
Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Type-Theory of Acyclic Algorithms
and its

Reduction Calculus, I–II

Roussanka Loukanova

Department of Algebra and Logic
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences, Bulgaria

29 Jan 2021 and 5 Feb 2021

1 / 39

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Algorithmic Semantics of Lλ
ar for acyclic computations

extended to Lλ
ra for restricted computations

Syntax of Lλ
ar / Lλ

ra / Lλ
r =⇒ Algorithmic Semantics︸ ︷︷ ︸

Canonical Computations

=⇒ Denotations

︸ ︷︷ ︸
Algorithmic and Denotational Semantics of Lλ

ar /Lλ
ra /Lλ

r

Denotational semantics of Lλ
ar / Lλ

ra / Lλ
r :

den(A) by structural induction on A ∈ Terms:
Algorithmic semantics of Lλ

ar / Lλ
ra / Lλ

r :
determined by canonical terms via the reduction calculi

1 Every A ∈ Termsσ is reduced to its canonical form cf(A) ∈ Termsσ:

A ⇒cf cf(A) (1)

2 For every algorithmically meaningful A ∈ Termsσ, cf(A) determines
the algorithm alg(A) for computing den(A)
Lλ
ar introduced by Moschovakis [2], 1989, [3], 2006

Lλ
ra introduced by Loukanova [1]

2 / 39

Types: σ :≡ e | t | s | (τ1 → τ2)
For all τ ∈ Types:

Constsτ = {cτ0 , cτ1 , . . . , cτkτ
}

Varsτ = PureVτ ∪RecVτ , PureVτ ∩RecVτ = ∅
PureVτ = {vτ0 , vτ1 , . . . }, MemoryVτ = RecVτ = {pτ0 , pτ1 , . . . }

Terms of Lλ
ar / Lλ

r :

A :≡ cτ : τ | xτ : τ (for cτ ∈ Constsτ , xτ ∈ PureVτ ∪ RecVτ) (2a)

| B(σ→τ)(Cσ) : τ (2b)
| λ(vσ) (Bτ) : (σ → τ) (for vσ ∈ PureVσ) (2c)

|
[
Aσ0
0 where { pσ1

1 := Aσ1
1 , . . . ,

pσi
i := Aσi

i , . . . , pσn
n := Aσn

n }
]
: σ0

(2d)

|
[
Aσ0
0 such that {Cτ1

1 , . . . ,Cτm
m }

]
: σ′

0 (2e)

B,C ∈ Terms, pσi
i ∈ RecVσi

, Aσi
i ∈ Termsσi

C
τj
j ∈ Termsτj (for propositions): τj ≡ t or τj ≡ t̃ ≡ (s → t)

Acyclicity Constraint, for Lλ
ar; without it, Lλ

r
{ pσ1

1 := Aσ1
1 , . . . , pσi

i := Aσi
i , . . . , pσn

n := Aσn
n } is acyclic iff:

there is a rank : {p1, . . . , pn} → N such that:
if pj ∈ FreeVars(Ai) then rank(pi) > rank(pj)

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Denotational Semantics of Lλ
ar

Syntax of TT of Restricted Algorithms Lλ
ra

A :≡ cτ : τ | xτ : τ | B(σ→τ)(Cσ) : τ | λ(vσ) (Bτ) : (σ → τ) (3a)

|
(
Aσ0

0 where {pσ1
1 := Aσ1

1 , . . . , pσn
n := Aσn

n }
)
: σ0 (3b)

|
(
Aσ0

0 such that {Cτ1
1 , . . . , Cτn

n }
)
: σ′

0 (3c)

In (3b): pi ∈ RecVσi , Ai ∈ Termsσi satisfy Acyclicity Constraint:
{pσ1

1 := Aσ1
1 , . . . , pσn

n := Aσn
n } is acyclic, i.e., exists a function

rank : {p1, . . . , pn} → N
s.th. if pj occurs freely in Ai, then rank(pi) > rank(pj)

In (3c): For each i = 1, . . . , n,
τi ≡ t (truth values) or τi ≡ t̃ ≡ (s → t) (state dependent truth values)

σ′
0 ≡



σ0, if τi ≡ t, for all i ∈ { 1, . . . , n }
σ0 ≡ (s → σ), if for some σ ∈ Types, σ0 ≡ (s → σ)

σ̃0 ≡ (s → σ0), otherwise, i.e.,
if τi ≡ t̃, for some i ∈ { 1, . . . , n }, and

there is no σ s.th. σ0 ≡ (s → σ)

