prediction
phases would then be joined in one single optimization procedure, more like standard PARAFAC.
We have not gone this way. Both numerically and theoretically the complications would have been
considerably increased, but the properties not necessarily improved, cf. the negative results by
Brown and Sundberg 14 on the analogous question in first order calibration, and simulation results
on PARAFAC by Linder 8 not indicating any improvement with the joint procedure.

Use of the explicit expressions for the variances and covariances of the SVD estimator yields
the following relatively simple formula for the approximate precision of the predicted concentration
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c̃rr by the näıve method. Here (D−1)rr is the rth diagonal element of the inverse of the R × R
sums of concentration products matrix D, which has elements

∑
k c

(k)
r1r1c

(k)
r2r2 .

Result 5.1: Prediction variance for the näıve predictor with the SVD estimator
The variance of the naive predictor c̃rr for constituent r, considering the uncertainty of the SVD
estimation method, is given approximately by

V[c̃rr] ≈
σ2c2rr(D−1)rr

γ2
rr

[{(ATA)−1}rr + {(BTB)−1}rr − 1 +
{(ATA)−1}rr{(BTB)−1}rr

c2rr(D−1)rr
]. (13)

A justification of this formula is given towards the end of Appendix C. The result is used both
in the simulation study, where the influence of different factors is discussed, and in the real data
illustration below. It can also be regarded as a relatively explicit example of how different factors
influence the uncertainty.

The variances are of course proportional to σ2. However, note also that all terms except the last
one of (13) are due to the calibration uncertainty, and that they are proportional to c2rr(D−1)rr ,
which only depends on the concentrations design of the calibration.

6 A simulation study

In the previous sections approximate results have been given for the precision of various combina-
tions of predictor and estimator. These formulae can be programmed, but are complicated, and it
is difficult to get an idea of how the various methods differ in precision and how the precision is
influenced by various factors. Also, it is crucial to know when the formulae are reliable. The latter
question has two aspects: Under what circumstances are the approximations adequate, given that
the model is adequate, and how robust are the formulae to deviations from the model assumptions.
We elucidated these questions, the robustness one excepted, by a designed simulation study, with
six factors varied on two levels each.

6.1 Design

From the precision formula for the näıve predictor with SVD estimation, Result 5.1, we see that
the precision depends on the following characteristics:

• σ, size of noise in data,

• calibration design, expressed through D−1, incorporating choice of concentrations, number
of specimens and quality of the calibration set,

• {αr, βr, γrr}, the true profiles, which are influenced by the numbers of wavelengths and
chromatographic times (to be called the density), and the degree of overlap between profiles,

• crr, the true concentration of constituent r.

To study the performance of various predictor–estimator combinations we simulated an LC–UV-
dressed example with two constituents (R = 2). In accordance with the above discussion, and
to simplify comparisons with the simulation study in Linder and Sundberg 3 we investigated the
following six factors, at two levels each, in a 26−1 factorial design:
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Factor − level + level
1) σ = size of noise in data 0.00125≈ 5% 0.0025≈ 10%
2) Design of the calibration more informative less informative.
3) Density, i.e. the size of the 20× 20 10× 10

spectrochromatogram
4) K = number of specimens 4 2
5) degree of overlap in the moderate strong

true chromat. profiles
6) degree of overlap in the moderate strong

true spectral profiles

These factor levels are the same as in the simulation study in Linder and Sundberg 3, except
for σ, which was reduced such that the present higher level + is the same as the previous lower
level −. Note that we have not varied the number of constituents, which was fixed at R = 2.
Nor did we take the true concentrations of the new specimen to be a factor, but held them fixed
throughout the simulation study, at (c11,c22)=(2,3). Instead we used a relative measure of precision
which to a large extent should remove the difference in prediction variances due to different true
concentrations. The dependence on concentration is shown in Figure 2 for the other parameters
fixed at levels (+ − − − −−) and the two constituents at equal concentration c11 = c22 = c,
0 ≤ c ≤ 5.

The third factor (density) determines the size of the data matrices Z, that is the product of the
numbers of chromatographic times and wavelengths (20×20 or 10×10, the latter by thinning the
former). For the fourth factor, K, level + (K = 2) is the minimum allowable number of specimens,
since we had R = 2 constituents. The magnitude of noise in data was of relative size 5% and 10%
of the average response, respectively. Figures 3 and 4 illustrate the form factors 5 and 6, the form
and degree of overlap in the true, pure elution profiles and spectral profiles.

Since we had only two constituents, the choice of concentration combinations can be illustrated
in the xy-plane, see Figure 5. Marks − and + represent the more and less informative calibration
design sets, respectively. The point (2, 3) to be predicted is also marked. The elution profiles
for factor 5 were generated by a lognormal distribution for each constituent, to mimic the real
behaviour with trailing peaks. Spectra for factor 6 were generated as mixtures of Gaussian peaks.

The design chosen for the study was a 26−1 factorial design with the usual confounding pattern
for half-fractions, that is the highest order interaction aliased with the identity. In each point of
the factorial experiment, 1000 replicates were taken. As much as feasible we used the same random
numbers for the white noise matrices E(k) over different design points.

