Type-Theory of Acyclic Algorithms and its Reduction Calculus, I–II

Roussanka Loukanova

Department of Algebra and Logic Institute of Mathematics and Informatics Bulgarian Academy of Sciences, Bulgaria

29 Jan 2021 and 5 Feb 2021

Algorithmic Semantics of L^λ_{ar} for acyclic computations extended to L^λ_{ra} for restricted computations

$$\underbrace{ \text{Syntax of } \mathcal{L}_{ar}^{\lambda} \ / \ \mathcal{L}_{ra}^{\lambda} \ / \ \mathcal{L}_{r}^{\lambda} \Longrightarrow}_{\text{Canonical Computations}} \xrightarrow{} \text{Denotations} }$$

Algorithmic and Denotational Semantics of $\,{\rm L}^{\lambda}_{a\,r}\,/\,{\rm L}^{\lambda}_{ra}\,/\,{\rm L}^{\lambda}_{r}$

- Denotational semantics of $L_{ar}^{\lambda} / L_{ra}^{\lambda} / L_{r}^{\lambda}$: den(A) by structural induction on $A \in$ Terms:
- Algorithmic semantics of L^λ_{ar} / L^λ_{ra} / L^λ_r: determined by canonical terms via the reduction calculi
 Every 4 ∈ Terms is reduced to its canonical form cf(4) ∈

Every
$$A \in \text{Ierms}_{\sigma}$$
 is reduced to its canonical form $ct(A) \in \text{Ierms}_{\sigma}$:

$$A \Rightarrow_{\mathsf{cf}} \mathsf{cf}(A) \tag{1}$$

- Pror every algorithmically meaningful A ∈ Terms_σ, cf(A) determines the algorithm alg(A) for computing den(A)
- L_{ar}^{λ} introduced by Moschovakis [2], 1989, [3], 2006
- L_{ra}^{λ} introduced by Loukanova [1]

$$\begin{array}{l} \text{Types:} \quad \sigma :\equiv \mathsf{e} \mid \mathsf{t} \mid \mathsf{s} \mid (\tau_1 \to \tau_2) \\ \text{For all } \tau \in \text{Types:} \\ \quad \text{Consts}_{\tau} = \{\mathsf{c}_0^{\tau}, \mathsf{c}_1^{\tau}, \ldots, \mathsf{c}_{k_{\tau}}^{\tau}\} \\ \quad \text{Vars}_{\tau} = \text{PureV}_{\tau} \cup \text{RecV}_{\tau}, \quad \text{PureV}_{\tau} \cap \text{RecV}_{\tau} = \varnothing \\ \quad \text{PureV}_{\tau} = \{v_0^{\tau}, v_1^{\tau}, \ldots\}, \quad \text{MemoryV}_{\tau} = \text{RecV}_{\tau} = \{p_0^{\tau}, p_1^{\tau}, \ldots\} \\ \text{Terms of } \mathbf{L}_{ar}^{\lambda} \neq \mathbf{L}_r^{\lambda}: \end{array}$$

$$A :\equiv \mathsf{c}^{\tau} : \tau \mid x^{\tau} : \tau \quad (\text{for } \mathsf{c}^{\tau} \in \text{Consts}_{\tau}, x^{\tau} \in \text{PureV}_{\tau} \cup \text{RecV}_{\tau}) \quad (2a)$$

$$|\mathsf{B}^{(\mathsf{c})},\mathsf{C}^{(\mathsf{c})}|:\tau \tag{2b}$$

$$|\lambda(v^{\sigma})(\mathsf{B}^{\tau}):(\sigma \to \tau) \quad \text{(for } v^{\sigma} \in \mathsf{PureV}_{\sigma} \text{)}$$
 (2c)

$$\mid \left[\mathsf{A}_{0}^{\sigma_{0}} \text{ where } \left\{ p_{1}^{\sigma_{1}} \coloneqq \mathsf{A}_{1}^{\sigma_{1}}, \dots, \right. \right.$$

$$p_i^{\sigma_i} := \mathsf{A}_i^{\sigma_i}, \dots, p_n^{\sigma_n} := \mathsf{A}_n^{\sigma_n} \}] : \sigma_0$$

$$| \left[\mathsf{A}_0^{\sigma_0} \text{ such that } \{ \mathsf{C}_1^{\tau_1}, \dots, \mathsf{C}_m^{\tau_n} \} \right] : \sigma_0'$$
(2e)

B, C ∈ Terms, p_i^{σ_i} ∈ RecV_{σi}, A_i^{σ_i} ∈ Terms_{σi} C_j^{τ_j} ∈ Terms_{τj} (for propositions): τ_j ≡ t or τ_j ≡ t̃ ≡ (s → t)
Acyclicity Constraint, for L_{ar}^λ; without it, L_r^λ {p₁^{σ₁} := A₁^{σ₁},..., p_i^{σ_i} := A_i^{σ_i},..., p_n^{σ_n} := A_n^{σ_n}} is acyclic iff:
there is a rank: {p₁,..., p_n} → N such that: if p_i ∈ FreeVars(A_i) then rank(p_i) > rank(p_j)

Denotational Semantics of $L_{a.r}^{\lambda}$

Syntax of TT of Restricted Algorithms L_{ra}^{λ}

$$A :\equiv \mathsf{c}^{\tau} : \tau \mid x^{\tau} : \tau \mid B^{(\sigma \to \tau)}(C^{\sigma}) : \tau \mid \lambda(v^{\sigma})(B^{\tau}) : (\sigma \to \tau)$$
(3a)

$$| (A_0^{\sigma_0} \text{ such that } \{ C_1^{\tau_1}, \dots, C_n^{\tau_n} \}) : \sigma'_0$$
(3c)

In (3b): $p_i \in \text{RecV}^{\sigma_i}$, $A_i \in \text{Terms}^{\sigma_i}$ satisfy Acyclicity Constraint:

•
$$\{p_1^{\sigma_1} := A_1^{\sigma_1}, \dots, p_n^{\sigma_n} := A_n^{\sigma_n}\}$$
 is acyclic, i.e., exists a function rank: $\{p_1, \dots, p_n\} \to \mathbb{N}$
s.th. if p_j occurs freely in A_i , then rank $(p_i) > \operatorname{rank}(p_j)$
In (3c): For each $i = 1, \dots, n$,