(4)

4 / 39

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Denotational Semantics of Lλ
ar

Abbreviations

Carnap’s Intensions, the type of state dependent objects of type σ:

τ̃ ≡ (s → τ), for τ ∈ Types (5)

Sequences
−→
X ≡ X1, . . . , Xn (n ≥ 0) (6a)

of terms: Xi ∈ Terms, for all i ∈ { 1, . . . , n } (6b)
of types: Xi ∈ Types, for all i ∈ { 1, . . . , n } (6c)

Abbreviated sequences of mutually recursive assignments:
−→p :=

−→
A ≡

[
p1 := A1, . . . , pn := An

]
(n ≥ 0) (7)

Abbreviated restrictor operator (such that ≡ s.t.) and terms:(
A0 such that {C1, . . . , Cn }

)
(8a)

≡
(
A0 s.t. {C1, . . . , Cn }

)
(8b)

≡
(
A0 such that {

−→
C }

)
≡

(
A0 such that

−→
C
)

(8c)
5 / 39

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Denotational Semantics of Lλ
ar

Denotational Semantics of Lλ
ar

A standard semantic structure is a tuple A(Consts) = ⟨T, I ⟩ that
satisfies the following conditions:

T = {Tσ | σ ∈ Types} is a frame of typed objects
{ 0, 1, er } ⊆ Tt ⊆ Te (er t ≡ er e ≡ er ≡ error)
Ts ̸= ∅ (the domain of states)
T(τ1→τ2) = (Tτ1 → Tτ2) = { f | f : Tτ1 → Tτ2 } (standard str.)
erσ ∈ Tσ, for every σ ∈ Types (designated typed errors)

I : Consts −→ ∪T is a typed interpretation function:
I(c) ∈ Tσ, for every c ∈ Constsσ

A is associated with the set of the typed variable valuations G:

G = {g | g : PureV∪RecV −→
⋃

T

and, for every X ∈ Varsσ, g(X) ∈ Tσ}
(9)

6 / 39

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Denotational Semantics of Lλ
ar

The denotation function of Lλ
ar (to be continued)

We assume a given A, and write den ≡ denA

There is a unique function, called the denotation function:
denA : Terms −→ { f | f : G −→ ∪T }
defined by recursion on the structure of the terms, by (D1)–(D5)

(D1) (1) den(x)(g) = g(x), for every x ∈ Vars
(2) den(c)(g) = I(c), for every c ∈ Consts

(D2) den(A(B))(g) = den(A)(g)(den(B)(g))

(D3) den(λx(B))(g)
(
a
)
= den(B)(g{x := a}), for every a ∈ Tτ

7 / 39

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Denotational Semantics of Lλ
ar

The denotation function for the recursion terms (continuation) (to be continued)

(D4) den(A0 where {p1 := A1, . . . , pn := An})(g) =
den(A0)(g{p1 := p1, . . . , pn := pn})
where pi ∈ Tτi are defined by recursion on rank(pi):

pi = den(Ai)(g{pk1
:= pk1

, . . . , pkm
:= pkm

})

given that pk1 , . . . , pkm are all of the recursion variables
pj ∈ {p1, . . . , pn}, s.t. rank(pj) < rank(pi).

Intuitively:
den(A1)(g), . . . , den(An)(g) are computed recursively, by rank(pi),
and stored in pi, 0 ≤ i ≤ n

the denotation den(A0)(g) may depend on the values stored in
p1, . . . , pn

8 / 39

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Denotational Semantics of Lλ
ar

The denotation function for the restrictor terms (continuation) (to be continued)

(D5)
Case 1: for all i ∈ { 1, . . . , n }, Ci ∈ Termst
For every g ∈ G:

den
(
Aσ0

0 s.t. {
−→
C }

)
(g) =



den(A0)(g), if, for all i ∈ { 1, . . . , n },
den(Ci)(g) = 1

erσ0
if, for some i ∈ { 1, . . . , n },
den(Ci)(g) = 0 or
den(Ci)(g) = er

9 / 39

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Denotational Semantics of Lλ
ar

Case 2: for some i ∈ { 1, . . . , n }, Ci : t̃, i.e.,
Ci ∈ Terms t̃ (a state dependent proposition)