In the simulation study we compared 6 = 3 × 2 different method combinations: The näıve
predictor c̃0, the LS predictor ĉ0, and the refined LS predictor c∗0 were combined with each of
SVD and BLLS for the calibration. To quantify the precision of prediction seen in the factorial
experiment we used for each constituent a precision index defined as the natural logarithm of
the relative MSE over the sample of 1000 replicates, and we compared with the corresponding
theoretical relative variance formula. Relative MSE (or variance) means that it was normed by
c2rr . The reason for this scaling is found in the theoretical variances, where the calibration part is
proportional to c2rr. Finally, since the variance formulae are multiplicative in σ2, taking the log is
necessary to avoid large interaction effects, at least for the σ factor.
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6.2 Simulation results

Results of the factorial experiment are primarily shown in Table 1 and in Figures 6, 7 and 8, but
also in the subsequent three tables based on Table 1. Given in Table 1 is the precision index (log
relative MSE) in each experimental point, with the number 12 added for convenience, together
with the correction in log-values required to go from the theoretical approximate variance to the
observed simulation MSE, denoted Diff. Equivalently Diff may be expressed as the amount of MSE
underestimation if the variance formula is used. The results for constituents r = 1 and r = 2 were
similar, and Table 1 shows only the average over them. The results were also similar for the LS and
refined LS predictors, and only the latter is tabulated. More precisely, the refinement of LS gave
a reduction in precision index of around 0.06 with BLLS and 0.16 with SVD. The LS and refined
LS predictors were also highly mutually correlated in their variation between simulations, from
almost 90% to more than 99% in many design points. Their correlation with the näıve predictor,
on the other hand, was not very high. The constant 12 was only to make all the former entries
positive and does not affect the diff columns or the effects tabulated below. When the correction
value is small (within ±0.2, say, for negligible error in the approximation log(1 + x) ≈ x), it can
be interpreted as an estimate of the relative increase in the variance formula value required to
yield the actual MSE. Half this value is then the corresponding relative increase in standard error.
Analogously for other differences, so for example did the refinement of LS reduce the standard
error by only about 3 % with BLLS and about 8 % with SVD.

6.2.1 Accuracy of variance formulae

The Diff columns of Table 1 show that the theoretical variance is never really higher than the
observed MSE, but much lower in some points of the factorial design. It means there is a risk
for serious underestimation of the size of the prediction errors under some circumstances. These
design points partially differ between methods, but before going into details, let us make the
reassuring observation that the difference only in few cases exceeds ≈ 0.20. The relative difference
in standard errors is about half that in variances, so if the variance underestimates the MSE by Diff
= 0.20, the standard error correspondingly underestimates by about 10%. This quantity should
be regarded also in the light of the simulation uncertainty in these values (the variance 2/1000
for a χ2(1000)/1000 corresponds to a relative standard deviation of the magnitude 5% for the
randomness in a standard error estimate).

The difference Diff is seen to be higher than 0.2 essentially only when the number of specimens is
small, K = 2. When K = 2 (but not when K = 4), high σ and bad design contributes considerably
to yield high Diff-values. The Density factor and the form-factors are less influential. The worst
case is seen for “Näıve with SVD”, when the highest differences exceed 1. Then the actual MSE
is more than a factor e higher than indicated by the variance formula.

The reasons for the substantial differences between the observed MSE and the theoretical
variances are only partially found in the variance part of the MSE. Figures 6 and 7 show that there
can be a considerable prediction bias if the näıve predictor is used under unfavourable conditions,
in particular when K = 2. The refined LS predictor, on the other hand, shows a noticeable bias
only when all six factors are jointly at there most disadvantegous levels (design point 32). The
predictor biases should be considered in the light of the precision in the prediction. Figure 8 shows
some of the same averages as in Figure 6, but now with a vertical errorbar added, which shows
± the predictor standard deviation as estimated from the simulation sample. Figure 8 yields a
striking illustration of the superior efficiency of (the refined) LS over the näıve method and shows
that for the latter method the bias squared is the major part of the MSE in several of the design
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Näıve Näıve Refined LS Refined LS
Factorial design point with SVD with BLLS with SVD with BLLS

No. σ Design Dens. K Form 1 Form 2 Obs’d Diff. Obs’d Diff. Obs’d Diff Obs’d Diff.
1 − − − − − − 3.32 0.02 3.17 0.00 1.50 -0.01 1.37 -0.01
2 + − − − − + 6.12 0.06 5.98 0.02 3.04 -0.02 3.00 -0.01
3 − + − − − + 5.32 0.17 4.60 0.01 1.86 -0.03 1.91 -0.02
4 + + − − − − 5.44 0.23 4.58 0.02 3.27 -0.01 2.76 -0.01
5 − − + − − + 5.91 0.00 5.81 -0.00 3.14 0.07 3.07 0.06
6 + − + − − − 5.91 -0.02 5.76 -0.02 4.33 0.08 4.16 0.06
7 − + + − − − 5.06 -0.00 4.37 -0.02 3.36 0.10 2.77 0.05
8 + + + − − + 7.94 0.18 7.21 0.01 4.79 0.11 4.54 0.06
9 − − − + − + 5.49 0.17 5.13 0.11 2.41 -0.02 2.29 -0.04