In (3c): For each i = 1, ..., n, $\tau_i \equiv t$ (truth values) or $\tau_i \equiv \tilde{t} \equiv (s \rightarrow t)$ (state dependent truth values)

$$\sigma'_{0} \equiv \begin{cases} \sigma_{0}, & \text{if } \tau_{i} \equiv t, \text{ for all } i \in \{1, \dots, n\} \\ \sigma_{0} \equiv (\mathbf{s} \to \sigma), & \text{if for some } \sigma \in \mathsf{Types}, \sigma_{0} \equiv (\mathbf{s} \to \sigma) \\ \widetilde{\sigma_{0}} \equiv (\mathbf{s} \to \sigma_{0}), & \text{otherwise, i.e.,} \\ & \text{if } \tau_{i} \equiv \widetilde{\mathsf{t}}, \text{ for some } i \in \{1, \dots, n\}, \text{ and} \\ & \text{there is no } \sigma \text{ s.th. } \sigma_{0} \equiv (\mathbf{s} \to \sigma) \end{cases}$$
(4)

Denotational Semantics of $L_{a\,r}^{\lambda}$

Abbreviations

• Carnap's Intensions, the type of state dependent objects of type σ :

$$\widetilde{\tau} \equiv (\mathbf{s} \to \tau), \quad \text{for } \tau \in \text{Types}$$
 (5)

Sequences

$$\overline{X} \equiv X_1, \dots, X_n \quad (n \ge 0) \tag{6a}$$

of terms:
$$X_i \in \text{Terms}$$
, for all $i \in \{1, \dots, n\}$ (6b)

of types:
$$X_i \in \mathsf{Types}$$
, for all $i \in \{1, \dots, n\}$ (6c)

• Abbreviated sequences of mutually recursive assignments:

$$\overrightarrow{p} := \overrightarrow{A} \equiv [p_1 := A_1, \dots, p_n := A_n] \quad (n \ge 0)$$
(7)

• Abbreviated restrictor operator (such that \equiv s.t.) and terms:

$$(A_0 \text{ such that } \{C_1, \ldots, C_n\})$$
 (8a)

$$\equiv (A_0 \text{ s.t. } \{ C_1, \dots, C_n \}) \tag{8b}$$

$$\equiv \left(A_0 \text{ such that } \{ \overrightarrow{C} \}\right) \equiv \left(A_0 \text{ such that } \overrightarrow{C}\right) \tag{8c}$$

Denotational Semantics of L_{ar}^{λ}

Denotational Semantics of L_{ar}^{λ}

A standard semantic structure is a tuple $\mathfrak{A}(Consts) = \langle \mathbb{T}, \mathcal{I} \rangle$ that satisfies the following conditions:

•
$$\mathbb{T} = \{\mathbb{T}_{\sigma} \mid \sigma \in \mathsf{Types}\}$$
 is a frame of typed objects
 $\{0, 1, er\} \subseteq \mathbb{T}_{\mathsf{t}} \subseteq \mathbb{T}_{\mathsf{e}} \quad (er_{\mathsf{t}} \equiv er_{\mathsf{e}} \equiv er \equiv error)$
 $\mathbb{T}_{\mathsf{s}} \neq \varnothing$ (the domain of *states*)
 $\mathbb{T}_{(\tau_1 \to \tau_2)} = (\mathbb{T}_{\tau_1} \to \mathbb{T}_{\tau_2}) = \{f \mid f : \mathbb{T}_{\tau_1} \to \mathbb{T}_{\tau_2}\}$ (standard str.)
 $er_{\sigma} \in \mathbb{T}_{\sigma}$, for every $\sigma \in \mathsf{Types}$ (designated typed errors)

- \mathcal{I} : Consts $\longrightarrow \cup \mathbb{T}$ is a typed *interpretation function*: $\mathcal{I}(c) \in \mathbb{T}_{\sigma}$, for every $c \in Consts_{\sigma}$
- \mathfrak{A} is associated with the set of the typed variable valuations G:

$$G = \{g \mid g \colon \mathsf{PureV} \cup \mathsf{RecV} \longrightarrow \bigcup \mathbb{T}$$

and, for every $X \in \mathsf{Vars}_{\sigma}, \quad g(X) \in \mathbb{T}_{\sigma}\}$ (9)

Denotational Semantics of L_{ar}^{λ}

The denotation function of L_{ar}^{λ}

(to be continued)

- We assume a given \mathfrak{A} , and write den \equiv den $^{\mathfrak{A}}$
- There is a unique function, called the *denotation function*: den^A: Terms → { f | f: G → ∪ T } defined by recursion on the structure of the terms, by (D1)–(D5)

(D1)
equation den
$$(x)(g) = g(x)$$
, for every $x \in Vars$
equation den $(c)(g) = \mathcal{I}(c)$, for every $c \in Consts$

(D2) $\operatorname{den}(A(B))(g) = \operatorname{den}(A)(g)(\operatorname{den}(B)(g))$

(D3) den
$$(\lambda x(B))(g)(a) = den(B)(g\{x := a\})$$
, for every $a \in \mathbb{T}_{\tau}$

Denotational Semantics of L_{ar}^{λ}

The denotation function for the recursion terms (continuation)

(to be continued)

(D4) den $(A_0$ where $\{p_1 := A_1, \dots, p_n := A_n\})(g) = den(A_0)(g\{p_1 := \overline{p}_1, \dots, p_n := \overline{p}_n\})$

where $\overline{p}_i \in \mathbb{T}_{\tau_i}$ are defined by recursion on rank (p_i) :

 $\overline{p_i} = \mathsf{den}(A_i)(g\{p_{k_1} := \overline{p}_{k_1}, \dots, p_{k_m} := \overline{p}_{k_m}\})$

given that p_{k_1}, \ldots, p_{k_m} are all of the recursion variables $p_j \in \{p_1, \ldots, p_n\}$, s.t. $\operatorname{rank}(p_j) < \operatorname{rank}(p_i)$.