For every g ∈ G, and every state s ∈ Ts:

den
(
Aσ0

0 s.t. {
−→
C }

)
(g)(s) =



den(A0)(g)(s), if den(Ci)(g) = 1,
for all i s.th. Ci : t, and

den(Ci)(g)(s) = 1,
for all i s.th. Ci : t̃, and

σ0 ≡ (s → σ)

den(A0)(g), if den(Ci)(g) = 1,
for all i s.th. Ci : t, and

den(Ci)(g)(s) = 1,
for all i s.th. Ci : t̃, and

σ0 ̸≡ (s → σ),
for all σ ∈ Types

erσ′
0
(s) [alt. er], otherwise 10 / 39

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Denotational Semantics of Lλ
ar

Immediate terms do not carry algorithmic sense;
their denotations are by the variable valuations

Definition (The set ImT of immediate terms)

ImTτ :≡ Xτ | Y (τ1→···→(τm→τ))(vτ11) . . . (vτmm)

(immediate applicative terms)
(10a)

ImT(σ1→···→(σn→τ)) :≡
λ(uσ1

1) . . . λ(uσn
n)Y (τ1→···→(τm→τ))(vτ11) . . . (vτmm)

(immediate λ-terms)

(10b)

for n ≥ 0, m ≥ 0; ui, vj ∈ PureV, X ∈ Vars, Y ∈ RecV

Definition (Proper terms)

PrT = (Terms− ImT) (11)

11 / 39

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Definition (Congruence Relation, informally)

The congruence relation is the smallest equivalence relation (i.e.,
reflexive, symmetric, transitive) between Lλ

ar-terms, A ≡c B, that is
closed under:

1 operators of term-formation:
application
λ-abstraction
acyclic recursion
restriction term

2 renaming bound variables (pure and recursion), without causing
variable collisions

3 re-ordering of the assignments within the acyclic sequences of
assignments in the recursion terms

4 re-ordering of the restriction sub-terms in the restriction terms

12 / 39

Reduction Rules (to be continued)

[Congruence] If A ≡c B, then A ⇒ B (cong)

[Transitivity] If A ⇒ B and B ⇒ C, then A ⇒ C (trans)

[Compositionality]

• If A ⇒ A′ and B ⇒ B′, then A(B) ⇒ A′(B′) (ap-comp)

• If A ⇒ B, then λ(u)(A) ⇒ λ(u)(B) (λ-comp)

• If Ai ⇒ Bi (i = 0, . . . , n), then

A0 where { p1 := A1, . . . , pn := An }
⇒ B0 where { p1 := B1, . . . , pn := Bn }

(wh-comp)

• If A0 ⇒ B0 and Ci ⇒ Ri (i = 0, . . . , n), then

A0 such that {C1, . . . , Cn }
⇒ B0 such that {R1, . . . , Rn }

(st-comp)

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Reduction Rules (to be continued)

[Head Rule] given that no pi occurs freely in any Bj ,(
A0 where {−→p :=

−→
A }

)
where {−→q :=

−→
B }

⇒ A0 where {−→p :=
−→
A, −→q :=

−→
B }

(head)

[Bekič-Scott Rule] given that no qi occurs freely in any Aj ,

A0 where { p :=
(
B0 where {−→q :=

−→
B }

)
, −→p :=

−→
A }

⇒ A0 where { p := B0,
−→q :=

−→
B, −→p :=

−→
A }

(B-S)

[Recursion-Application Rule] given that no pi occurs freely in B,(
A0 where {−→p :=

−→
A }

)
(B)

⇒ A0(B) where {−→p :=
−→
A }

(recap)

14 / 39

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Reduction Rules (to be continued)

[Application Rule] given that B ∈ PrT is a proper term, and fresh
p ∈

[
RecV−

(
FV

(
A(B)

)
∪ BV

(
A(B)

))]
,

A(B) ⇒
[
A(p) where { p := B }

]
(ap)

[λ-rule] given fresh p′i ∈
[
RecV−

(
FV(A) ∪ BV(A)

)]
, i = 1, . . . , n, for

A ≡ A0 where { p1 := A1, . . . , pn := An }

λ(u)
(
A0 where

{
p1 := A1, . . . , pn := An

})
(λ)

⇒
[
λ(u)A′

0 where
{
p′1 := λ(u)A′

1, . . . , p
′
n := λ(u)A′

n

}]
where, for all i = 0, . . . , n,

A′
i ≡

[
Ai

{
p1 :≡ p′1(u), . . . , pn :≡ p′n(u)

}]
(16)

15 / 39

Restriction Rules of Lλ
ra

(st1) Rule given that:
Ci (i = 1, . . . , n, n ≥ 0) are proper terms
A0,

−→
I (if not empty) are immediate, and

ci ∈ RecV (i = 1, . . . , n) are fresh

(A0 such that {C1, . . . , Cn,
−→
I }) (st1)