10 + − − + − − 5.65 0.26 5.22 0.18 3.71 0.00 3.39 -0.03
11 − + − + − − 5.37 0.38 3.75 0.09 2.98 0.02 1.97 -0.04
12 + + − + − + 8.93 1.30 7.13 0.68 4.54 0.31 4.03 0.16
13 − − + + − − 5.28 0.03 4.95 0.06 3.74 0.06 3.42 0.06
14 + − + + − + 8.17 0.24 7.87 0.23 5.32 0.11 5.17 0.07
15 − + + + − + 7.87 0.39 6.51 0.22 4.45 0.19 3.90 0.06
16 + + + + − − 8.20 0.58 6.56 0.29 6.07 0.32 4.81 0.09
17 − − − − + + 5.60 -0.00 5.57 -0.01 2.47 -0.04 2.44 -0.02
18 + − − − + − 5.66 0.01 5.59 0.00 3.29 -0.01 3.20 -0.01
19 − + − − + − 4.70 0.07 4.23 -0.00 2.21 -0.01 1.79 -0.02
20 + + − − + + 7.56 0.33 7.12 0.10 4.26 0.14 3.96 0.10
21 − − + − + − 5.50 -0.02 5.44 -0.02 3.26 0.06 3.15 0.04
22 + − + − + + 8.23 -0.02 8.20 -0.02 5.32 0.06 5.25 0.04
23 − + + − + + 7.12 0.02 6.89 0.01 4.23 0.12 3.90 0.08
24 + + + − + − 7.41 0.11 6.86 -0.00 4.99 0.10 4.55 0.06
25 − − − + + − 4.82 0.06 4.62 0.03 2.64 -0.05 2.43 -0.04
26 + − − + + + 7.70 0.37 7.57 0.32 4.76 0.12 4.66 0.14
27 − + − + + + 7.36 0.76 6.50 0.47 3.74 0.12 3.30 0.18
28 + + − + + − 8.15 1.16 6.75 0.69 4.78 0.19 3.96 0.16
29 − − + + + + 7.24 0.04 7.18 0.07 4.72 0.10 4.58 0.09
30 + − + + + − 7.61 0.17 7.42 0.18 5.50 0.14 5.25 0.11
31 − + + + + − 7.20 0.28 6.12 0.18 4.67 0.17 3.83 0.11
32 + + + + + + 9.81 0.56 9.33 0.66 7.16 0.78 6.49 0.65

Table 1: Simulation results averaged over both constituents. The table gives values of 12 +
the natural logarithm of the simulated relative variance of prediction, denoted Obs’d, and the
correction in log-values required to go from the corresponding theoretical approximation to the
simulated variance, denoted Diff. For factor levels, see Section 6.1
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points.

6.2.2 Factorial structure for the observed precision indices themselves

We next present and comment on a table of grand means, main effects and largest interaction
effects for the precision indices corresponding to the four different prediction–estimation methods.
This Table 2 is derived from Table 1. Higher order interactions are negligible. Effects are calculated
as signed mean values of the responses, so they correspond to half the change in response when
changing level of a factor from − to +. Both from theoretical calculations and from statistical
analyses of the interactions we have reason to believe that the standard error of the effects is of
magnitude 0.01.

Factorial effect Näıve & SVD Refined LS & SVD Näıve & BLLS Refined LS & BLLS
Grand mean (+12) 6.61 3.95 6.06 3.60
Main effect 1 (σ) 0.79 0.74 0.76 0.73
Main effect 2 (Design) 0.48 0.26 (0.09) (0.04)
Main effect 3 (Density) 0.54 0.74 0.59 0.71
Main effect 4 (K) 0.56 0.50 0.35 0.37
Main effect 5 (form 1) 0.37 0.30 0.53 0.33
Main effect 6 (form 2) 0.66 0.18 0.73 0.30
Interaction 2*4 0.21 (0.09) (0.07) (0.02)
Interaction 5*6 (−0.06) 0.15 (−0.02) 0.11

Table 2: Effects > 0.10 for the simulated precision index (log observed relative MSE). Standard
error of effects ≈ 0.01.

The differences in grand means will be discussed in later subsections. All factors have sub-
stantial main effects, except the Design factor (No. 2) when BLLS is used. Factors 1 (σ) and 3
(Density) belong to the dominating group for all methods. For the näıve prediction method in
particular, the effects of the form factors (5 and 6) are worth noting.

Some of the effects were more or less expected from the form of the variance formulae. The
theoretical variances are proportional to σ2, which implies that the theoretical effect of this factor
is log 2 = 0.69. This fits the simulated effects reasonably well. From Result 5.1 we can also
approximately deduce what the effects of factors 3 and 4 should be, at least for the näıve &
SVD combination. A reduction of the number of measurements in each profile to the half by
thinning should yield approximately the same variance inflation effect as doubling σ, main effect
log 2 = 0.69. This turned out to fit well with the theoretical formulae, and reasonably well also
with the simulated variances, as seen from Table 2. Further, halving the number K of specimens
should yield the effect 0.5 log 2 = 0.35 for the calibration part of the variance. This is also the
observed magnitude of this effect.