Intuitively:

- den $(A_1)(g), \ldots,$ den $(A_n)(g)$ are computed recursively, by rank (p_i) , and stored in p_i , $0 \le i \le n$
- the denotation $\mathrm{den}(A_0)(g)$ may depend on the values stored in p_1,\ldots,p_n

Denotational Semantics of L_{ar}^{λ}

The denotation function for the restrictor terms (continuation)

(to be continued)

(D5)

Case 1: for all $i \in \{1, ..., n\}$, $C_i \in \text{Terms}_t$ For every $g \in G$:

$$\operatorname{den}\left(A_{0}^{\sigma_{0}} \text{ s.t. } \left\{ \overrightarrow{C} \right\}\right)(g) = \begin{cases} \operatorname{den}(A_{0})(g), & \text{if, for all } i \in \left\{1, \dots, n\right\}, \\ \operatorname{den}(C_{i})(g) = 1 \\ er_{\sigma_{0}} & \text{if, for some } i \in \left\{1, \dots, n\right\}, \\ \operatorname{den}(C_{i})(g) = 0 \text{ or} \\ \operatorname{den}(C_{i})(g) = er \end{cases}$$

Denotational and Algorithmic Semantics Denotational Semantics of L_{am}^{λ} Key Theoretical Features Some Applications Case 2: for some $i \in \{1, \ldots, n\}$, $C_i : \tilde{t}$, i.e., $C_i \in \text{Terms}_{\tilde{t}}$ (a state dependent proposition) For every $q \in G$, and every state $s \in \mathbb{T}_s$: $\operatorname{den}(A_0)(g)(s),$ if den $(C_i)(g) = 1$, for all i s.th. C_i : t, and $\operatorname{den}(C_i)(q)(s) = 1,$ for all *i* s.th. C_i : \tilde{t} , and $\sigma_0 \equiv (\mathbf{s} \to \sigma)$ $\operatorname{den} \left(A_0^{\sigma_0} \text{ s.t. } \{ \overrightarrow{C} \} \right) (g)(s) = \begin{cases} \operatorname{den}(A_0)(g), \\ \end{array} \right.$ if $\operatorname{den}(C_i)(g) = 1$, for all i s.th. C_i : t, and $\operatorname{den}(C_i)(g)(s) = 1,$ for all *i* s.th. C_i : \tilde{t} . and $\sigma_0 \not\equiv (\mathbf{s} \to \sigma),$ for all $\sigma \in \mathsf{Types}$ $r_{\sigma'_{\alpha}}(s)$ [alt. er], otherwise 10 / 39

Denotational Semantics of L_{ar}^{λ}

Immediate terms do not carry algorithmic sense; their denotations are by the variable valuations

Definition (The set ImT of immediate terms)

$$ImT^{\tau} :\equiv X^{\tau} \mid \underline{Y^{(\tau_1 \to \dots \to (\tau_m \to \tau))}(v_1^{\tau_1}) \dots (v_m^{\tau_m})}$$

(immediate applicative terms) (10a)

$$ImT^{(\sigma_{1} \to \dots \to (\sigma_{n} \to \tau))} :\equiv \lambda(u_{1}^{\sigma_{1}}) \dots \lambda(u_{n}^{\sigma_{n}}) Y^{(\tau_{1} \to \dots \to (\tau_{m} \to \tau))}(v_{1}^{\tau_{1}}) \dots (v_{m}^{\tau_{m}})$$
(10b)
(immediate λ -terms)

for $n \ge 0$, $m \ge 0$; $u_i, v_j \in \mathsf{PureV}$, $X \in \mathsf{Vars}$, $Y \in \mathsf{RecV}$

Definition (Proper terms)

$$PrT = (Terms - ImT)$$
(11)

Definition (Congruence Relation, informally)

The congruence relation is the smallest equivalence relation (i.e., reflexive, symmetric, transitive) between L_{ar}^{λ} -terms, $A \equiv_{c} B$, that is closed under:

- operators of term-formation:
 - application
 - λ-abstraction
 - acyclic recursion
 - restriction term
- renaming bound variables (pure and recursion), without causing variable collisions
- re-ordering of the assignments within the acyclic sequences of assignments in the recursion terms
- re-ordering of the restriction sub-terms in the restriction terms

[Congruence]If $A \equiv_{c} B$, then $A \Rightarrow B$ (cong)[Transitivity]If $A \Rightarrow B$ and $B \Rightarrow C$, then $A \Rightarrow C$ (trans)[Compositionality]

- If $A \Rightarrow A'$ and $B \Rightarrow B'$, then $A(B) \Rightarrow A'(B')$ (ap-comp)
- If $A \Rightarrow B$, then $\lambda(u)(A) \Rightarrow \lambda(u)(B)$ (λ -comp)

• If
$$A_i \Rightarrow B_i$$
 $(i = 0, ..., n)$, then
 A_0 where $\{ p_1 := A_1, ..., p_n := A_n \}$ (wh-comp)
 $\Rightarrow B_0$ where $\{ p_1 := B_1, ..., p_n := B_n \}$

• If
$$A_0 \Rightarrow B_0$$
 and $C_i \Rightarrow R_i$ $(i = 0, ..., n)$, then
 A_0 such that $\{C_1, ..., C_n\}$ (st-comp)
 $\Rightarrow B_0$ such that $\{R_1, ..., R_n\}$

Reduction Rules

[Head Rule] given that no p_i occurs freely in any B_j ,

$$\begin{pmatrix} A_0 \text{ where } \{ \overrightarrow{p} := \overrightarrow{A} \} \end{pmatrix} \text{ where } \{ \overrightarrow{q} := \overrightarrow{B} \}$$

$$\Rightarrow A_0 \text{ where } \{ \overrightarrow{p} := \overrightarrow{A}, \ \overrightarrow{q} := \overrightarrow{B} \}$$
(head)

[Bekič-Scott Rule] given that no q_i occurs freely in any A_j ,

$$A_0 \text{ where } \{ p := \left(B_0 \text{ where } \{ \overrightarrow{q} := \overrightarrow{B} \} \right), \ \overrightarrow{p} := \overrightarrow{A} \}$$

$$\Rightarrow A_0 \text{ where } \{ p := B_0, \overrightarrow{q} := \overrightarrow{B}, \ \overrightarrow{p} := \overrightarrow{A} \}$$
(B-S)

[Recursion-Application Rule] given that no p_i occurs freely in B,

$$\begin{pmatrix} A_0 \text{ where } \{ \overrightarrow{p} := \overrightarrow{A} \} \end{pmatrix} (B)$$

$$\Rightarrow A_0(B) \text{ where } \{ \overrightarrow{p} := \overrightarrow{A} \}$$
(recap)

Reduction Rules

(to be continued)