⇒ (A0 such that { c1, . . . , cn,
−→
I })

where { c1 := C1, . . . , cn := Cn }

(st2) Rule given that:
A0, Ci (i = 1, . . . , n, n ≥ 0) are proper terms, and
−→
I (if not empty) are immediate
a0, ci ∈ RecV (i = 1, . . . , n) are fresh

(A0 such that {C1, . . . , Cn,
−→
I }) (st2)

⇒ (a0 such that { c1, . . . , cn,
−→
I })

where { a0 := A0, c1 := C1, . . . , cn := Cn }

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Restricted Memory Locations
Canonical Forms in Lλ

rar

Definition (Irreducible Terms)

A ∈ Terms is irreducible iff

for all B ∈ Terms, A ⇒ B −→ A ≡c B (19)

Theorem (Criteria for Irreducibility)

(1) Every A ∈ Consts∪Vars is irreducible
(2) A(B) is irreducible iff B is immediate, A is explicit and irreducible
(3) λ(x)(A) is irreducible iff A is explicit and irreducible
(4) [A0 where {−→p :=

−→
A }] is irreducible iff all Ai are explicit, irreducible

(5)
(
A0 such that {

−→
C }

)
is irreducible iff all A0, Ci are immediate

Proof: By structural induction on terms and checking the reduction rules.

17 / 39

Theorem (Basic Restricted Memory Locations / Variables)

Assume that, for n ≥ 1:
−→
Ij are immediate terms, and
pi ∈ RecV, i = 2, . . . , n, are fresh with respect to p1,

−→
Ij

(j = 1, . . . , n)
Then:

((. . . ((p1 s.t.
−→
I1) s.t.

−→
I2) . . .) s.t.

−→
In) (20a)

⇒ (pn s.t.
−→
In) where { pn := (pn−1 s.t.

−−→
In−1), (20b)

. . . ,

p3 := (p2 s.t.
−→
I2), (20c)

p2 := (p1 s.t.
−→
I1) } (20d)

Proof: by induction on n.

Basis: n = 1
(p1 s.t.

−→
I1) ⇒ (p1 s.t.

−→
I1) is trivially true

Induction Step: Assume (20a)–(20d), for n ≥ 1.
Then, we reduce the term (21a) to the canonical form (21h)–(21j), by
applying the reduction rules (compositionally).

(((. . . ((p1 s.t.
−→
I1) s.t.

−→
I2) . . .) s.t.

−→
In)︸ ︷︷ ︸

pn+1

s.t.
−−→
In+1) (21a)

by (st2)

⇒ (pn+1 s.t.
−−→
In+1) where { (21b)

pn+1 := ((. . . ((p1 s.t.
−→
I1) s.t.

−→
I2) . . .) s.t.

−→
In)︸ ︷︷ ︸ } (21c)

by ind. hyp. and (wh-comp)

⇒ (pn+1 s.t.
−−→
In+1) where { (21d)

pn+1 :=
[
(pn s.t.

−→
In) where { (21e)

pn := (pn−1 s.t.
−−→
In−1), (21f)

. . . , p2 := (p1 s.t.
−→
I1) }

]
(21g)

by (B-S) ⇒ (pn+1 s.t.
−−→
In+1) where { (21h)

pn+1 := (pn s.t.
−→
In), pn := (pn−1 s.t.

−−→
In−1), (21i)

. . . , p2 := (p1 s.t.
−→
I1) } (21j)

Restricted Memory Variables

Theorem (Restricted Memory Locations / Variables)

Assume that, for n ≥ 1:
−→
Cj are proper terms, and

−→
Ij are immediate

pi ∈ RecV (i = 2, . . . , n) and cj ∈ RecV (j = 1, . . . , n) are fresh
with respect to p1,

−→
Cj ,

−→
Ij (j = 1, . . . , n)

Then:
((. . . ((p1 s.t. {

−→
C1,

−→
I1}) s.t. {

−→
C2,

−→
I2}) . . .) s.t. {

−→
Cn,

−→
In}) (22a)

⇒ (pn s.t. {−→cn,
−→
In}) where { pn := (pn−1 s.t. {−−→cn−1,

−−→
In−1}), (22b)

. . . ,

p3 := (p2 s.t. {−→c2 ,
−→
I2}), (22c)

p2 := (p1 s.t. {−→c1 ,
−→
I1}), (22d)

−→c1 :=
−→
C1, . . . ,−→cn :=

−→
Cn } (22e)

