Type-Theory of Parametric Algorithms with Restricted Computations

Roussanka Loukanova

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria Dept of Mathematics, Stockholm University, Sweden

ONLINE

17th International Conference on Distributed Computing and Artificial Intelligence | L'Aquila (Italy), 7th-9th October, 2020 https://www.dcai-conference.net
DCAI 5, 11:45am-12:00pm, Oct 92020

- Moschovakis [2], 2006, introduced:
- Type-Theory of Acyclic Algorithms, $\mathrm{L}_{\mathrm{ar}}^{\lambda}$
by demonstrating it with examples for:
Computational Semantics of Natural Language (NL), i.e., Human Language (HL)
- This paper and its presentation are about development of:
- Type-Theory of Acyclic Algorithms, $\mathrm{L}_{\mathrm{ar}}^{\lambda}$:

Typed Full Recursion without Acyclicity $\mathrm{L}_{\mathrm{r}}^{\lambda}$ as a new approach to the mathematical notion of algorithm, via:

- Moschovakis (acyclic) recursion for:
- computations, by saving the algorithmic steps in memory locations (e.g., for use and reuse)
- parametric algorithms that can be instantiated
- a new restrictor operator for:
- constrained computations
- restricted memory locations, as generalised, restricted parameters

Gallin Types:

$$
\sigma: \equiv \mathrm{e}|\mathrm{t}| \mathrm{s} \mid\left(\tau_{1} \rightarrow \tau_{2}\right)(\text { Gallin, 1975 })
$$

For all $\tau \in$ Types:
Constants:
Variables:

$$
\begin{aligned}
& \text { Consts }_{\tau}=\left\{\mathrm{c}_{0}^{\tau}, \mathrm{c}_{1}^{\tau}, \ldots, \mathrm{c}_{k_{\tau}}^{\tau}\right\} \\
& \text { PureV }_{\tau}=\left\{v_{0}^{\tau}, v_{1}^{\tau}, \ldots\right\} \\
& \text { Memory }_{\tau}=\operatorname{Rec}_{\tau}=\left\{p_{0}^{\tau}, p_{1}^{\tau}, \ldots\right\}
\end{aligned}
$$

Terms of $\mathrm{L}_{\text {ar }}^{\lambda}\left(\mathrm{L}_{\mathrm{r}}^{\lambda}\right)$:

$$
\begin{align*}
& \mathrm{A}: \equiv \mathrm{c}^{\tau}: \tau \mid x^{\tau}: \tau \quad\left(\text { for } \mathrm{c}^{\tau} \in \mathrm{Consts}_{\tau}, x^{\tau} \in \mathrm{PureV}_{\tau} \cup \operatorname{Rec}_{\tau}\right) \tag{1a}\\
& \mid \mathrm{B}^{(\sigma \rightarrow \tau)}\left(\mathrm{C}^{\sigma}\right): \tau \tag{1b}\\
& \mid \lambda\left(v^{\sigma}\right)\left(\mathrm{B}^{\tau}\right):(\sigma \rightarrow \tau) \quad\left(\text { for } v^{\sigma} \in \operatorname{PureV}_{\sigma}\right) \tag{1c}\\
& \mid\left[\mathrm { A } _ { 0 } ^ { \sigma _ { 0 } } \text { where } \left\{p_{1}^{\sigma_{1}}:=\mathrm{A}_{1}^{\sigma_{1}}, \ldots,\right.\right. \tag{1d}\\
&\left.\left.p_{i}^{\sigma_{i}}:=\mathrm{A}_{i}^{\sigma_{i}}, \ldots, p_{n}^{\sigma_{n}}:=\mathrm{A}_{n}^{\sigma_{n}}\right\}\right]: \sigma_{0} \\
& \mid\left[\mathrm{A}_{0}^{\sigma_{0}} \text { such that }\left\{\mathrm{C}_{1}^{\tau_{1}}, \ldots, \mathrm{C}_{m}^{\tau_{m}}\right\}\right]: \sigma_{0}^{\prime} \tag{1e}
\end{align*}
$$