 $\begin{array}{l} \left[\begin{array}{c} \mbox{Application Rule} \end{array} \right] \mbox{ given that } B \in \Pr {\sf T} \mbox{ is a proper term, and fresh} \\ p \in \left[\mbox{RecV} - \left(\mbox{FV} \left(A(B) \right) \cup \mbox{BV} \left(A(B) \right) \right) \right], \end{array} \end{array}$

$$A(B) \Rightarrow \left[A(p) \text{ where } \left\{ p := B \right\} \right]$$
 (ap)

$$[\lambda$$
-rule] given fresh $p'_i \in [\operatorname{RecV} - (\operatorname{FV}(A) \cup \operatorname{BV}(A))]$, $i = 1, \ldots, n$, for $A \equiv A_0$ where $\{ p_1 := A_1, \ldots, p_n := A_n \}$

$$\lambda(u) \Big(A_0 \text{ where } \{ p_1 \coloneqq A_1, \dots, p_n \coloneqq A_n \} \Big)$$

$$\Rightarrow \Big[\lambda(u) A'_0 \text{ where } \{ p'_1 \coloneqq \lambda(u) A'_1, \dots, p'_n \coloneqq \lambda(u) A'_n \} \Big]$$

$$(\lambda)$$

where, for all $i = 0, \ldots, n$,

$$A'_{i} \equiv \left[A_{i}\left\{p_{1} :\equiv p'_{1}(u), \dots, p_{n} :\equiv p'_{n}(u)\right\}\right]$$
(16)

(st1) Rule given that:

• C_i $(i = 1, ..., n, n \ge 0)$ are proper terms • A_0 , \overrightarrow{I} (if not empty) are immediate, and • $c_i \in \text{RecV}$ (i = 1, ..., n) are fresh

$$\begin{array}{l} (A_0 \text{ such that } \{ C_1, \dots, C_n, \overrightarrow{I} \}) & (\texttt{st1}) \\ \Rightarrow (A_0 \text{ such that } \{ c_1, \dots, c_n, \overrightarrow{I} \}) & \\ & \text{where } \{ c_1 \coloneqq C_1, \dots, c_n \coloneqq C_n \} \end{array}$$

(st2) Rule given that:

- A_0 , C_i $(i = 1, ..., n, n \ge 0)$ are proper terms, and • \overrightarrow{I} (if not empty) are immediate
- $a_0, c_i \in \mathsf{RecV}$ $(i = 1, \dots, n)$ are fresh

$$(A_0 \text{ such that } \{ C_1, \dots, C_n, \overrightarrow{I} \})$$
(st2)

$$\Rightarrow (a_0 \text{ such that } \{ c_1, \dots, c_n, \overrightarrow{I} \})$$
where $\{ a_0 := A_0, c_1 := C_1, \dots, c_n := C_n \}$

Restricted Memory Locations Canonical Forms in $\mathbf{L}_{rar}^{\lambda}$

Definition (Irreducible Terms)

 $A \in \mathsf{Terms}$ is *irreducible* iff

for all
$$B \in \text{Terms}$$
, $A \Rightarrow B \longrightarrow A \equiv_{\mathsf{c}} B$

Theorem (Criteria for Irreducibility)

- \bigcirc A(B) is irreducible iff B is immediate, A is explicit and irreducible
- $\ \, {\bf O} \ \ \, \lambda(x)(A) \ \, \mbox{is irreducible iff} \ \, A \ \, \mbox{is explicit and irreducible}$
- $[A_0 \text{ where } \{ \overrightarrow{p} := \overrightarrow{A} \}]$ is irreducible iff all A_i are explicit, irreducible • $(A_0 \text{ such that } \{ \overrightarrow{C} \})$ is irreducible iff all A_0, C_i are immediate

Proof: By structural induction on terms and checking the reduction rules.

(19)

Theorem (Basic Restricted Memory Locations / Variables)

Assume that, for $n \ge 1$:

- $\overrightarrow{I_j}$ are immediate terms, and
- $p_i \in \text{RecV}, i = 2, ..., n$, are fresh with respect to p_1 , $\overrightarrow{I_j}$ (j = 1, ..., n)

Then:

$$((\dots((p_1 \text{ s.t. } \overrightarrow{I_1}) \text{ s.t. } \overrightarrow{I_2})\dots) \text{ s.t. } \overrightarrow{I_n})$$
 (20a)

$$\Rightarrow (p_n \text{ s.t. } \overrightarrow{I_n}) \text{ where } \{ p_n := (p_{n-1} \text{ s.t. } \overrightarrow{I_{n-1}}),$$
(20b)

. . . ,

$$p_3 := (p_2 \text{ s.t. } \overrightarrow{I_2}), \qquad (20c)$$
$$p_2 := (p_1 \text{ s.t. } \overrightarrow{I_1}) \} \qquad (20d)$$

Proof: by induction on n.

Basis: n = 1 $(p_1 \text{ s.t. } \overrightarrow{I_1}) \Rightarrow (p_1 \text{ s.t. } \overrightarrow{I_1})$ is trivially true Induction Step: Assume (20a)–(20d), for $n \ge 1$. Then, we reduce the term (21a) to the canonical form (21h)–(21j), by applying the reduction rules (compositionally).

$$(\underbrace{((\dots ((p_1 \text{ s.t. } \overrightarrow{I_1}) \text{ s.t. } \overrightarrow{I_2}) \dots) \text{ s.t. } \overrightarrow{I_n})}_{n \in \mathbb{N}} \text{ s.t. } \overrightarrow{I_n}) \qquad (21a)$$

 p_{n+1}

by (st2) $\Rightarrow (p_{n+1} \text{ s.t. } \overrightarrow{I_{n+1}}) \text{ where } \{$ (21b)

$$p_{n+1} := \underbrace{((\dots ((p_1 \text{ s.t. } \overrightarrow{I_1}) \text{ s.t. } \overrightarrow{I_2}) \dots) \text{ s.t. } \overrightarrow{I_n})}_{\bullet} \}$$
(21c)

by ind. hyp. and (wh-comp)

$$\Rightarrow (p_{n+1} \text{ s.t. } \overrightarrow{I_{n+1}}) \text{ where } \{$$
(21d)

$$p_{n+1} := \left[(p_n \text{ s.t. } \overrightarrow{I_n}) \text{ where } \right]$$
 (21e)

$$p_n := (p_{n-1} \text{ s.t. } \overrightarrow{I_{n-1}}), \quad (21f)$$

 $\ldots, p_2 := (p_1 \text{ s.t. } \overrightarrow{I_1}) \} \Big]$ (21g)

by (B-S)
$$\Rightarrow$$
 $(p_{n+1} \text{ s.t. } \overrightarrow{I_{n+1}})$ where { (21h)

$$p_{n+1} := (p_n \text{ s.t. } \overrightarrow{I_n}), \ p_n := (p_{n-1} \text{ s.t. } \overrightarrow{I_{n-1}}),$$
 (21i)

$$\dots, \quad p_2 := (p_1 \text{ s.t. } \overrightarrow{I_1}) \}$$
(21j)