Proof.
by induction on n ≥ 1 and using the reduction rules

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Restricted Memory Locations
Canonical Forms in Lλ

rar

Definition of the Canonical Forms of Restricted Terms: CF5a

A ≡ (A0 such that {A1, . . . , An,
−→
I }) (23)

Ai (i = 1, . . . , n, n ≥ 0) are proper terms
−→
I (if not empty) are immediate
pi ∈ RecV (i = 1, . . . , n) are fresh

and, for every i = 0, . . . , n:

cf(Ai) ≡ Ai,0 where {−→pi :=
−→
Ai } (ki ≥ 0) (24)

(CF5a) If A0,0 is immediate, then cf(A) is

cf(A) :≡ (A0,0 such that { p1, . . . , pn,
−→
I }) where { (25a)

−→p0 :=
−→
A0, (25b)

p1 := A1,0,
−→p1 :=

−→
A1,

...

pn := An,0,
−→pn :=

−→
An }

(25c)

21 / 39

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Restricted Memory Locations
Canonical Forms in Lλ

rar

Definition of the Canonical Forms of Restricted Terms: CF5b

A ≡ (A0 such that {A1, . . . , An,
−→
I }) (26)

Ai (i = 1, . . . , n, n ≥ 0) are proper terms
−→
I (if not empty) are immediate
pi ∈ RecV (i = 0, . . . , n) are fresh

and, for every i = 0, . . . , n:

cf(Ai) ≡ Ai,0 where {−→pi :=
−→
Ai } (ki ≥ 0) (27)

(CF5b) If A0,0 is proper, then cf(A) is:

cf(A) :≡ (p0 such that { p1, . . . , pn,
−→
I }) where { (28a)

p0 := A0,0,
−→p0 :=

−→
A0, (28b)

p1 := A1,0,
−→p1 :=

−→
A1,

...

pn := An,0,
−→pn :=

−→
An }

(28c)

22 / 39

Assume: Terms = Terms(Lλ
ar), respectively Terms = Terms(Lλ

ra).

Theorem (Canonical Form Theorem)

For each A ∈ Terms, there is a unique up to congruence, irreducible term
cf(A) ∈ Terms, such that:

1 for some explicit, irreducible terms A0, . . . , An ∈ Terms (n ≥ 0)

cf(A) ≡ A0 where {p1 := A1, . . . , pn := An} (29)

2 A ⇒ cf(A)

Algorithmic Semantic of Lλ
ar, L

λ
ra / Lλ

r :
For each proper (i.e., non-immediate) A ∈ Terms, cf(A) determines
the algorithm alg(A) for computing den(A)

How is the algorithmic semantics of a proper (non-immediate)
A ∈ Terms determined?

Theorem (Effective Reduction Calculi)

For every term A ∈ Terms, its canonical form cf(A) is effectively
computed, by the reduction calculus.

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Restricted Memory Locations
Canonical Forms in Lλ

rar

Corollary

Assume the special case of a restrictor term A ∈ Terms,
Terms = Terms(Lλ

rar):
A ≡

(
C0 such that {

−→
C ,

−→
I }

)
(30)

each term in
−→
I and in

−→
C has a type of a truth value

each term in
−→
I is immediate

each term Cj (j = 1, . . . ,m, m ≥ 0) in
−→
C is proper

Then cf(A) has the form (31):

cf(A) ≡
(
C ′

0 such that {−→c ,
−→
I }

)
where {p1 := A1, . . . , pn := An} (31)

for some immediate C ′
0 ∈ Terms, some explicit, irreducible

A1, . . . , An ∈ Terms (n ≥ 0), and memory variables cj , pi ∈ RecV
(j = 1, . . . ,m, m ≥ 0, i = 1, . . . , n), such that −→c ⊆ −→p , i.e., for all j:

cj ∈ { p1, . . . , pn } (32)

24 / 39

Logical Forms of Definite Descriptions with the Determiner “the”

Φ ≡ The cube is large render−−−→ ? (33)

First Order Logic (FOL) A (available in Lλ
ar too)

Φ
render−−−→ A ≡ ∃x

[
∀y(cube(y) ↔ x = y)︸ ︷︷ ︸

uniqueness

∧ isLarge(x)
]

(34)

In FOL, by A in (34):
Existential quantification as the direct, topmost predication

Uniqueness of the existing entity

There is no referential force to the object denoted by the NP:

[the cube]np (35)

There is no compositional analysis, i.e., no “derivation” of A from
the components

