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SUMMARY
Continuum regression (CR) is regresswn of a response y on that linear combination Ly of
explanatory variables which maximizes r2(y, f) var(¢)?, where v is chosen from a continu-
um of candidates. CR includes several common methods as special cases: ordinary least
squares, principal component regression, partial least squares and a modified ridge regres-
sion. We demonstrate that CR, despite its name, can yield a predictor that is a discontinuous
function of v and of the calibration data. We illustrate this with a set of real data. The
relationship between CR and ridge regression is the key to understanding this phenomenon.
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1. INTRODUCTION

In regression problems where the explanatory variables are nearly collinear, the
ordinary least squares (OLS) estimator has an unpleasantly large variance. Several
so-called regularized (or shrinkage) methods, trading variance for bias, have been
suggested as alternatives to OLS. Well-known examples are principal component
regression (PCR), partial least squares (PLS) regression and ridge regression (RR);
see Brown (1993) or Frank and Friedman (1993) for reviews. Stone and Brooks
(1990) introduced the method of ‘continuum regression’ (CR), in which they consid-
ered a spectrum of possible regressors, each associated with a value of a parameter .
An appealing feature of this technique is that it incorporates OLS, PLS and PCR as
special cases, corresponding to particular values of <, and also a modified RR
method.

Following the customary notation, we denote by X an n x p design matrix and by
y the vector of n responses, such that the ith row of X gives the values of the p
explanatory variables for the ith observation, and y; the corresponding value of the
response variable. The vector y and all columns of X are assumed centred. The
problem, generally speaking, is to find a p-vector b such that 5Tx makes a good
predictor for known x. In OLS as well as in first-factor PLS or PCR the vector b is
determined by simple linear regression of y on a one-dimensional regressor Xc, where
the coefficient vector c is chosen by the following criteria for OLS, PLS and PCR
respectively:

(a) the squared correlation r*(y, Xc) between y and Xc is maximized,;

(b) the covariance between y and Xc is maximized under the constraint |c| = 1;

(c) the sample variance of Xc¢ (or squared length | Xc|?) is maximized, also under
le| = 1.
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This analogy between OLS, PLS and PCR was pointed out by Stone and Brooks
(1990), who went on to formulate their principle of CR, where a vector ¢ with |¢| = 1
is chosen for each v > 0 by maximizing

T(v, ¢) = (T Xe)* | XD o P(y, Xc) | Xel.

In this representation, v = 0 corresponds to OLS, v =1 to PLS and y — oo yields
PCR.

Having found this ¢, ¢ = ¢, say, we construct a predictor bTx by simple linear
regression of y on Xc,, i.e. we multiply ¢]x by the corresponding regression coef-
ficient. Stone and Brooks (1990) advocated that the choice of v be made by cross-
validated optimization over the predictors bTx. The procedure can be repeated using
the residuals as input, yielding an adjusted estimator, but we shall not consider more
than the first step in the sequence, i.e. first-factor CR.

RR is equivalent to selecting as b the vector that minimizes |Xb — y|*> + 6|b|
where § > 0 is an adjustable parameter. The relationship between RR and CR was
demonstrated by Sundberg (1993): CR differs from RR only by a scalar factor, that
should be chosen to minimize the residual sum of squares, and any CR regressor that
corresponds to a value of v between 0 and 1 is in fact a ridge regressor thus modified.
If we allow § < 0 this correspondence can be extended to CR for y > 1, as remarked
by de Jong and Farebrother (1994).

Finally, it should be mentioned that Brooks and Stone (1994) have also developed
a multivariate version of CR.

2. DISCONTINUITIES IN CONTINUUM REGRESSION

In our studies of CR, we have sometimes observed the predictor obtained by CR
to change discontinuously as the CR parameter +y is varied (or, when data vary). In
retrospect, it is not difficult to see the cause of this. First-factor CR involves the
maximization of a function:

¢, = arg max{T(y, c)}

and, even though T is continuous in both ¢ and +, the argument c, thus defined need
not be continuous in 4. Fig. 1 shows in principle what happens, by an example with
p = 2. Fig. 1 shows T(v, ¢) as a function of ¢ for v = 0.6 and v = 0.7. The point to
note is that, as -y is changed, one of the two local maxima is reduced and the other is
increased, taking over as global maximum. Consequently, there is a jump for some
value of v between 0.6 and 0.7. Similarly, v could have been held constant at 0.7
while the curves for (XTy) = (3, 1) and (X Ty) = (2.5, 1) were compared (simulating a
change in the response data y). This pair of curves would also have demonstrated the
existence of a jump, if plotted.