6.2.3 Differences Näıve–Refined LS

The differences between the näıve method and the refined LS method show a similar pattern for
SVD as for BLLS estimation, so we only consider the average over the two estimation methods.
The contributions to the average effects were overall (only) slightly higher for SVD than for BLLS.
Table 3 gives the average difference (=grand mean), main effects of the factors, and the largest
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Factorial effect type Effect value
Grand mean 2.56
Main effect 1 (σ) 0.04
Main effect 2 (Design) 0.13
Main effect 3 (Density) −0.15
Main effect 4 (K) 0.02
Main effect 5 (form 1) 0.13
Main effect 6 (form 2) 0.45
Interaction 2*4 0.08
Interaction 5*6 −0.17

Table 3: Main effects and interaction effects > 0.05 for the difference in precision index between
näıve and refined LS prediction methods, averaged over the SVD and BLLS estimation methods
and the two constituents.

interaction effects. The standard errors in these effects are not likely to be of a higher magnitude
than the standard errors in the specific method effects, 0.01, from Table 2.

The large scale interpretations are quite simple. There is a quite large lack of efficiency of
the näıve method. Averaged over the design points it corresponds to a variance inflation factor
of exp(2.56) ≈ 10, and in the worst points it is more than twice as large. The form factors have
the dominating influence on the variability, whereas at the other end, the amount of noise (σ)
is without influence. Severe overlap of profiles as in the + setting of Form 2 makes prediction
particularly more difficult for the näıve method than for an LS method. In other words, profiles
must be well separated in order possibly to motivate the use of the näıve method.

6.2.4 Differences SVD–BLLS

Table 4 gives factorial effects for the difference of log MSEs between the SVD and BLLS estimation
methods. The effects for the SVD–BLLS difference show similar patterns for the two prediction
methods, albeit somewhat stronger for the näıve method than for the refined LS, and we restrict
attention to the average over the näıve and the refined LS prediction methods. For the standard
error of these effects, 0.01 is a likely magnitude.

Factorial effect type Effect value
Grand mean 0.45
Main effect 1 (σ) 0.02
Main effect 2 (Design) 0.30
Main effect 3 (Density) −0.01
Main effect 4 (K) 0.17
Main effect 5 (form 1) −0.09
Main effect 6 (form 2) −0.09
Interaction 2*4 0.10

Table 4: Main effects and interaction effects > 0.05 for the difference in precision index between
SVD and BLLS estimation methods, averaged over the näıve and refined LS prediction methods
and the two constituents.

The interpretation is simple here, too. Only factors 2 (Design) and 4 (K) have much influence,
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and they interact. With K = 4 and the more informative design, little efficiency is lost by use of
SVD. On the other hand, if the situation is worse in these factors, SVD is clearly less efficient, in
particular if both factors are set at +. In that case SVD yields a 2.5 times higher variance. Design
being the most important of the factors was also seen for profiles estimation in the previous paper
on SVD and BLLS 3.

7 An illustration with fluorescence data

We illustrate the proposed methods on fluorescence data. When in fluorescence analysis a specimen
is illuminated by a source of light, molecules absorb light according to their absorbance spectrum
and turn into an excited state. When leaving this state they emit a specific spectrum of light, which
is collected by the spectrofluorometer. The instrument is based on two monochromators. The exci-
tation monochromator provides a range of wavelengths from the light source to the specimen. The
emission monochromator collects the light emitted from the specimen. For each excitation wave-
length we get an emission spectrum, proportional to the absorbance at this excitation wavelength.
By varying the excitation wavelength we will register what should be a bilinear two-way structure
indexed by excitation and emission wavelengths. In practice there will also be some Rayleigh light
scattering, appearing as emitted light at around the excitation wavelength. This yields a part of
data that is not multilinear in its structure.

We have tried the SVD and BLLS calibration methods, in combination with each of the three
prediction methods, on a set of fluorescence spectra discussed by Bro 4 and available on his web-
site. The data were generated and measured by C.A. Andersson from five specimens with different
mixtures of three amino acids: tryptophan, tyrosine and phenylalanine. The original measurements
used excitation wavelengths 240–300 nm and emission wavelengths 250–450 nm, both with steps
1 nm. We chose to restrict the emission wavelength interval from above to 400 nm, only to make
calibration and prediction more difficult (less precise), because above 400 nm only one of the amino
acids emitted. We also restricted the interval from below, to 290 nm, partly for the same reason,
but thereby also avoiding most of the Rayleigh scatter. In real practice one might want to keep
as much information as possible and cut off the Rayleigh scatter more selectively. We also cut off
the lowest 11 wavelengths of the excitation spectra, and we utilized only each second wavelength
of the spectra, so the resulting two-way data were of size 25×55 for each specimen. There seemed
to be quite little white noise, but far from negligible coloured noise.

Among the five specimens we chose simply to use the first four specimens for calibration and
the fifth one for prediction. The estimated excitation and emission profiles from SVD and BLLS
were smooth, see Figures 9 and 10 for SVD estimates joined together as piece-wise linear curves.
The estimated profiles differed quite little between the SVD and BLLS estimation methods. Also,
there were hardly any detectable differences for the eye between these profiles and profile estimates
constructed by PARAFAC (PLS Toolbox 2.0, from Eigenvector Research Inc.) from the first four
or from all five specimens (not shown). The profiles appeared reasonable also in comparison with
the spectra given by Bro 4.