Higher Order Logic (HOL): Henkin (1950) and Mostowski (1957)
Russellian “the” as a generalized quantifier: lost referential force

the render−−−→ T ≡
[
λPλQ

[
∃x

[
∀y(P (y) ↔ x = y)︸ ︷︷ ︸

uniqueness

∧ Q(x)
]]]

(36a)

the cube render−−−→ C ≡ T (cube)

C ≡
[
λPλQ

[
∃x

[
∀y(P (y) ↔ x = y)︸ ︷︷ ︸

uniqueness

∧ Q(x)
]]]

(cube) (36b)

|=| D ≡ λQ
[
∃x

[
∀y(cube(y) ↔ x = y)︸ ︷︷ ︸

uniqueness

∧ Q(x)
]]

(36c)

(fr. (36b) by β-reduction)

Φ ≡ The cube is large render−−−→ B ≡ D(isLarge) (37a)

B ≡
[
λQ

[
∃x

[
∀y(cube(y) ↔ x = y)︸ ︷︷ ︸

uniqueness

∧ Q(x)
]]]

(isLarge) (37b)

|=| ∃x
[
∀y(cube(y) ↔ x = y)︸ ︷︷ ︸

uniqueness

∧ isLarge(x)
]

(37c)

(fr. (37b) by β-reduction)

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Definite Descriptors with Determiner “the”

Example: rendering of the definite article “the” Option 1

We may consider rendering the definite article “the” to a constant:

the render−−−→ the ∈ Consts((̃e→ t̃)→ ẽ) (38)

and the following denotation of the constant the:

[(
den(the)

)
(g)

]
(p̄)(s0) =



y, if y is the unique y ∈ Te,
for which p̄(s 7→ y)(s0) = 1

er, otherwise
i.e., there is no unique entity
that has the property p̄ in s0

(39)

for every p̄ ∈ T(̃e→ t̃) and every s0 ∈ Ts

There are other possibilities for rendering the definite article “the”, e.g.,
with complex terms of generalized quantifiers or by using the restrictor.

27 / 39

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Definite Descriptors with Determiner “the”

A constant unique0 for uniqueness of y satisfying a property p in a state s0 Opt2

unique0 ∈ Consts((̃e→ t̃)→(ẽ→ t̃)) (40)

For every p̄ ∈ T(̃e→ t̃), q̄ ∈ T ẽ, and every s0 ∈ Ts, we can define:

[(
den(unique0)

)]
(p̄)(q̄)(s0) =


1, q̄(s0) is the unique y ∈ Te

s.t. p̄(s 7→ y)(s0) = 1

er, otherwise

(41)

(42a)–(42b) are possible, for some p̄0 ∈ T(̃e→ t̃), q̄0 ∈ T ẽ, s0 ∈ Ts:

q̄0(s0) = er and
q̄0(s0) is the unique y ∈ Te s.t. p̄0(s 7→ y)(s0) = 1

(42a)

[(
den(unique0)

)]
(p̄0)(q̄0)(s0) = 1 (42b)

28 / 39

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Definite Descriptors with Determiner “the”

A constant unique1 for uniqueness of y ̸= er satisfying a property p in a state s0

For every p̄ ∈ T(̃e→ t̃), q̄ ∈ T ẽ, s0 ∈ Ts,

[(
den(unique1)

)]
(p̄)(q̄)(s0) =


1, if q̄(s0) is the unique y ∈ Te

such that y ̸= er and
p̄(s 7→ y)(s0) = 1

er, otherwise

(43)

(44a)–(44b) are possible for some p̄0 ∈ T(̃e→ t̃), q̄0 ∈ T ẽ, s0 ∈ Ts:

for all x
[
[x ̸= er & p̄0(s 7→ x)(s0) = 1]

⇐⇒ x = q̄0(s0)
] (44a)

p̄0(s 7→ er)(s0) = 1 (44b)

∴ Both q̄0(s0) ̸= er and er have the property p̄0 in s0, i.e.,
q̄0(s0) ̸= er is not per se unique entity having the property p̄0 in s0

29 / 39

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Definite Descriptors with Determiner “the”

A constant unique for uniqueness of y satisfying a property p in a state s0

For every p̄ ∈ T(̃e→ t̃), q̄ ∈ T ẽ, s0 ∈ Ts,

[(
den(unique)

)]
(p̄)(q̄)(s0) =


1, if q̄(s0) ̸= er and

q̄(s0) is the unique y ∈ Te

such that p̄(s 7→ y)(s0) = 1

er, otherwise

(45)