Theorem (Restricted Memory Locations / Variables)

Assume that, for $n \ge 1$: • $\overrightarrow{C_j}$ are proper terms, and $\overrightarrow{I_j}$ are immediate • $p_i \in \text{RecV}$ (i = 2, ..., n) and $c_j \in \text{RecV}$ (j = 1, ..., n) are fresh with respect to p_1 , $\overrightarrow{C_j}$, $\overrightarrow{I_j}$ (j = 1, ..., n)Then: ((...($(p_1 \text{ s.t. } \{\overrightarrow{C_1}, \overrightarrow{I_1}\})$ s.t. $\{\overrightarrow{C_2}, \overrightarrow{I_2}\}$)...) s.t. $\{\overrightarrow{C_n}, \overrightarrow{I_n}\}$) (22a) $\Rightarrow (p_n \text{ s.t. } \{\overrightarrow{c_n}, \overrightarrow{I_n}\})$ where $\{p_n := (p_{n-1} \text{ s.t. } \{\overrightarrow{c_{n-1}}, \overrightarrow{I_{n-1}}\})$, (22b) ..., $p_2 := (p_2 \text{ s.t. } \{\overrightarrow{c_2}, \overrightarrow{I_2}\})$...(22c)

$$p_2 := (p_1 \text{ s.t. } \{\overrightarrow{c_1}, \overrightarrow{I_1}\}), \tag{22d}$$

$$\overrightarrow{c_1} := \overrightarrow{C_1}, \ \dots, \overrightarrow{c_n} := \overrightarrow{C_n}$$
 (22e)

Proof.

by induction on $n \ge 1$ and using the reduction rules

Restricted Memory Locations Canonical Forms in $\mathbf{L}_{rar}^{\lambda}$

Definition of the Canonical Forms of Restricted Terms: CF5a

$$A \equiv (A_0 \text{ such that } \{A_1, \dots, A_n, \overrightarrow{I}\})$$
(23)

- A_i $(i = 1, \dots, n, n \ge 0)$ are proper terms
- \overrightarrow{I} (if not empty) are immediate
- $p_i \in \mathsf{RecV} \ (i = 1, \dots, n)$ are fresh

and, for every $i = 0, \ldots, n$:

$$\mathsf{cf}(A_i) \equiv A_{i,0} \text{ where } \{ \overrightarrow{p_i} \coloneqq \overrightarrow{A_i} \} \quad (k_i \ge 0)$$
 (24)

(CF5a) If $A_{0,0}$ is immediate, then cf(A) is

$$cf(A) :\equiv (A_{0,0} \text{ such that } \{ p_1, \dots, p_n, \overrightarrow{I} \}) \text{ where } \{ (25a)$$
$$\overrightarrow{p_0} := \overrightarrow{A_0},$$
(25b)

$$p_1 := A_{1,0}, \ \overrightarrow{p_1} := \overrightarrow{A_1},$$

$$\vdots \qquad (25c)$$

$$p_n := A_{n,0}, \ \overrightarrow{p_n} := \overrightarrow{A_n} \}$$

Restricted Memory Locations Canonical Forms in $\mathbf{L}_{rar}^{\lambda}$

Definition of the Canonical Forms of Restricted Terms: CF5b

$$A \equiv (A_0 \text{ such that } \{A_1, \dots, A_n, \overrightarrow{I}\})$$
(26)

- A_i $(i=1,\ldots,n,\ n\geq 0)$ are proper terms
- \overrightarrow{I} (if not empty) are immediate
- $p_i \in \mathsf{RecV} \ (i = 0, \dots, n)$ are fresh

and, for every $i = 0, \ldots, n$:

$$\mathsf{cf}(A_i) \equiv A_{i,0} \text{ where } \{ \overrightarrow{p_i} \coloneqq \overrightarrow{A_i} \} \quad (k_i \ge 0)$$
 (27)

(CF5b) If $A_{0,0}$ is proper, then cf(A) is:

$$\mathsf{cf}(A) :\equiv (p_0 \text{ such that } \{ p_1, \dots, p_n, \overrightarrow{I} \}) \text{ where } \{$$
 (28a)

$$p_0 := A_{0,0}, \ \overrightarrow{p_0} := \overrightarrow{A_0}, \tag{28b}$$

$$p_1 := A_{1,0}, \ \overrightarrow{p_1} := \overrightarrow{A_1},$$

$$p_n := A_{n,0}, \ \overrightarrow{p_n} := \overrightarrow{A_n} \}$$

Assume: Terms = Terms(L_{ar}^{λ}), respectively Terms = Terms(L_{ra}^{λ}).

Theorem (Canonical Form Theorem)

For each $A \in$ Terms, there is a unique up to congruence, irreducible term $cf(A) \in$ Terms, such that:

9 for some explicit, irreducible terms $A_0, \ldots, A_n \in \text{Terms} (n \ge 0)$

$$cf(A) \equiv A_0$$
 where $\{p_1 := A_1, \dots, p_n := A_n\}$ (29)

 $A \Rightarrow \mathsf{cf}(A)$

Algorithmic Semantic of L_{ar}^{λ} , L_{ra}^{λ} / L_{r}^{λ} :

- For each proper (i.e., non-immediate) A ∈ Terms, cf(A) determines the algorithm alg(A) for computing den(A)
- How is the algorithmic semantics of a proper (non-immediate) $A \in$ Terms determined?

Theorem (Effective Reduction Calculi)

For every term $A \in$ Terms, its canonical form cf(A) is effectively computed, by the reduction calculus.