In Table 5 is shown how the various predictors predicted. Firstly, there are consistently very
small differences between the SVD and BLLS estimation methods. This did not come as a sur-
prise, since these differences concern calibration, where the two methods were quite alike in their
estimated profiles. For the prediction phase, the three constituents illustrate different behaviour.
The näıve predictor is the least good one, between 5% and 15% above target for all three con-
stituents. For tryptophan, the refined LS predictor is almost 10% below the target. Perhaps this
should be explained as the refined LS predictor being less robust to model departures than the
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other methods. For phenylalanine all predictors are seen to agree well, but they are all about 10%
above target. Consistency among different predictors is not sufficient for a good prediction! The
LS predictor agrees quite well with the PARAFAC predictor also for tyrosine. The latter was con-
structed by running PARAFAC on all five specimens jointly, followed by a proportional multiple
regression calibration of the loadings in the specimen dimension on the concentration vectors of
the four calibration specimens. Generally, prediction by PARAFAC should often be only little less
precise that the LS and refined LS predictors, but under some circumstances it can be much worse,
as demonstrated by Linder 8 under homoscedastic white noise.

We have also calculated approximate standard errors for the näıve, LS and refined LS predictors,
by the precision formulae given above, and corresponding 95% prediction intervals, see Figure 11.
As estimate of σ2 we used the residual MSE around the fitted model and averaged over the four
calibration specimens. The magnitude of the standard errors indicate that we should have expected
smaller actual errors of prediction in most cases. There are several possible interpretations of this.
The one most plausible to us is that the real error structure deviates much from the assumed one.
The surface of residuals does not at all resemble white noise, but something spatially strongly
correlated. The residual MSEs also differ between specimens very much more than would be
expected if they represented white noise with the same σ. If σ is estimated separately from each
specimen in the calibration, there is a factor 3 between the largest and smallest estimates. Another
possible interpretation would be that there are systematic influences from other sources of variation.
There are certainly some remainders in data from the non-bilinear Rayleigh scattering. One could
also try detecting a possible fourth constituent. We did so by means of the second order advantage
procedure described in Section 4, but the procedure did not point towards such an interpretation.

8 Discussion

In our approach the first phase of work is a calibration of the instrument. Our tests on real
and simulated data confirm that the calibration methods BLLS and SVD yield predictors which
behave quite similarly. Under homoscedastic white noise the SVD method is typically only slightly
less efficient than BLLS, but clearly less efficient in badly designed calibrations, in particular if
concentrations to be predicted are outside the calibration range, cf. Figure 2. Else, the lower
efficiency of SVD is largely hidden behind the dominating error term from the prediction, which
is the same for both predictors. A compensating advantage of the SVD method is that it does not
require iterations, and under unfavourable conditions the alternating BLLS algorithm can show
very slow convergence. Furthermore, predictors using SVD have more explicit variance formulae
than the BLLS predictor. We therefore advocate the use of the SVD method for bilinear regression
as a reasonable alternative to bilinear least squares.

The second phase is the prediction. Under the assumptions of bilinearity and homoscedastic
Gaussian white noise we have demonstrated that the näıve predictor is statistically much less
efficient than the LS and the refined LS predictors, and that the variance formulae well represent
their uncertainty under not too bad calibration conditions, at least for the two LS-based methods.
The white noise assumption is clearly an idealization, as indicated by the fluorescence example.
The refined LS predictor, which most efficiently makes use of the structure of this model, is also the
most likely to be vulnerable to deviations from these model assumptions, both in its construction
and in its variance formulae. This was probably what the fluorescence example demonstrated.

The ordinary LS predictor is probably also sensitive in its variance formula, but less so in its
construction. Now we have actually given some quite general variance formulae (the basic Result
3.3) without the white noise assumption, so if we can only model better the real noise structure,
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we can also implement and calculate adequate variances. For example, we could imagine white
noise replaced by coloured noise, and simple such structures might even allow simple adjustments
of the formulae given. Anyhow, the general advantage of the present approach, that it makes more
or less explicit variance formulae possible, contrasts with alternatives like PARAFAC.

Another type of model error is the presence of an interfering substance. One procedure to show
the possibility of utilising the second order advantage to deal with this problem within the present
approach has been suggested in Section 4. However, more work needs to be carried out, to try the
procedure and possible competitors on more simulated and real examples, and to implement it in
detail. There is also the question of how the variance formulae should be modified when such a
procedure has been used to correct for an interferent.

There are several more topics that might be further studied. How do the prediction methods
(incl. PARAFAC and other methods) differ in their robustness to other types of model departures?
What are good diagnostics for detecting the presence of various model deviations? What are the
pros and cons of the methods in these aspects, in comparison with PARAFAC and other methods
based on different strategies? Finally, note again that the present approach theoretically has the
advantages over PARAFAC etc. that it yields statistically somewhat more efficient predictors, that
it allows the prediction uncertainty to be calculated, and that it allows the calibration and the
prediction to be done at separate occasions.
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Name of constituent
Method Tryptophan Tyrosine Phenylalanine

True concentration 8.79E-07 4.40E-06 2.97E-04
Näıve SVD 5.7% 15.2% 10.1%
Näıve BLLS 5.3% 14.8% 9.8%

LS SVD 0.2% 1.1% 10.7%
LS BLLS 0.1% 1.1% 10.5%

Refined SVD -9.4% 2.4% 11.0%
Refined BLLS -7.6% 2.3% 10.5%

PARAFAC -0.5% 1.0% 9.7%

Table 5: Prediction results for fluorescence data. Relative prediction errors by several different
prediction methods.
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Appendices

A Variance for the näıve predictor and choice of left inverse

In this appendix we prove that the Moore–Penrose inverse is optimal for minimizing the variance
in the prediction, for given results from the calibration. We start with a new specimen Z0 with
unknown diagonal concentration matrix C0, which follows the constrained bilinear model Z0 =
AC0(BΓ)T + E0. From the calibration procedure we have estimates Â, B̂ and Γ̂ of the profiles A
and B and of the scaling factor Γ. To get a prediction of the unknown concentration matrix C0

we naturally use left inverses Â− and (B̂Γ̂)− of Â and (B̂Γ̂), respectively, to get the equation

C̃0 = Â−Z0(B̂Γ̂)−T = Â−AC0(BΓ)T (B̂Γ̂)−T + Â−E0(B̂Γ̂)−T .