- $\mathrm{B}, \mathrm{C} \in$ Terms, $p_{i}^{\sigma_{i}} \in \operatorname{Rec}_{\sigma_{i}}, A_{i}^{\sigma_{i}} \in \operatorname{Terms}_{\sigma_{i}}$ $\mathrm{C}_{j}^{\tau_{j}} \in \mathrm{Terms}_{\tau_{j}} \quad$ (for propositions): $\tau_{j} \equiv \mathrm{t}$ or $\tau_{j} \equiv \widetilde{\mathrm{t}} \equiv(\mathrm{s} \rightarrow \mathrm{t})$
- Acyclicity Constraint:
$\left\{p_{1}^{\sigma_{1}}:=\mathrm{A}_{1}^{\sigma_{1}}, \ldots, p_{i}^{\sigma_{i}}:=\mathrm{A}_{i}^{\sigma_{i}}, \ldots, p_{n}^{\sigma_{n}}:=\mathrm{A}_{n}^{\sigma_{n}}\right\}$ is acyclic iff:
- there is a rank: $\left\{p_{1}, \ldots, p_{n}\right\} \rightarrow \mathbb{N}$ such that: if $p_{j} \in \operatorname{Free} \operatorname{Vars}\left(A_{i}\right)$ then $\operatorname{rank}\left(p_{i}\right)>\operatorname{rank}\left(p_{j}\right)$

Algorithmic Semantics of $L_{a r}^{\lambda}$ and L_{r}^{λ}

$\underbrace{\text { Syntax of } \mathrm{L}_{\mathrm{ar}}^{\lambda}\left(\mathrm{L}_{\mathrm{r}}^{\lambda}\right) \Longrightarrow \text { Algorithms for Computations } \Longrightarrow \text { Denotations }}_{\text {Semantics of } \mathrm{L}_{\mathrm{ar}(}^{\lambda}\left(\mathrm{L}_{\mathrm{r}}^{\lambda}\right)}$

- The denotational semantics is by structural induction on the terms
- The algorithmic semantics is via the reduction calculus of $\mathrm{L}_{\mathrm{ar}}^{\lambda} / \mathrm{L}_{\mathrm{r}}^{\lambda}$
(1) The reduction rules define the reduction relation

$$
\begin{equation*}
A \Rightarrow B \tag{2}
\end{equation*}
$$

(2) The reduction calculus (by reduction rules) is effective: Every $A \in \operatorname{Terms}_{\sigma}$ can be reduced to its unique, up to congruence, canonical form $\operatorname{cf}(A) \in$ Terms $_{\sigma}$:

$$
\begin{equation*}
A \Rightarrow_{\mathrm{cf}} \mathrm{cf}(A) \tag{3}
\end{equation*}
$$

(0) For every algorithmically meaningful $A \in \operatorname{Terms}_{\sigma}, \operatorname{cf}(A)$ determines the algorithm $\operatorname{alg}(A)$ for computing $\operatorname{den}(A)$

- (4b)-(4c) determines the algorithm for computing den (A) :

$$
\begin{align*}
A & \equiv(200+40) / 6 \tag{4a}\\
& \Rightarrow{ }_{\text {cf }} \underbrace{n / d \text { where }\left\{n:=\left(a_{1}+a_{2}\right)\right.}_{\text {parametric part of an algorithm }}, \tag{4b}
\end{align*}
$$

$$
\begin{equation*}
\underbrace{a_{1}:=200, a_{2}:=40, d:=6}_{\text {algorithmic instantiation of memory slots }}\} \tag{4c}
\end{equation*}
$$

- (5b) $-(5 \mathrm{c})$ determines the algorithm for computing $\operatorname{den}(B)$:

$$
\begin{align*}
& B \equiv(120+120) / 6 \tag{5a}\\
& \Rightarrow \underbrace{}_{\mathrm{cf}} \underbrace{n / d \text { where }\left\{n:=\left(a_{1}+a_{2}\right)\right.}, \tag{5b}\\
&\underbrace{a_{1}:=120, a_{2}:=120, d:=6}\} \tag{5c}
\end{align*}
$$

- (6) determines the algorithm for computing den (C) :

$$
\begin{equation*}
C \equiv \operatorname{cf}(C) \equiv \underbrace{n / d \text { where }\{n:=(a+a)}, \underbrace{a:=120, d:=6}\} \tag{6}
\end{equation*}
$$