Restricted Memory Locations Canonical Forms in $\mathbf{L}_{rar}^{\lambda}$

Corollary

Assume the special case of a restrictor term
$$A \in \text{Terms}$$
,
Terms = Terms (L_{rar}^{λ}) :
 $A \equiv (C_0 \text{ such that } \{ \overrightarrow{C}, \overrightarrow{I} \})$

- each term in \overrightarrow{I} and in \overrightarrow{C} has a type of a truth value • each term in \overrightarrow{I} is immediate
- each term C_j $(j = 1, ..., m, m \ge 0)$ in \overrightarrow{C} is proper

Then cf(A) has the form (31):

$$\mathsf{cf}(A) \equiv \left(C'_0 \text{ such that } \{ \overrightarrow{c}, \overrightarrow{I} \}\right) \text{ where } \{p_1 := A_1, \dots, p_n := A_n\}$$
(31)

for some immediate $C'_0 \in$ Terms, some explicit, irreducible $A_1, \ldots, A_n \in$ Terms $(n \ge 0)$, and memory variables $c_j, p_i \in$ RecV $(j = 1, \ldots, m, m \ge 0, i = 1, \ldots, n)$, such that $\overrightarrow{c} \subseteq \overrightarrow{p}$, i.e., for all j:

$$c_j \in \{p_1, \dots, p_n\}$$
(32)

(30)

Logical Forms of Definite Descriptions with the Determiner "the"

$$\Phi \equiv \text{The cube is large} \xrightarrow{\text{render}} ? \tag{33}$$

• First Order Logic (FOL) A (available in L_{ar}^{λ} too)

$$\Phi \xrightarrow{\text{render}} A \equiv \exists x \left[\underbrace{\forall y(cube(y) \leftrightarrow x = y)}_{uniqueness} \land isLarge(x) \right]$$
(34)

In FOL, by A in (34):

- Existential quantification as the direct, topmost predication
- Uniqueness of the existing entity
- There is no referential force to the object denoted by the NP:

$$[\text{the cube}]_{\text{NP}}$$
 (35)

• There is no compositional analysis, i.e., no "derivation" of A from the components

• Higher Order Logic (HOL): Henkin (1950) and Mostowski (1957) Russellian "the" as a generalized quantifier: lost referential force

the
$$\xrightarrow{\text{render}} T \equiv [\lambda P \lambda Q [\exists x [\forall y (P(y) \leftrightarrow x = y)] \land Q(x)]]]$$
 (36a)
uniqueness

the cube $\xrightarrow{\text{render}} C \equiv T(cube)$

$$C \equiv \left[\lambda P \lambda Q \left[\exists x [\forall y (P(y) \leftrightarrow x = y)] \land Q(x)] \right] \right] (cube)$$
(36b)

$$\models D \equiv \lambda Q \left[\exists x \left[\forall y (cube(y) \leftrightarrow x = y) \land Q(x) \right] \right]$$
(36c)

uniqueness

(fr. (36b) by $\beta\text{-reduction})$

$$\Phi \equiv \text{The cube is large} \xrightarrow{\text{render}} B \equiv D(isLarge)$$
(37a)

$$B \equiv \left[\lambda Q \left[\exists x \left[\forall y (cube(y) \leftrightarrow x = y) \\ uniqueness \end{pmatrix} \land Q(x) \right] \right] (isLarge)$$
(37b)

$$\models \exists x [\forall y(cube(y) \leftrightarrow x = y) \land isLarge(x)]$$
(37c)

uniqueness

(fr. (37b) by β -reduction)

Definite Descriptors with Determiner "the"

Example: rendering of the definite article "the"

We may consider rendering the definite article "the" to a constant:

the
$$\xrightarrow{\text{render}}$$
 the $\in \text{Consts}_{((\tilde{e} \to \tilde{t}) \to \tilde{e})}$ (38)

and the following denotation of the constant *the*:

$$\left[\left(\operatorname{den}(the)\right)(g)\right](\bar{p})(s_0) = \begin{cases} y, & \text{if } y \text{ is the unique } y \in \mathbb{T}_{e}, \\ & \text{for which } \bar{p}(s \mapsto y)(s_0) = 1 \\ \text{er}, & \text{otherwise} \\ & \text{i.e., there is no unique entity} \\ & \text{that has the property } \bar{p} \text{ in } s_0 \end{cases}$$
(39)

for every $\bar{p}\in\mathbb{T}_{(\widetilde{\mathbf{e}}\to\,\widetilde{\mathbf{t}})}$ and every $s_0\in\mathbb{T}_{\mathsf{s}}$

There are other possibilities for rendering the definite article "the", e.g., with complex terms of generalized quantifiers or by using the restrictor.

Option 1

Definite Descriptors with Determiner "the"

A constant $unique_0$ for uniqueness of y satisfying a property p in a state s_0

$$unique_0 \in \mathsf{Consts}_{((\widetilde{e} \to \widetilde{t}) \to (\widetilde{e} \to \widetilde{t}))}$$
(40)

For every $\bar{p} \in \mathbb{T}_{(\tilde{e} \to \tilde{t})}$, $\bar{q} \in \mathbb{T}_{\tilde{e}}$, and every $s_0 \in \mathbb{T}_s$, we can define:

$$\left[\left(\operatorname{den}(unique_0) \right) \right](\bar{p})(\bar{q})(s_0) = \begin{cases} 1, & \bar{q}(s_0) \text{ is the unique } y \in \mathbb{T}_{\mathsf{e}} \\ & \text{s.t. } \bar{p}(s \mapsto y)(s_0) = 1 \\ & \text{er, otherwise} \end{cases}$$
(41)

• (42a)–(42b) are possible, for some $\bar{p}_0 \in \mathbb{T}_{(\tilde{e} \to \tilde{t})}, \ \bar{q}_0 \in \mathbb{T}_{\tilde{e}}, \ s_0 \in \mathbb{T}_s$:

$$\begin{split} \bar{q}_0(s_0) &= er \text{ and} \\ \bar{q}_0(s_0) \text{ is the unique } y \in \mathbb{T}_{\mathsf{e}} \text{ s.t. } \bar{p}_0(s \mapsto y)(s_0) = 1 \\ & \left[\left(\mathsf{den}(unique_0) \right) \right] (\bar{p}_0)(\bar{q}_0)(s_0) = 1 \end{split} \tag{42a}$$

Opt2

Definite Descriptors with Determiner "the"

A constant $unique_1$ for uniqueness of $y \neq er$ satisfying a property p in a state s_0

For every
$$\bar{p} \in \mathbb{T}_{(\tilde{e} \to \tilde{t})}$$
, $\bar{q} \in \mathbb{T}_{\tilde{e}}$, $s_0 \in \mathbb{T}_s$,

$$\left[\left(\operatorname{den}(unique_1) \right) \right](\bar{p})(\bar{q})(s_0) = \begin{cases} 1, & \text{if } \bar{q}(s_0) \text{ is the unique } y \in \mathbb{T}_e \\ & \text{such that } y \neq \text{er and} \\ & \bar{p}(s \mapsto y)(s_0) = 1 \\ & \text{er, otherwise} \end{cases}$$
(43)