There is an infinity of generalised inverses and we have the liberty to select one of them in some
optimal way. We choose to minimize the variances of the elements of C̃0 when calibration errors
are neglected, that is V[Â−E0(B̂Γ̂)−T ]r1r2 . In the case of uncorrelated, homoscedastic noise, this
variance can be calculated as

V[c̃r1r2 ] = V

∑
i

∑
j

(Â−)r1ieij((B̂Γ̂)−T )jr2


=
∑
i

∑
j

σ2((Â−)r1i)
2((B̂Γ̂)−T )jr2)2

= σ2(Â−Â−T )r1r1 (B̂−(B̂)−T )r2r2/γ
2
r2r2

, (14)

We now show that expressions of the type (M−M−T )ij for an arbitrary matrix M is minimized
for M− = M+, the Moore–Penrose inverse. Any generalized inverse M− of a full column rank
matrix M can be expressed in terms of a particular generalized inverse M∗ and an arbitrary matrix
U, see Rao and Mitra 15, Section 2.4, page 26, and in particular we select M∗ = M+, which is a
left inverse of M :

M− = M∗ + U −M∗MUMM∗ = M+ + U(I −MM+).

Note that M+M = I for the Moore–Penrose inverse of a full column rank matrix.
We will show that the diagonal elements of M−M−T are minimized for U = 0. Utilizing that

M+M = I and that MM+ is symmetric we find

M−M−T = (M+ + U(I −MM+))(M+T + (I − (MM+)T )UT ) =
M+M+T + M+(I −MM+)UT + U(I −MM+)M+T

+U(I −MM+)UT = M+M+T + U(I −MM+)UT .

The term to be minimized is obviously U(I−MM+)UT . Since (I−MM+) is positive semidefinite
so is U(I − MM+)UT and hence its diagonal elements are non-negative, and zero for U = 0.
Furthermore, note the simplification

M+M+T = (MTM)−1. (15)
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B A prediction variance derivation

In this appendix we derive Result 3.2, which gives the prediction variances for the näıve predictor,
in terms of the uncertainty in the parameter estimates from the calibration.

We start with the prediction formula (4) as expressed in the constrained model representation
(2),

C̃0 = Â+Z0(B̂Γ̂)+T = Â+(AC0ΓBT +E0)(B̂Γ̂)+T , (16)

where Â, B̂ and Γ̂ are estimates based on some parameter estimation method for the profiles and
the scaling matrix. By error propagation methods for the Moore–Penrose inverse, see Magnus and
Neudecker 16, theorem 5, page 154, we find

Â+ = (A+ EA)+ ≈ A+ − A+EAA
+ + A+A+TETA(I − AA+),

and hence the simple result Â+A ≈ I −A+EA. The analogous result for (B̂Γ̂)+T is

ΓBT (B̂Γ̂)+T ≈ I −ETBΓ(ΓBT )+ ≈ I − ΓETB(ΓBT )+ − EΓΓ−1.

We have then also used a product rule for the error EBΓ in B̂Γ̂, namely EBΓ ≈ EBΓ + BEΓ.
Inserting these formulae in Equation (16) we obtain a first order approximation of the predicted
concentration,

C̃0 ≈ C0 − A+EAC0 − C0ΓETBB
+T Γ−1 − C0EΓΓ−1 + A+E0B

+TΓ−1,

which we can use for the precision calculations.
We are first interested in the variances for the diagonal elements c̃rr of C̃0, since these elements

form the näıve predictor c̃0. We get

V[c̃rr ] ≈ V[−
∑
i

α+
rie

A
ircrr −

∑
j

crre
B
jrβ

+T
jr − crreΓ

rr/γrr +
∑
i

∑
j

α+
rie

0
ijβ

+T
jr /γrr ]

= c2rrV[
∑
i

α+
rie

A
ir +

∑
j

eBjrβ
+T
jr + eΓ

rr/γrr ] + V[
∑
i

∑
j

α+
rie

0
ijβ

+T
jr /γrr ],

where the contribution from the new specimen (the last term) is uncorrelated with the contributions
from the calibration. We require the variances for all error terms and the covariances between the
first three terms. This calculation can be carried out in a straightforward way, as for example:

V[
∑
i

α+
rie

A
ir ] =

∑
i1

∑
i2

α+
ri1
α+
ri2

Cov[eAi1r , e
A
i2r] =

=
∑
i1

∑
i2

α+
ri1
α+
ri2

V[α̂r]i1i2 = (A+V[α̂r]A+T )rr .