$\operatorname{cf}(A), \operatorname{cf}(B), \operatorname{cf}(C)$ designate algorithms for computing den (40) :

$$
\begin{align*}
\operatorname{den}(A) & =\operatorname{den}(B)=\operatorname{den}(C)=\operatorname{den}(40) \quad \text { (decimal num. system) } \tag{7a}\\
\operatorname{alg}(A) & \neq \operatorname{alg}(B) \neq \operatorname{alg}(C) \tag{7b}
\end{align*}
$$

- Recursion terms with restrictor operator designated by such that:

$$
\begin{align*}
& D_{1} \equiv \underbrace{(n / d \text { such that }\{n, d \in \mathbb{N}, d \neq 0\})}_{\text {restrictor term } \mathrm{R}} \text { where }\{ \tag{8a}\\
& \quad n:=\left(a_{1}+a_{2}\right), d:=\left(d_{1} \times d_{2}\right), \tag{8b}\\
& \left.a_{1}:=200, a_{2}:=40, d_{1}:=2, d_{2}:=3\right\} \tag{8c}
\end{align*}
$$

- The restriction unsatisfied:

$$
\begin{gather*}
E_{1} \equiv \underbrace{(n / d \text { such that }\{n, d \in \mathbb{N}, d \neq 0\})}_{\text {restrictor term } \mathrm{R}} \text { where }\{ \tag{9a}\\
n:=\left(a_{1}+a_{2}\right), d:=\left(d_{1} \times d_{2}\right) \tag{9b}\\
\left.a_{1}:=200, a_{2}:=40, d_{2}:=0\right\} \tag{9c}
\end{gather*}
$$

- $\operatorname{cf}\left(D_{1}\right)$ determines the algorithm $\operatorname{alg}\left(D_{1}\right)$
- $\operatorname{cf}\left(E_{1}\right)$ determines the algorithm $\operatorname{alg}\left(E_{1}\right)$

$$
\begin{align*}
& \operatorname{alg}\left(D_{1}\right) \text { computes } \operatorname{den}\left(D_{1}\right)=\operatorname{den}(40)(\text { decimal }) \tag{10a}\\
& \operatorname{alg}\left(E_{1}\right) \text { computes } \operatorname{den}\left(E_{1}\right)=\text { Error } \equiv \text { er } \tag{10b}
\end{align*}
$$

- The constant such that designates a restrictor operator: $R \approx \operatorname{cf}(R), r$ designate parametric, restricted algorithms

$$
\begin{align*}
& R \equiv \underbrace{(n / d \text { such that }\{(n \in \mathbb{N}),(d \in \mathbb{N}),(d \neq 0)\})}_{\text {restrictor term } R} \tag{11a}\\
& R_{1} \equiv[\underbrace{\left(a_{0} \text { such that }\left\{z_{n}, z_{d}, d_{0}\right\}\right)}_{\text {restricted memory variable } r_{0}} \text { where }\{ \tag{11b}\\
& a_{0}:=n / d, z_{n}:=(n \in \mathbb{N}), z_{d}:=(d \in \mathbb{N}) \\
& \left.\left.d_{0}:=\neg p, p:=(d=0)\right\}\right] \tag{11c}
\end{align*}
$$

- r_{0}, in (11b), and R_{1}, in (11b)-(11c), are restricted memory variables
- R_{1} instantiates r_{0} via parametric (underspecified) assignments (11c)
- $D \in$ Terms instantiates the restrictor R_{1} in (11b)-(11c)

$$
\begin{align*}
& D \equiv R_{1} \text { where }\left\{n:=\left(a_{1}+a_{2}\right), d:=\left(d_{1} \times d_{2}\right)\right. \tag{12a}\\
& \left.\qquad a_{1}:=200, a_{2}:=40, d_{1}:=2, d_{2}:=3\right\} \tag{12b}
\end{align*}
$$

