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Development of Moschovakis Type-Theory of Algorithms

Moschovakis [2], 2006, introduced:

Type-Theory of Acyclic Algorithms, Lλar
by demonstrating it with examples for:
Computational Semantics
of Natural Language (NL), i.e., Human Language (HL)

This paper and its presentation are about development of:

Type-Theory of Acyclic Algorithms, Lλar:
Typed Full Recursion without Acyclicity Lλr
as a new approach to the mathematical notion of algorithm, via:

Moschovakis (acyclic) recursion for:
- computations, by saving the algorithmic steps in memory locations
(e.g., for use and reuse)

parametric algorithms that can be instantiated

a new restrictor operator for:
- constrained computations
- restricted memory locations, as generalised, restricted parameters
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Gallin Types: σ :≡ e | t | s | (τ1 → τ2) (Gallin, 1975)
For all τ ∈ Types:
Constants: Constsτ = {cτ0 , cτ1 , . . . , cτkτ }
Variables: PureVτ = {vτ0 , vτ1 , . . . },

MemoryVτ = RecVτ = {pτ0 , pτ1 , . . . }
Terms of Lλar (Lλr ):

A :≡ cτ : τ | xτ : τ (for cτ ∈ Constsτ , xτ ∈ PureVτ ∪ RecVτ ) (1a)

| B(σ→τ)(Cσ) : τ (1b)

| λ(vσ) (Bτ ) : (σ → τ) (for vσ ∈ PureVσ ) (1c)

|
[
Aσ0
0 where { pσ1

1 := Aσ1
1 , . . . ,

pσii := Aσii , . . . , p
σn
n := Aσnn }

]
: σ0

(1d)

|
[
Aσ0
0 such that {Cτ11 , . . . ,C

τm
m }

]
: σ′

0 (1e)

B,C ∈ Terms, pσii ∈ RecVσi , A
σi
i ∈ Termsσi

C
τj
j ∈ Termsτj (for propositions): τj ≡ t or τj ≡ t̃ ≡ (s→ t)

Acyclicity Constraint:
{ pσ1

1 := Aσ1
1 , . . . , pσii := Aσii , . . . , p

σn
n := Aσnn } is acyclic iff:

there is a rank : {p1, . . . , pn} → N such that:
if pj ∈ FreeVars(Ai) then rank(pi) > rank(pj)
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Algorithmic Semantics of Lλar and Lλr

Syntax of Lλar (Lλr ) =⇒ Algorithms for Computations =⇒ Denotations︸ ︷︷ ︸
Semantics of Lλar(L

λ
r )

The denotational semantics is by structural induction on the terms

The algorithmic semantics is via the reduction calculus of Lλar / Lλr
1 The reduction rules define the reduction relation

A ⇒ B (2)

2 The reduction calculus (by reduction rules) is effective:
Every A ∈ Termsσ can be reduced to its unique, up to congruence,
canonical form cf(A) ∈ Termsσ:

A ⇒cf cf(A) (3)

3 For every algorithmically meaningful A ∈ Termsσ, cf(A) determines
the algorithm alg(A) for computing den(A)
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(4b)–(4c) determines the algorithm for computing den(A):

A ≡ (200 + 40)/6 (4a)

⇒cf n/d where {n := (a1 + a2)︸ ︷︷ ︸
parametric part of an algorithm

, (4b)

a1 := 200, a2 := 40, d := 6︸ ︷︷ ︸
algorithmic instantiation of memory slots

} (4c)

(5b)–(5c) determines the algorithm for computing den(B):

B ≡ (120 + 120)/6 (5a)

⇒cf n/d where {n := (a1 + a2)︸ ︷︷ ︸, (5b)

a1 := 120, a2 := 120, d := 6︸ ︷︷ ︸ } (5c)

(6) determines the algorithm for computing den(C):

C ≡ cf(C) ≡ n/d where {n := (a+ a)︸ ︷︷ ︸, a := 120, d := 6︸ ︷︷ ︸ } (6)

cf(A), cf(B), cf(C) designate algorithms for computing den(40):

den(A) = den(B) = den(C) = den(40) (decimal num. system) (7a)

alg(A) 6= alg(B) 6= alg(C) (7b)



Recursion terms with restrictor operator designated by such that:

D1 ≡
(
n/d such that {n, d ∈ N, d 6= 0 }

)︸ ︷︷ ︸
restrictor term R

where { (8a)

n := (a1 + a2), d := (d1 × d2), (8b)

a1 := 200, a2 := 40, d1 := 2, d2 := 3 } (8c)

The restriction unsatisfied:

E1 ≡
(
n/d such that {n, d ∈ N, d 6= 0 }

)︸ ︷︷ ︸
restrictor term R

where { (9a)

n := (a1 + a2), d := (d1 × d2), (9b)

a1 := 200, a2 := 40, d2 := 0 } (9c)

cf(D1) determines the algorithm alg(D1)

cf(E1) determines the algorithm alg(E1)

alg(D1) computes den(D1) = den(40) (decimal) (10a)

alg(E1) computes den(E1) = Error ≡ er (10b)
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The constant such that designates a restrictor operator:
R ≈ cf(R), r designate parametric, restricted algorithms

R ≡
(
n/d such that { (n ∈ N), (d ∈ N), (d 6= 0) }

)︸ ︷︷ ︸
restrictor term R

(11a)

R1 ≡
[
(a0 such that { zn, zd, d0 })︸ ︷︷ ︸

restricted memory variable r0

where { (11b)

a0 := n/d, zn := (n ∈ N), zd := (d ∈ N),
d0 := ¬p, p := (d = 0) }

] (11c)

r0, in (11b), and R1, in (11b)–(11c), are restricted memory variables
R1 instantiates r0 via parametric (underspecified) assignments (11c)

D ∈ Terms instantiates the restrictor R1 in (11b)–(11c)

D ≡ R1 where {n := (a1 + a2), d := (d1 × d2), (12a)

a1 := 200, a2 := 40, d1 := 2, d2 := 3 } (12b)

cf(D) designates the algorithm alg(D) for computing the value:
den(D) = den(40) (e.g., in decimal number system)
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R1 ≈ cf(R1) designate the parametric, restricted algorithm alg(R1)
represented by cf(R1)

R1 ⇒cf

[
(a0 such that { zn, zd, d0 })︸ ︷︷ ︸

restricted memory variable r0

where { (13a)

a0 := n/d,

zn := (n ∈ N), zd := (d ∈ N),
d0 := ¬p, p := (d = n0), n0 := 0 }

] (13b)

D ∈ Terms instantiates the memory variables R1, cf(R1), r

D ⇒ r where { r :=
[
(a0 such that { zn, zd, d0 })︸ ︷︷ ︸

restricted memory variable r0

where { (14a)

a0 := n/d, (14b)

zn := (n ∈ N), zd := (d ∈ N), (14c)

d0 := ¬p, p := (d = n0), n0 := 0 }
]
, (14d)

n := (a1 + a2), d := (d1 × d2), (14e)

a1 := 200, a2 := 40, d1 := 2, d2 := 3 } (14f)

cf(D) designates the algorithm alg(D) for computing the value:
den(D) = den(40) (e.g., in decimal number system)
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The (same) parametric restrictor R ≈ cf(R) and
the restricted variable R1 can be instantiated by a variety of
algorithms

R ≡
(
n/d such that { (n ∈ N), (d ∈ N), (d 6= 0) }

)︸ ︷︷ ︸
restrictor term R

(15a)

R1 ⇒cf

[
(a0 such that { zn, zd, d0 })︸ ︷︷ ︸

restricted memory variable r0

where { (15b)

a0 := n/d, zn := (n ∈ N), zd := (d ∈ N),
d0 := ¬p, p := (d = n0), n0 := 0 }

] (15c)

E instantiates the restrictor R1 without satisfying it:

E ≡ R1 where {n := (a1 + a2), d := (d1 × d2), (16a)

a1 := 200, a2 := 40, d1 := 2, d2 := 0 } (16b)

cf(E) determines the algorithm alg(E) for computing den(E) = er

issue: den(d2) = 0, den(d) = [den(d1)× den(d2)] = 0 (17a)

(17a) contradicts the constraints d0 := ¬p, p := (d = n0) (17b)
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Some Current Tasks (among many others) and Future Work

My focus is on:

Development of Lλar and Lλr

Applications to formal and natural languages

Computational Semantics
Computational Syntax-Semantics Interfaces
Semantics of programming and specification languages
Theoretical foundations of compilers

More to come

Thank You!
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