• (44a)–(44b) are possible for some $\bar{p}_0 \in \mathbb{T}_{(\tilde{e} \to \tilde{t})}, \ \bar{q}_0 \in \mathbb{T}_{\tilde{e}}, \ s_0 \in \mathbb{T}_s$:

for all
$$x \left[[x \neq er \& \bar{p}_0(s \mapsto x)(s_0) = 1]$$

 $\iff x = \bar{q}_0(s_0) \right]$

$$(44a)$$

$$\bar{p}_0(s \mapsto er)(s_0) = 1$$

$$(44b)$$

: Both $\bar{q}_0(s_0) \neq er$ and er have the property \bar{p}_0 in s_0 , i.e., $\bar{q}_0(s_0) \neq er$ is not per se unique entity having the property \bar{p}_0 in s_0

Definite Descriptors with Determiner "the"

A constant *unique* for uniqueness of y satisfying a property p in a state s_0

For every
$$\bar{p} \in \mathbb{T}_{(\tilde{e} \to \tilde{t})}$$
, $\bar{q} \in \mathbb{T}_{\tilde{e}}$, $s_0 \in \mathbb{T}_s$,

$$\left[\left(\operatorname{den}(unique) \right) \right](\bar{p})(\bar{q})(s_0) = \begin{cases} 1, & \text{if } \bar{q}(s_0) \neq er \text{ and} \\ \bar{q}(s_0) \text{ is the unique } y \in \mathbb{T}_e \\ & \text{such that } \bar{p}(s \mapsto y)(s_0) = 1 \end{cases} \quad (45)$$

$$er, & \text{otherwise} \end{cases}$$

Therefore: the unique object having the property $\bar{p}(s\mapsto x)(s_0)$ is: $y=\bar{q}(s_0)\neq er$

exists
$$y \ [y = \bar{q}(s_0) \neq er \&$$
 for all $x \ [\bar{p}(s \mapsto x)(s_0) = 1$
 $\iff x = y]]$

$$\bar{q}(s_0) \neq er \& \text{ for all } x \ [\bar{p}(s \mapsto x)(s_0) = 1$$
 $\iff x = \bar{q}(s_0)]$
(46b)

Definite Descriptors with Determiner "the"

Option 3: the definite determiner "the" and descriptors:

Underspecification

We can render "the" to A_1 or $cf(A_1)$, underspecified for p:

the
$$\xrightarrow{\text{render}} A_1 \equiv (q \text{ s.t. } \{ unique(p)(q) \}) : \tilde{e}$$
 (47a)

the
$$\xrightarrow{\text{render}}$$
 cf $(A_1) \equiv (q \text{ s.t. } \{U\})$ where $\{U \coloneqq unique(p)(q)\}$ (47b)

$$p \in \operatorname{RecV}_{(\widetilde{e} \to \widetilde{t})}, \quad q \in \operatorname{RecV}_{\widetilde{e}}$$
 (47c)

• Then, p gets specified, by the nominal head in NPs:

the cube
$$\xrightarrow{\text{render}}$$
 cf (A_2) : \tilde{e} (48a)

$$A_{2} \equiv (q \text{ s.t. } \{ unique(p)(q) \}) \text{ where } \{ p := cube \}$$
(48b)

$$\Rightarrow_{cf} cf(A_{2})$$

$$\equiv (q \text{ s.t. } \{ U \}) \text{ where } \{ U := unique(p)(q),$$
(48c)

$$p := cube \}$$

by (st1), (head), from (48b)

÷

The cube is large
$$\xrightarrow{\text{render}} \operatorname{cf}(A_3) : \widetilde{\operatorname{t}}$$
 (49a)
 $A_3 \equiv isLarge((q \text{ s.t. } \{unique(p)(q)\}) \text{ where } \{p := cube\})$ (49b)
 $\Rightarrow isLarge(Q) \text{ where } \{$
 $Q := [(q \text{ s.t. } \{unique(p)(q)\}) \text{ where } \{p := cube\}] \}$ (49c)
by (ap), from (49b)
 $\Rightarrow_{cf} \operatorname{cf}(A_3) \equiv isLarge(Q) \text{ where } \{Q := (q \text{ s.t. } \{U\}),$
 $U := unique(p)(q), p := cube\}$ (49d)

by (st1), (wh-comp), (B-S), from (48c), (49c)

Algorithmic Pattern: definite descriptors in predicative sentences: Opt3

$$A \equiv L(Q) \text{ where } \{ Q := (q \text{ s.t. } \{ U \}), U := unique(p)(q) \}$$
(50a)
$$p, q, L \in \mathsf{FreeV}(A), \ p \in \mathsf{RecV}_{(\widetilde{\mathsf{e}} \to \widetilde{\mathsf{t}})}, \ q \in \mathsf{RecV}_{\widetilde{\mathsf{e}}},$$
(50b)
$$Q \in \mathsf{RecV}_{\widetilde{\mathsf{e}}}, \ U \in \mathsf{RecV}_{\widetilde{\mathsf{t}}}, L \in \mathsf{RecV}_{(\widetilde{\mathsf{e}} \to \widetilde{\mathsf{t}})}$$
(50c)

The cube *n* is large
$$\xrightarrow{\text{render}} \operatorname{cf}(A_4) : \tilde{\mathsf{t}}$$
 (51a)
 $A_4 \equiv isLarge((q \text{ s.t. } \{ unique(N)(q), p(q) \}) \text{ where } \{ q := n, p := cube, N := named-n \})$
 $\Rightarrow_{\mathsf{cf}} \operatorname{cf}(A_4) \equiv isLarge(Q) \text{ where } \{ Q := (q \text{ s.t. } \{U, C\}), U := unique(N)(q), C := p(q), (51c)$
 $q := n, p := cube, N := named-n \}$