- $\operatorname{cf}(D)$ designates the algorithm $\operatorname{alg}(D)$ for computing the value: $\operatorname{den}(D)=\operatorname{den}(40)$ (e.g., in decimal number system)
- $R_{1} \approx \operatorname{cf}\left(R_{1}\right)$ designate the parametric, restricted algorithm alg $\left(R_{1}\right)$ represented by $\operatorname{cf}\left(R_{1}\right)$

$$
\begin{equation*}
R_{1} \Rightarrow \mathrm{cf}[\underbrace{\left(a_{0} \text { such that }\left\{z_{n}, z_{d}, d_{0}\right\}\right)}_{\text {restricted memory variable } r_{0}} \text { where }\{ \tag{13a}
\end{equation*}
$$

$$
\begin{align*}
& a_{0}:=n / d, \\
& z_{n}:=(n \in \mathbb{N}), z_{d}:=(d \in \mathbb{N}), \tag{13b}\\
& \left.\left.d_{0}:=\neg p, p:=\left(d=n_{0}\right), n_{0}:=0\right\}\right]
\end{align*}
$$

- $D \in$ Terms instantiates the memory variables $R_{1}, \operatorname{cf}\left(R_{1}\right), r$
$D \Rightarrow r$ where $\{r:=[\underbrace{\left(a_{0} \text { such that }\left\{z_{n}, z_{d}, d_{0}\right\}\right)}_{\text {restricted memory variable } r_{0}}$ where $\{$
$a_{0}:=n / d$,
$z_{n}:=(n \in \mathbb{N}), z_{d}:=(d \in \mathbb{N})$,
$\left.\left.d_{0}:=\neg p, p:=\left(d=n_{0}\right), n_{0}:=0\right\}\right]$,
$n:=\left(a_{1}+a_{2}\right), d:=\left(d_{1} \times d_{2}\right)$,
$\left.a_{1}:=200, a_{2}:=40, d_{1}:=2, d_{2}:=3\right\}$
- $\operatorname{cf}(D)$ designates the algorithm $\operatorname{alg}(D)$ for computing the value: $\operatorname{den}(D)=\operatorname{den}(40)$ (e.g., in decimal number system)
- The (same) parametric restrictor $R \approx \operatorname{cf}(R)$ and the restricted variable R_{1} can be instantiated by a variety of algorithms

$$
\begin{gather*}
R \equiv \underbrace{(n / d \text { such that }\{(n \in \mathbb{N}),(d \in \mathbb{N}),(d \neq 0)\})}_{\text {restrictor term } R} \tag{15a}\\
R_{1} \Rightarrow_{\text {cf }}[\underbrace{\left(a_{0} \text { such that }\left\{z_{n}, z_{d}, d_{0}\right\}\right)}_{\text {restricted memory variable } r_{0}} \text { where }\{ \tag{15b}\\
a_{0}:=n / d, z_{n}:=(n \in \mathbb{N}), z_{d}:=(d \in \mathbb{N}), \tag{15c}\\
\\
\left.\left.d_{0}:=\neg p, p:=\left(d=n_{0}\right), n_{0}:=0\right\}\right]
\end{gather*}
$$

- E instantiates the restrictor R_{1} without satisfying it:

$$
\begin{align*}
& E \equiv R_{1} \text { where }\left\{n:=\left(a_{1}+a_{2}\right), d:=\left(d_{1} \times d_{2}\right),\right. \tag{16a}\\
& \left.\qquad a_{1}:=200, a_{2}:=40, d_{1}:=2, d_{2}:=0\right\} \tag{16b}
\end{align*}
$$

- $\operatorname{cf}(E)$ determines the algorithm $\operatorname{alg}(E)$ for computing $\operatorname{den}(E)=e r$
issue: $\operatorname{den}\left(d_{2}\right)=0, \operatorname{den}(d)=\left[\operatorname{den}\left(d_{1}\right) \times \operatorname{den}\left(d_{2}\right)\right]=0$
(17a) contradicts the constraints $d_{0}:=\neg p, p:=\left(d=n_{0}\right)$
- My focus is on:
- Development of $L_{a r}^{\lambda}$ and L_{r}^{λ}
- Applications to formal and natural languages
- Computational Semantics
- Computational Syntax-Semantics Interfaces
- Semantics of programming and specification languages
- Theoretical foundations of compilers
- More to come

Thank You!

Some References I

圊 Yiannis N Moschovakis.
The formal language of recursion.
Journal of Symbolic Logic, 54(04):1216-1252, 1989.
URL: https://doi.org/10.1017/S0022481200041086.
围
Yiannis N. Moschovakis.
A Logical Calculus of Meaning and Synonymy.
Linguistics and Philosophy, 29(1):27-89, 2006.
URL: https://doi.org/10.1007/s10988-005-6920-7.