Therefore: the unique object having the property p̄(s 7→ x)(s0) is:
y = q̄(s0) ̸= er

exists y
[
y = q̄(s0) ̸= er & for all x [p̄(s 7→ x)(s0) = 1

⇐⇒ x = y]
] (46a)

q̄(s0) ̸= er & for all x [p̄(s 7→ x)(s0) = 1

⇐⇒ x = q̄(s0)]
(46b)

30 / 39

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Definite Descriptors with Determiner “the”

Option 3: the definite determiner “the” and descriptors: Underspecification

We can render “the” to A1 or cf(A1), underspecified for p:

the render−−−→ A1 ≡
(
q s.t. { unique(p)(q) }

)
: ẽ (47a)

the render−−−→ cf(A1) ≡
(
q s.t. {U }

)
where {U := unique(p)(q) } (47b)

p ∈ RecV(̃e→ t̃), q ∈ RecV ẽ (47c)

Then, p gets specified, by the nominal head in NPs:

the cube render−−−→ cf(A2) : ẽ (48a)

A2 ≡
(
q s.t. { unique(p)(q) }

)
where { p := cube } (48b)

⇒cf cf(A2)

≡
(
q s.t. {U }

)
where {U := unique(p)(q),

p := cube }
(48c)

by (st1), (head), from (48b)

31 / 39

“the” and definite descriptors in predicative sentences Option 3

The cube is large render−−−→ cf(A3) : t̃ (49a)

A3 ≡ isLarge
((

q s.t. { unique(p)(q) }
)
where { p := cube }

)
(49b)

⇒ isLarge(Q) where {
Q :=

[(
q s.t. { unique(p)(q) }

)
where { p := cube }

]
}

(49c)

by (ap), from (49b)

⇒cf cf(A3) ≡ isLarge(Q) where {Q := (q s.t. {U }),
U := unique(p)(q), p := cube }

(49d)

by (st1), (wh-comp), (B-S), from (48c), (49c)

Algorithmic Pattern: definite descriptors in predicative sentences: Opt3

A ≡ L(Q) where {Q := (q s.t. {U }), U := unique(p)(q) } (50a)
p, q, L ∈ FreeV(A), p ∈ RecV(̃e→ t̃), q ∈ RecV ẽ, (50b)

Q ∈ RecV ẽ, U ∈ RecV t̃, L ∈ RecV(̃e→ t̃) (50c)

Example: the definite descriptors as a direct reference by named entities Option 4-5

The cube n is large render−−−→ cf(A4) : t̃ (51a)

A4 ≡ isLarge
((

q s.t. { unique(N)(q), p(q) }
)
where {

q := n, p := cube, N := named -n }
) (51b)

⇒cf cf(A4) ≡ isLarge(Q) where {Q :=
(
q s.t. {U,C }

)
,

U := unique(N)(q), C := p(q),

q := n, p := cube, N := named -n }
(51c)

direct reference; uniqueness and existence are consequences

The cube n is large render−−−→ cf(A5) : t̃ (52a)

A5 ≡ isLarge
((

q s.t. { p(q) }
)
where {

q := n, p := cube }
) (52b)

⇒cf isLarge(Q) where {Q :=
(
q s.t. {C }

)
, C := p(q),

q := n, p := cube }
(52c)

Example: another possible rendering of the determiner “the” via λ-abstraction Option 6

the render−−−→ B
((̃e→ t̃)→ ẽ)
1 / cf(B

((̃e→ t̃)→ ẽ)
1)

B1 ≡ λ(x)
([
q s.t. { unique(p)(q) }

]
where { p := x }

) (53a)

⇒ λ(x)
([[

q s.t. {U }
]
where {

U := unique(p)(q) }
]

where { p := x }
) (53b)

by (st1), (wh-comp), (λ-comp), from (53a)

⇒ λ(x)
([
q s.t. {U }

]
where {

U := unique(p)(q), p := x }
) (53c)

by (head), (λ-comp), from (53b)

⇒cf cf(B1) ≡ λ(x)
[
q s.t. {U ′(x) }

]
where {

U ′ := λ(x)unique(p′(x))(q),

p′ := λ(x)(x) }
(53d)

by (λ), from (53c)

the cube render−−−→ cf
(
cf(B1)(cube)

)
≡ cf(B2) : ẽ from (53d) (54a)

B2 ≡
[
λ(x)

[
q s.t. {U ′(x) }

]
where {

U ′ := λ(x)unique(p′(x))(q),

p′ := λ(x)(x) }
]
(cube)