• direct reference; uniqueness and existence are consequences

The cube *n* is large
$$\xrightarrow{\text{render}} \operatorname{cf}(A_5) : \widetilde{\mathsf{t}}$$
 (52a)
 $A_5 \equiv isLarge((q \text{ s.t. } \{p(q)\}) \text{ where } \{$
 $q := n, \ p := cube \})$
 $\Rightarrow_{\mathsf{cf}} isLarge(Q) \text{ where } \{Q := (q \text{ s.t. } \{C\}), \ C := p(q),$
 $q := n, \ p := cube \}$
(52c)

the
$$\xrightarrow{\text{render}} B_1^{((\tilde{e} \to \tilde{t}) \to \tilde{e})} / \operatorname{cf}(B_1^{((\tilde{e} \to \tilde{t}) \to \tilde{e})})$$

 $B_1 \equiv \lambda(x) ([q \text{ s.t. } \{unique(p)(q)\}]$ (53a)
where $\{p := x\})$
 $\Rightarrow \lambda(x) ([[q \text{ s.t. } \{U\}]] \text{ where } \{U := unique(p)(q)\}]$ (53b)
where $\{p := x\})$
by (st1), (wh-comp), (λ -comp), from (53a)
 $\Rightarrow \lambda(x) ([q \text{ s.t. } \{U\}]] \text{ where } \{U := unique(p)(q), p := x\})$
by (head), (λ -comp), from (53b)
 $\Rightarrow_{cf} \operatorname{cf}(B_1) \equiv \lambda(x) [q \text{ s.t. } \{U'(x)\}] \text{ where } \{U' := \lambda(x)unique(p'(x))(q), (53d)$
 $p' := \lambda(x)(x)\}$
by (λ), from (53c)

the cube
$$\xrightarrow{\text{render}} \operatorname{cf}(\operatorname{cf}(B_1)(\operatorname{cube})) \equiv \operatorname{cf}(B_2) : \widetilde{e} \quad \text{from (53d)}$$
 (54a)
 $B_2 \equiv [\lambda(x)[q \text{ s.t. } \{U'(x)\}] \text{ where } \{$
 $U' := \lambda(x)\operatorname{unique}(p'(x))(q),$ (54b)
 $p' := \lambda(x)(x) \}](\operatorname{cube})$
 $\Rightarrow [\lambda(x)[q \text{ s.t. } \{U'(x)\}]](\operatorname{cube}) \text{ where } \{$
 $U' := \lambda(x)\operatorname{unique}(p'(x))(q),$ (54c)
 $p' := \lambda(x)(x) \}$

by (recap), from (54b)

$$\Rightarrow \left[\left[\lambda(x) [q \text{ s.t. } \{ U'(x) \}] \right] (c) \text{ where } \{ c := cube \} \right]$$
where $\{ U' := \lambda(x) unique(p'(x))(q),$ (54d)
 $p' := \lambda(x)(x) \}$
by (ap), (wh-comp), from (54c)
 $\Rightarrow_{cf} cf(B_2) \equiv \left[\left[\lambda(x) [q \text{ s.t. } \{ U'(x) \}] \right] (c) \right]$
where $\{ U' := \lambda(x) unique(p'(x))(q),$ (54e)
 $p' := \lambda(x)(x), c := cube \}$
by (head), (cong), from (54d)

The cube is large
$$\xrightarrow{\text{render}} isLarge(cf(B_2)) \equiv B_3 : \tilde{t} \text{ from (54e)}$$
 (55a)
 $B_3 \equiv isLarge(\left[[\lambda(x)[q \text{ s.t. } \{ U'(x) \}]](c) \right]$
where $\{ U' := \lambda(x)unique(p'(x))(q), \qquad (55b)$
 $p' := \lambda(x)(x), \ c := cube \} \right)$

$$\Rightarrow isLarge(Q) \text{ where } \{ Q := \left(\left[\left[\lambda(x) [q \text{ s.t. } \{ U'(x) \}] \right](c) \right] \\ \text{ where } \left\{ U' := \lambda(x) unique(p'(x))(q), \\ p' := \lambda(x)(x), \ c := cube \} \right) \}$$

$$(55c)$$

$$\Rightarrow_{cf} cf(B_3)$$

$$\equiv isLarge(Q) \text{ where } \{ Q := [\lambda(x)[q \text{ s.t. } \{ U'(x) \}]](c),$$

$$U' := \lambda(x)unique(p'(x))(q),$$

$$p' := \lambda(x)(x), \ c := cube \}$$
(55d)

by (B-S), from (55c)

Definite Descriptors with Determiner "the"

Outlook1: Development of Computational Theories and Applications

- Generalised Computational Grammar: CompSynSem interfaces in HL
 - Hierarchical lexicon with morphological structure and lexical rules
 - Syntax of HL expressions (phrasal and grammatical dependences)
 - Syntax-semantics inter-relations in lexicon and phrases
- A Big Picture simplified and approximated, but realistic:

Algorithmic CompSynSem of Human Language (HL)

$$\mathsf{HL} \mathsf{Syn} \Longleftrightarrow \underbrace{\mathrm{L}_{ar}^{\lambda} / \mathrm{L}_{r}^{\lambda} / SitI} \xrightarrow{\mathsf{Reduction Calc}} \mathsf{Canonical Forms} \Longrightarrow \mathsf{Denotations}$$

Canonical Computations

(Canonically) Algorithmic CompSynSem Interfaces

(I've done quite a lot of it, but still a lot to do!)

Definite Descriptors with Determiner "the"

Some Current Tasks (among many others) and Future Work

- My focus is on:
 - Development of $\mathcal{L}_{ar}^{\lambda}$ and $\mathcal{L}_{r}^{\lambda}$
 - Dependent-Type Theory of Situated Information and Algorithms
 - Applications to formal and natural languages
 - Extending the Coverage of Computational Semantics
 - Computational Syntax-Semantics Interfaces
 - Semantics of programming and specification languages
 - Theoretical foundations of (parts of) compilers

More to come

THANK YOU!

Some References I

Roussanka Loukanova.

Type-Theory of Parametric Algorithms with Restricted Computations.

In Distributed Computing and Artificial Intelligence, 17th International Conference, pages 321–331, Cham, 07 August 2020 2021. Springer International Publishing. URL: https://doi.org/10.1007/978-3-030-53036-5_35.

Yiannis N Moschovakis.

The formal language of recursion.

Journal of Symbolic Logic, 54(04):1216-1252, 1989. URL: https://doi.org/10.1017/S0022481200041086.

Yiannis N. Moschovakis. A Logical Calculus of Meaning and Synonymy. Linguistics and Philosophy, 29(1):27–89, 2006. URL: https://doi.org/10.1007/s10988-005-6920-7.