It is uncomfortable only to know that a predictor might make a sudden jump in
response to a slight change in . Therefore, we now investigate under what conditions
a data set is capable of producing this effect.

As shown in Sundberg (1993), first-factor CR is related to RR in the following
way. The CR predictor is proportional to an RR predictor

¢, < b*%(8),
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Fig. 1. Illustration of a function T(, ¢) to be maximized, as a function of ¢, for v = 0.6 (: ) and
vy=07(¢---- ): the data have p = 2, with XTy = (3, 1)T and XTX = diag(100, 0.01) (on the abscissa, ¢
is represented by the square root of its first co-ordinate ¢;)

where § = §cgr(7y) is a monotone function of «. In particular, 6cg(0) =0 (OLS),
6cr(1) = oo (PLS) and 6cg(o00) = —)\} (PCR: ), is the largest eigenvalue of X TX).
By definition, bRR(§) = (XTX + 61)~ X Ty. Thus, bRR(8) is a continuous function
of 6, and so is its projection on the unit sphere. Discontinuities in CR can occur
because the optimal value of § may change discontinuously with v, i.e. cg(y) may be
a discontinuous function.
Equation (2.4) in Sundberg (1993) states, in our notation, that

_ v X
1_’7 lc7l2

(M

Since this is a scale invariant formulation, we can replace c, with bRR(6). It is
convenient to express vectors and matrices in the canonical basis of right singular
vectors of X. We perform a singular value decomposition X = USV'T and write
X"y = Vg, c =Vzand STS = A. Then equation (1) reads

oy A2 (A+6D) gl
Tl |(A+8D) g

This can be written

__ PO
1—70()

where P(6) and Q(6) are two positive definite polynomials of degree 2(p — 1):

@
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When equation (2) is solved for v, we obtain
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For given v, equation (2) holds for § = §cx(7), but it may hold for other § as well.
The function cg(7) is uniquely obtained from equation (3) by inversion precisely
when () in equation (3) is a monotone function of é. Generally, for a given -,
several 6 may solve equation (3). Fig. 2 illustrates this. (See Section 3 for more details
on this data set.) For 0.580 <, < 0.593, the equation y(§) =, will have three
solutions. The existence of more than one solution does not make the CR regressor
ambiguous but only means that the global maximum of T(y, c) on the sphere |c| = 1
is to be found among a finite number of candidates. However, it is easily realized
from Fig. 2 that écgr(y) must have discontinuities in such cases. Conversely, it is
evident that dcr(7) lacks discontinuities when equation (3) is everywhere increasing.

In Fig. 2 we are between OLS (y = 0) and PLS (y = 1), but the above argument is
also valid for v > 1. When v > 1, the condition for no jumps is that equation (3)
must map the interval § € (—oo, — A;) on v € (1, 00) in a monotone way.

In summary, we have seen that a necessary and sufficient condition for a data set to
be free from jumps in the CR predictors is that the eigenvalues )\, . . ., A, and the
coefficients gy, . . ., g, for Xy in the basis of eigenvectors are such that the function

0.59

0.58

' 1 2 3 4 5 6

Fig. 2. Illustration of formula (3), i.e. of the CR parameter ~ regarded as the function (§) of the RR
parameter 6 (the data are the first nine observations of Fearn (1983))
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8 Q(8)/{P(6) + 6 Q(6)} is monotone or, equivalently, that § Q(6)/P(6) is an increasing
function for all 6. The derivative of § Q(6)/P(6) is (PQ + 6PQ’'— 6P'Q)/P?. The
function «(6) is monotone if and only if the equation

PQ +6PQ' —§P'Q =0 @)

has no solutions in the region {—oco, — A;} U {0, oo}. This offers a way to explore
whether a given data set will yield discontinuities.

There is not likely to be a simple answer to the question which combinations of
AL 815 - - -» Ap» 8, yield or do not yield discontinuities. By experience, when p = 2 we
can say qualitatively that for a fixed ratio g, /g, a discontinuity will appear if the ratio
A1/, is sufficiently large, whereas for a fixed ratio A; /A, the discontinuity disappears
if the ratio g,/g, is sufficiently extreme (large or small).

2.1. Remark on Cross-validation
Stone and Brooks (1990) used a ‘leave-one-out’ cross-validatory index I, for the
choice of . In essence, I, is a linear function of X (y; — y.)*, where /i is the predictor
of y; based on the other n — 1 observations. If a discontinuity is present in any of the
n reduced data sets, it will cause a discontinuity in the corresponding term (j,; — )
as a function of -, and as a consequence also in the function .