(54b)

⇒
[
λ(x)[q s.t. {U ′(x) }]

]
(cube) where {

U ′ := λ(x)unique(p′(x))(q),

p′ := λ(x)(x) }
(54c)

by (recap), from (54b)

⇒
[[
λ(x)[q s.t. {U ′(x) }]

]
(c) where { c := cube }

]
where {U ′ := λ(x)unique(p′(x))(q),

p′ := λ(x)(x) }

(54d)

by (ap), (wh-comp), from (54c)

⇒cf cf(B2) ≡
[[
λ(x)[q s.t. {U ′(x) }]

]
(c)

]
where {U ′ := λ(x)unique(p′(x))(q),

p′ := λ(x)(x), c := cube }

(54e)

by (head), (cong), from (54d)

“the” and definite descriptors in predicative sentences Option 6

The cube is large render−−−→ isLarge
(
cf(B2)

)
≡ B3 : t̃ from (54e) (55a)

B3 ≡ isLarge
([[

λ(x)[q s.t. {U ′(x) }]
]
(c)

]
where {U ′ := λ(x)unique(p′(x))(q),

p′ := λ(x)(x), c := cube }
) (55b)

⇒ isLarge(Q) where {

Q :=
([[

λ(x)[q s.t. {U ′(x) }]
]
(c)

]
where {U ′ := λ(x)unique(p′(x))(q),

p′ := λ(x)(x), c := cube }
)
}

(55c)

by (ap), from (55b)

⇒cf cf(B3)

≡ isLarge(Q) where {Q :=
[
λ(x)[q s.t. {U ′(x) }]

]
(c),

U ′ := λ(x)unique(p′(x))(q),

p′ := λ(x)(x), c := cube }

(55d)

by (B-S), from (55c)

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Definite Descriptors with Determiner “the”

Outlook1: Development of Computational Theories and Applications

Generalised Computational Grammar: CompSynSem interfaces in
HL

Hierarchical lexicon with morphological structure and lexical rules

Syntax of HL expressions (phrasal and grammatical dependences)

Syntax-semantics inter-relations in lexicon and phrases

A Big Picture — simplified and approximated, but realistic:

Algorithmic CompSynSem of Human Language (HL)

HL Syn ⇐⇒ Lλ
ar /L

λ
r /SitI

Reduction Calc−−−−−−−−−→ Canonical Forms︸ ︷︷ ︸
Canonical Computations

=⇒ Denotations

︸ ︷︷ ︸
(Canonically) Algorithmic CompSynSem Interfaces

(I’ve done quite a lot of it, but still a lot to do!)

37 / 39

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Definite Descriptors with Determiner “the”

Some Current Tasks (among many others) and Future Work

My focus is on:

Development of Lλ
ar and Lλ

r

Dependent-Type Theory of Situated Information and Algorithms

Applications to formal and natural languages

Extending the Coverage of Computational Semantics

Computational Syntax-Semantics Interfaces

Semantics of programming and specification languages

Theoretical foundations of (parts of) compilers

More to come

Thank You!

38 / 39

Denotational and Algorithmic Semantics
Syntax of Lλ

ar
Reduction Calculi

Key Theoretical Features of Lλ
ar

Some Applications

Definite Descriptors with Determiner “the”

Some References I

Roussanka Loukanova.
Type-Theory of Parametric Algorithms with Restricted
Computations.
In Distributed Computing and Artificial Intelligence, 17th
International Conference, pages 321–331, Cham, 07 August 2020
2021. Springer International Publishing.
URL: https://doi.org/10.1007/978-3-030-53036-5_35.

Yiannis N Moschovakis.
The formal language of recursion.
Journal of Symbolic Logic, 54(04):1216–1252, 1989.
URL: https://doi.org/10.1017/S0022481200041086.

Yiannis N. Moschovakis.
A Logical Calculus of Meaning and Synonymy.
Linguistics and Philosophy, 29(1):27–89, 2006.
URL: https://doi.org/10.1007/s10988-005-6920-7.

39 / 39

https://doi.org/10.1007/978-3-030-53036-5_35
https://doi.org/10.1017/S0022481200041086
https://doi.org/10.1007/s10988-005-6920-7

	Denotational and Algorithmic Semantics
	Syntax of LAR
	Denotational Semantics of LAR

	Reduction Calculi
	Key Theoretical Features of LAR
	Restricted Memory Locations
	Canonical Forms in LrAR

	Some Applications
	Definite Descriptors with Determiner ``the''

