
Type-Theory of Parametric Algorithms with
Restricted Computations

Roussanka Loukanova

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria
Dept of Mathematics, Stockholm University, Sweden

ONLINE
17th International Conference on Distributed Computing and

Artificial Intelligence | L’Aquila (Italy), 7th–9th October, 2020
https://www.dcai-conference.net

DCAI 5, 11:45am - 12:00pm, Oct 9 2020

1 / 11

https://www.dcai-conference.net

Development of Moschovakis Type-Theory of Algorithms

Moschovakis [2], 2006, introduced:

Type-Theory of Acyclic Algorithms, Lλar
by demonstrating it with examples for:
Computational Semantics
of Natural Language (NL), i.e., Human Language (HL)

This paper and its presentation are about development of:

Type-Theory of Acyclic Algorithms, Lλar:
Typed Full Recursion without Acyclicity Lλr
as a new approach to the mathematical notion of algorithm, via:

Moschovakis (acyclic) recursion for:
- computations, by saving the algorithmic steps in memory locations
(e.g., for use and reuse)

parametric algorithms that can be instantiated

a new restrictor operator for:
- constrained computations
- restricted memory locations, as generalised, restricted parameters

2 / 11

Gallin Types: σ :≡ e | t | s | (τ1 → τ2) (Gallin, 1975)
For all τ ∈ Types:
Constants: Constsτ = {cτ0 , cτ1 , . . . , cτkτ }
Variables: PureVτ = {vτ0 , vτ1 , . . . },

MemoryVτ = RecVτ = {pτ0 , pτ1 , . . . }
Terms of Lλar (Lλr):

A :≡ cτ : τ | xτ : τ (for cτ ∈ Constsτ , xτ ∈ PureVτ ∪ RecVτ) (1a)

| B(σ→τ)(Cσ) : τ (1b)

| λ(vσ) (Bτ) : (σ → τ) (for vσ ∈ PureVσ) (1c)

|
[
Aσ0
0 where { pσ1

1 := Aσ1
1 , . . . ,

pσii := Aσii , . . . , p
σn
n := Aσnn }

]
: σ0

(1d)

|
[
Aσ0
0 such that {Cτ11 , . . . ,C

τm
m }

]
: σ′

0 (1e)

B,C ∈ Terms, pσii ∈ RecVσi , A
σi
i ∈ Termsσi

C
τj
j ∈ Termsτj (for propositions): τj ≡ t or τj ≡ t̃ ≡ (s→ t)

Acyclicity Constraint:
{ pσ1

1 := Aσ1
1 , . . . , pσii := Aσii , . . . , p

σn
n := Aσnn } is acyclic iff:

there is a rank : {p1, . . . , pn} → N such that:
if pj ∈ FreeVars(Ai) then rank(pi) > rank(pj)

3 / 11

Algorithmic Semantics of Lλar and Lλr

Syntax of Lλar (Lλr) =⇒ Algorithms for Computations =⇒ Denotations︸ ︷︷ ︸
Semantics of Lλar(L

λ
r)

The denotational semantics is by structural induction on the terms

The algorithmic semantics is via the reduction calculus of Lλar / Lλr
1 The reduction rules define the reduction relation

A ⇒ B (2)

2 The reduction calculus (by reduction rules) is effective:
Every A ∈ Termsσ can be reduced to its unique, up to congruence,
canonical form cf(A) ∈ Termsσ:

A ⇒cf cf(A) (3)

3 For every algorithmically meaningful A ∈ Termsσ, cf(A) determines
the algorithm alg(A) for computing den(A)

4 / 11

(4b)–(4c) determines the algorithm for computing den(A):

A ≡ (200 + 40)/6 (4a)

⇒cf n/d where {n := (a1 + a2)︸ ︷︷ ︸
parametric part of an algorithm

, (4b)

a1 := 200, a2 := 40, d := 6︸ ︷︷ ︸
algorithmic instantiation of memory slots

} (4c)

(5b)–(5c) determines the algorithm for computing den(B):

B ≡ (120 + 120)/6 (5a)

⇒cf n/d where {n := (a1 + a2)︸ ︷︷ ︸, (5b)

a1 := 120, a2 := 120, d := 6︸ ︷︷ ︸ } (5c)

(6) determines the algorithm for computing den(C):

C ≡ cf(C) ≡ n/d where {n := (a+ a)︸ ︷︷ ︸, a := 120, d := 6︸ ︷︷ ︸ } (6)

cf(A), cf(B), cf(C) designate algorithms for computing den(40):

den(A) = den(B) = den(C) = den(40) (decimal num. system) (7a)

alg(A) 6= alg(B) 6= alg(C) (7b)

Recursion terms with restrictor operator designated by such that:

D1 ≡
(
n/d such that {n, d ∈ N, d 6= 0 }

)︸ ︷︷ ︸
restrictor term R

where { (8a)

n := (a1 + a2), d := (d1 × d2), (8b)

a1 := 200, a2 := 40, d1 := 2, d2 := 3 } (8c)

The restriction unsatisfied:

E1 ≡
(
n/d such that {n, d ∈ N, d 6= 0 }

)︸ ︷︷ ︸
restrictor term R

where { (9a)

n := (a1 + a2), d := (d1 × d2), (9b)

a1 := 200, a2 := 40, d2 := 0 } (9c)

cf(D1) determines the algorithm alg(D1)

cf(E1) determines the algorithm alg(E1)

alg(D1) computes den(D1) = den(40) (decimal) (10a)

alg(E1) computes den(E1) = Error ≡ er (10b)

6 / 11

The constant such that designates a restrictor operator:
R ≈ cf(R), r designate parametric, restricted algorithms

R ≡
(
n/d such that { (n ∈ N), (d ∈ N), (d 6= 0) }

)︸ ︷︷ ︸
restrictor term R

(11a)

R1 ≡
[
(a0 such that { zn, zd, d0 })︸ ︷︷ ︸

restricted memory variable r0

where { (11b)

a0 := n/d, zn := (n ∈ N), zd := (d ∈ N),
d0 := ¬p, p := (d = 0) }

] (11c)

r0, in (11b), and R1, in (11b)–(11c), are restricted memory variables
R1 instantiates r0 via parametric (underspecified) assignments (11c)

D ∈ Terms instantiates the restrictor R1 in (11b)–(11c)

D ≡ R1 where {n := (a1 + a2), d := (d1 × d2), (12a)

a1 := 200, a2 := 40, d1 := 2, d2 := 3 } (12b)

cf(D) designates the algorithm alg(D) for computing the value:
den(D) = den(40) (e.g., in decimal number system)

7 / 11

R1 ≈ cf(R1) designate the parametric, restricted algorithm alg(R1)
represented by cf(R1)

R1 ⇒cf

[
(a0 such that { zn, zd, d0 })︸ ︷︷ ︸

restricted memory variable r0

where { (13a)

a0 := n/d,

zn := (n ∈ N), zd := (d ∈ N),
d0 := ¬p, p := (d = n0), n0 := 0 }

] (13b)

D ∈ Terms instantiates the memory variables R1, cf(R1), r

D ⇒ r where { r :=
[
(a0 such that { zn, zd, d0 })︸ ︷︷ ︸

restricted memory variable r0

where { (14a)

a0 := n/d, (14b)

zn := (n ∈ N), zd := (d ∈ N), (14c)

d0 := ¬p, p := (d = n0), n0 := 0 }
]
, (14d)

n := (a1 + a2), d := (d1 × d2), (14e)

a1 := 200, a2 := 40, d1 := 2, d2 := 3 } (14f)

cf(D) designates the algorithm alg(D) for computing the value:
den(D) = den(40) (e.g., in decimal number system)

8 / 11

The (same) parametric restrictor R ≈ cf(R) and
the restricted variable R1 can be instantiated by a variety of
algorithms

R ≡
(
n/d such that { (n ∈ N), (d ∈ N), (d 6= 0) }

)︸ ︷︷ ︸
restrictor term R

(15a)

R1 ⇒cf

[
(a0 such that { zn, zd, d0 })︸ ︷︷ ︸

restricted memory variable r0

where { (15b)

a0 := n/d, zn := (n ∈ N), zd := (d ∈ N),
d0 := ¬p, p := (d = n0), n0 := 0 }

] (15c)

E instantiates the restrictor R1 without satisfying it:

E ≡ R1 where {n := (a1 + a2), d := (d1 × d2), (16a)

a1 := 200, a2 := 40, d1 := 2, d2 := 0 } (16b)

cf(E) determines the algorithm alg(E) for computing den(E) = er

issue: den(d2) = 0, den(d) = [den(d1)× den(d2)] = 0 (17a)

(17a) contradicts the constraints d0 := ¬p, p := (d = n0) (17b)

9 / 11

Some Current Tasks (among many others) and Future Work

My focus is on:

Development of Lλar and Lλr

Applications to formal and natural languages

Computational Semantics
Computational Syntax-Semantics Interfaces
Semantics of programming and specification languages
Theoretical foundations of compilers

More to come

Thank You!

10 / 11

Some References I

Yiannis N Moschovakis.
The formal language of recursion.
Journal of Symbolic Logic, 54(04):1216–1252, 1989.
URL: https://doi.org/10.1017/S0022481200041086.

Yiannis N. Moschovakis.
A Logical Calculus of Meaning and Synonymy.
Linguistics and Philosophy, 29(1):27–89, 2006.
URL: https://doi.org/10.1007/s10988-005-6920-7.

11 / 11

https://doi.org/10.1017/S0022481200041086
https://doi.org/10.1007/s10988-005-6920-7