All other variances and covariances are found in the same way, with the results

Cov[
∑
i

α+
rie

A
ir ,
∑
j

eBjrβ
+T
jr ] = (A+Cov[α̂r, β̂r ]B+T )rr

Cov[
∑
i

α+
rie

A
ir, e

Γ
rr/γrr ] = (A+Cov[α̂r, γ̂rr ]Γ−1)rr
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V[
∑
j

eBjrβ
+T
jr ] = (B+V[β̂r]B+T )rr

Cov[
∑
j

eBjrβ
+T
jr , e

Γ
rr/γrr ] = (B+Cov[β̂r , γ̂rr]Γ−1)rr

V[eΓ
rr/γrr ] = (Γ−1V[γ̂rr ]Γ−1)rr

V[
∑
i

∑
j

α+
rie

0
ijβ

+T
jr /γrr ] = σ2{(ATA)−1}rr{(ΓBTBΓ)−1}rr ,

where for the last identity we use that the errors are homoscedastic and uncorrelated, and relation
(15). Putting all of this together yields Result 3.2.

C Properties of the BLLS and SVD parameter estimation

methods

We have here collected some results on the bilinear least squares (BLLS) and singular value de-
composition (SVD) methods of parameter (profiles) estimation, which were briefly described in
Section 5. These results are taken from Linder and Sundberg 3. We first give results for the BLLS
method, and start by the normal equations whose solution yields the BLLS estimates. As men-
tioned in Section 5, they may be solved by an ALS procedure, alternating between the parameter
matrices A and B. The scaling matrix Γ of the constrained model (2) need not be introduced for
the parameter estimation.
Result C.1: Normal equations for BLLS
The normal equations, over constituents r = 1, . . . , R, can be written:

AD(r)ΓBT βr = T (r)βr

BΓD(r)ATαr = (T (r))Tαr. (17)

Here the matrix statistics T (r) and the diagonal coefficient matrices D(r) are defined by

T (r) =
K∑
k=1

c(k)
rr Z

(k), D(r) =
K∑
k=1

c(k)
rr C

(k), (18)

i.e. they can be regarded as weighted sums of data matrices and concentration matrices, respec-
tively. The matrices T (r) are sufficient statistics for the bilinear structure, that is they carry all
information available in data about the parameters of the bilinear relationship.

We now briefly indicate how an approximate variance–covariance matrix for the BLLS estimator
can be computed. Under the assumption that the estimated model falls near the true model the
bilinear model may be linearized in terms of the full parameter vector θ = (α1, . . . , αR, β1, . . . , βR,

γ11, . . . , γRR)T in a neighborhood of the true θ that includes the estimate θ̂. In order to cope
with the parameter constraints, we linearize them as well. The following result, cf. Rao 17 section
4a.9, tells how to combine the linearized design matrix X with the linearized matrix H for the
constraints |αr| = |βr| = 1, to obtain the variance–covariance matrix for θ.
Result C.2: Asymptotic variance–covariance matrix of the BLLS estimator
The approximate variance–covariance matrix for BLLS is given by

V[θ̂] = σ2

{(
XTX H
HT 0

)−1
}

11
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The interpretation of this formula is that we first take the inverse of the given matrix and then
extract its upper left part, of the same size as XTX.

Since we do not have quite explicit expressions for the variances and covariances of the BLLS
estimator, we only refer to the general Result 5.2 for prediction precision formulae.

The SVD estimator is formed by singular value decomposition of suitably weighted sums of the
observed data matrices and can be interpreted as obtained from reweighted least squares normal
equations. The SVD estimator is constructed in the following way from the matrix statistics
T (r) and the coefficient matrices D(r) defined by Equation (18). An algorithm, implemented in
MATLAB, can be found at http://www.matematik.su.se /matstat /chemo /alg.html .
Result C.3: Construction of the SVD estimator
The SVD estimator is constructed from singular value decomposition of weighted data matrices by

γ̂rr α̂rβ̂
T
r = SVD1[

R∑
r1=1

(D−1)rr1T
(r1)] = usvT ,

which by identification of terms yields α̂r = u, β̂r = v and γ̂rr = s. Here D is the R × R matrix
formed by the diagonals of the diagonal D(r)s as rows. SVD1[. . .] means the first singular value
component of the specific constructed matrix.

We now briefly indicate how the variance–covariance matrix for the SVD estimates can be
calculated. The expressions for the SVD estimator are linearized as

α̂r ≈ αr(1− αTr ξ(r)βr/γrr) + ξ(r)βr/γrr

β̂r ≈ βr(1− αTr ξ(r)βr/γrr) + (ξ(r))Tαr/γrr
γ̂rr ≈ γrr + αTr ξ

(r)βr ,

where ξ(r) =
∑K

k=1

∑R
r1=1(D−1)rr1c

(k)
r1r1E

(k). This linearization makes it possible for us to calculate
variances and covariances for the estimates. In the case of uncorrelated homoscedastic noise they
are particularly simple and are given by the following result.
Result C.4: Precision of the SVD estimator
For uncorrelated homoscedastic noise with variance σ2 the approximate variances and covariances