3. EXAMPLE: FEARN’S NEAR INFRA-RED DATA FOR CALIBRATION
OF PROTEIN

Here we refer to Fearn’s (1983) Table 1, now classical protein data, to demonstrate
that the occurrence of jumps is not an unusual fabricated phenomenon. Among
many others, Stone and Brooks (1990), example 3, have used these data, when they
illustrated their CR methodology on the first 12 items of Fearn’s Table 1. Here we
reduce the data set slightly more, to consist of the first nine or 10 items only. There
are p = 6 explanatory variables, representing the log(l/reflectance) values at six
different wavelengths and used to predict the percentage y of protein in wheat sam-
ples. Like in Fearn (1983), we standardized the explanatory variables but attempted
no other transformation. Solving equation (4) for the first » = 9 data items, we found
that the function v(6) had a local maximum and a local minimum on the positive real
axis. Fig. 2 shows the graph of «(6) in the region around v = 0.6. For v between
0.580 and 0.593 equation (3) has three solutions in 6. In Fig. 3 we illustrate the
maximum T{y(8), ¢4} for 0.3 < 6 < 3.3.

To illustrate what implications the discontinuity has for cross-validation, we
augment the data set with Fearn’s 10th observation and show the ‘leave-one-out’
index I, in Fig. 4. We note a downward jump at v ~ 0.588, when the continuum
regressor turns over from the descending to the ascending segment in Fig. 3. The
cross-validation index drops instantly from 0.515 to 0.353. The prediction j,,, for the
left-out observation drops from 9.89 to 8.93. (The value actually observed for y;, was
11.39, so both predictions are too low, and it is clear from Fig. 4 that a CR parameter
of v = 0.588 is not near the range of values that one would use in practice for these
data.)

What happens with the CR predictor as -y is varied? As «y approaches 0.588 the CR
predictor successively distributes more weight to the first principal component,
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p 6=0.3

§=0.439 or 2.L467

§=0.632

.57 0.58 0.59 0.6 o.61 Y

Fig. 3. Tllustration of the maximum T{y(6), c,} as a function of v(6), when § runs from 0.3 to 3.3 (the
data are the first nine observations of Fearn (1983))

P

0:1 0.2 0.3 0.4 0.5 0.6 0.7 Y

Fig. 4. Cross-validatory index I, as a function of v for first-factor CR, using as data the first 10
observations of Fearn (1983)

whose regression coefficient is increased from 0.46 (at OLS) to 1.02, whereas the
others are more or less shrunk. At the jump point even the first coefficient drops, to
0.77. From there it continues to decrease with increasing v, like the others (the
ultimate value for PCR being 0.46 again, of course). This drop of all coefficients at

the discontinuity could be expected as a consequence of the proposition in Sundberg
(1993). ‘
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4. CONSEQUENCES FOR CONTINUUM REGRESSION IN PRACTICE

The two curves in Fig. 1 were drawn for the same data set X, y and different values
of 4. It is easily realized that the same effect (one local maximum growing larger than
another) can also arise if +y is held constant and some items of the data set are varied
instead. Thus, for fixed , two data sets which differ only by some insignificant
amount in some variable in one observation may produce radically different CR
predictions. However, we see no reason why this should be a serious shortcoming of
CRin practice. In fact, several other model selection techniques share this property.
Our main worry, instead, concerns the possibility of devising efficient algorithms for
CR. Our present method to find a continuum regressor is to compute all real
solutions to equation (3) (using subroutine ‘NSolve’ in MATHEMATICA, version
2.2.2 (Wolfram Research, 1992)). If there is more than one solution, we find the
global maximum by comparing (v, c,) for each of them. This is a slow procedure.
The subset of Fearn’s (1983) data (n=9, p=6) required about 150 s to compute one
cross-validation index on a Macintosh Power 6100 computer. To apply CR to large
data sets, more efficient algorithms will be needed. (This is even more essential when
we want to allow more than one factor.) It seemed to us that a promising way would
be to use iteration of equation (2):

oy P(S)
" 1=y 06

However, the possibility of discontinuities poses a non-trivial problem: when
equation (3) for § has more than one solution, the iteration just mentioned will have
more than one stationary point, i.e. ¢, Will not converge to the appropriate
regressor for all choices of starting point §,. This motivates considering § as a more
basic parameter than . We address this question in Bjorkstrom and Sundberg
(1996).

5. CONCLUSIONS

For some data sets, the CR regressor coefficients vector c, is a discontinuous
function of the CR parameter «. In such cases, the correspondence between CR
regressors and RR predictors (Sundberg, 1993) is not one to one; instead, the CR
regressors form a subset of the RR predictors. When the cross-validatory index 7, is
plotted as a function of v, discontinuities are observed as jumps in the graph.
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