of the SVD estimator are

Cov[α̂r1, α̂r2 ] = σ2(D−1)r1r2(I − αr1αTr1)βTr1βr2 (I − αr2αTr2 )/γr1r1γr2r2

Cov[α̂r1 , β̂r2 ] = σ2(D−1)r1r2(I − αr1αTr1)αr2βTr1 (I − βr2βTr2 )/γr1r1γr2r2

Cov[α̂r1 , γ̂r2r2 ] = σ2(D−1)r1r2(I − αr1αTr1)βTr1βr2αr2/γr1r1

Cov[β̂r1 , β̂r2 ] = σ2(D−1)r1r2(I − βr1βTr1 )αTr1αr2(I − βr2βTr2 )/γr1r1γr2r2

Cov[β̂r1 , γ̂r2r2 ] = σ2(D−1)r1r2(I − βr1βTr1 )αTr1αr2βr2/γr1r1

Cov[γ̂r1r1 , γ̂r2r2 ] = σ2(D−1)r1r2αTr1β
T
r1βr2αr2 ,

where I is the identity matrix of suitable size. In particular the variances and covariances within
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constituent are
V[α̂r] = σ2(D−1)rr(I − αrαTr )/γ2

rr

V[β̂r] = σ2(D−1)rr(I − βrβTr )/γ2
rr

V[γ̂rr] = σ2(D−1)rr

Cov[α̂r, β̂r] = Cov[α̂r, γ̂rr] = Cov[β̂r, γ̂rr ] = 0.

Remark: The matrices V[α̂r] and V[β̂r] are singular due to the constraints |α̂r| = |β̂r | = 1.
For derivation of these variances and covariances, see Linder and Sundberg 3. Note that within
constituent many covariances are zero, so the correlation structure is relatively simple. Also covari-
ances between constituents will typically be relatively small. However, all covariances will vanish
only if all profiles are mutually orthogonal, a situation not likely to occur in practice.

Finally in this section, a derivation is given of the prediction variance for the näıve predictor
with the SVD estimator, found as Result 5.1.
Justification of Result 5.1: Inserting the variance–covariance expressions from Result C.4 in
Result 3.2 yields

V[c̃rr ] ≈ V[C0 −A+EAC0 −C0ΓETB(ΓBT )+ −C0EΓΓ−1 + Â+E0(B̂Γ̂)+T ]rr (19)
= c2rr{(A+[σ2(D−1)rr(I − αrαTr )/γ2

rr ]A
+T )rr +

(B+ [σ2(D−1)rr(I − βrβTr )/γ2
rr ]B

+T )rr +
(Γ−1[σ2(D−1)rr]Γ−1)rr}+
σ2(A+A+T )rr(Γ−1B+B+T Γ−1)rr . (20)

The expression of Result 3.2 is especially simple for the SVD estimator since all covariances within
constituent are zero. This expression simplifies to

V[ĉrr ] =
σ2c2rr(D−1)rr

γ2
rr

{(A+A+T )rr + (B+B+T )rr − 1 +
(A+A+T )rr(B+B+T )rr

c2rr(D−1)rr
}.

The simplification follows from the form M+ = (MTM)−1MT for the Moore–Penrose inverse
for a full column rank matrix. It is easily checked that this formula implies M+M = I and
M+M+T = (MTM)−1. By help of this we find

[M+(I −mrm
T
r )M+T ]rr = [(MTM)−1 − ereTr ]rr

= [(MTM)−1 −Err]rr = [(MTM)−1]rr − 1,

which are used to simplify the first two terms of formula (20).
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Figure 1: Pure and noisy data structures, for two specimens with the same constituents but of
different concentrations.

26



0 1 2 3 4 5
0

1

2

3

4

5

6
x 10

-3

P
re

di
ct

io
n 

pr
ec

is
io

n

Concentration factor c

o=naive
*=refined

BLLS

BLLS

SVD

SVD
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by BLLS or by SVD, when c11 = c22 = c and the factor levels are (+−− −−−).
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respectively.
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Figure 4: Factor 6 of the simulation study: spectral profiles with moderate and strong overlap,
respectively.

-

6

t
t
t t

t

t

t
td←to be

predicted

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

−i +i
+i
−i

1 1.5 2 3 4

1
1.5
2

3

4

Figure 5: Calibration designs and point to be predicted in the two concentrations. Labels − on
rays with points for more informative design; + on rays for less informative design. Only lower
points for K = 2; both lower and upper points for K = 4

28



0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

Factorial experiment number

A
ve

ra
ge

 p
re

di
ct

ed
 c

on
ce

nt
ra

tio
n

o = naive * = refined LS

Calibration method: SVD

Figure 6: Average simulated näıve and refined LS predictors, with SVD for estimation, for both
constituents (true concentrations 2 and 3). The x-axis represents the 32 design points of the 2(6−1)
experiment in the (standard) order of Table 1. The standard errors of the averages are typically
less than half the height of the symbol (o or *)
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Figure 7: Average simulated näıve and refined LS predictors, with BLLS for estimation, for both
constituents (true concentrations 2 and 3). The x-axis represents the 32 design points of the 2(6−1)
experiment in the (standard) order of Table 1. The standard errors of the averages are typically
less than half the height of the symbol (o or *)
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Figure 8: The näıve and refined LS predictors c̃0 and c∗0 with the SVD estimator. Shown is the
simulation average ± std deviation; true concentrations are 2 and 3, respectively. The x-axis
represents the 32 design points of the 2(6− 1) experiment in the (standard) order of Table 1.
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Figure 9: Amino acids exitation spectra, as estimated by the SVD method. See Section 7 for
details.
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Figure 10: Amino acids emission spectra, as estimated by the SVD method. See Section 7 for
details.
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