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Origins and Present
Background on Type-Theory of Algorithms

Syntax and Semantics of Lλra
Restricted Memory Variables

Neural Networks by Type Theory of Restricted Algorithms

Mini-Intro to Lλar and Lλr
What is Moschovakis Type-Theory of Algorithms

Moschovakis (1994): untyped theory of Moschovakis algorithms /
recursion

Lλar, Moschovakis (2006), and Lλr (both ongoing, open work) are
classes of:
higher-order Simply-Typed Theories of Recursion

Lλar and Lλr have two-fold semantics:
denotations in typed domains

state-dependent objects (à la Gallin intensionality), i.e.,
functions from states to objects:

T(s→τ) = {f | f : Ts −→ Tτ}

pure objects: entities and function values do not depend on states

algorithmic semantics: algorithms for computing denotations

Algorithmic Meaning

Syntax of Lλar (Lλr ) =⇒ Algorithmic Meanings (Computations) =⇒ Denotations︸ ︷︷ ︸
Semantics of Lλar(Lλr )
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Mini-Intro to Lλar and Lλr
What is Moschovakis Type-Theory of Algorithms

What is Moschovakis Type-Theory of Recursion?

A class of higher-order Typed Theory of Recursion with

formal syntax

reduction calculi

denotational semantics; algorithmic semantics

Algorithmic Meaning

Formal Syntax =⇒ Algorithmic Meanings (Computations) =⇒ Denotations︸ ︷︷ ︸
Semantics

Lλar is Simply-Typed Theory of Acyclic Recursion:
computations close-off after finite number of steps

Lta
ar is Polymorphic Typed Theory of Acyclic Recursion:

computations close-off after finite number of steps

Lλr is Simply-Typed Theory of Full Recursion

Lta
r is Polymorphic Typed Theory of Full Recursion

Adding terms for constraints
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Background on Type-Theory of Algorithms

Syntax and Semantics of Lλra
Restricted Memory Variables

Neural Networks by Type Theory of Restricted Algorithms

Mini-Intro to Lλar and Lλr
What is Moschovakis Type-Theory of Algorithms

Placement of Lta
ar , Lta

r in a class of type theories:

IL ( TY2 ( Lλar ( Lλra ( Lλr ( Lta
r (1)

Lλar ( Lλra ( Lta
ar ( Lta

r ( TTSitInfo ( Lst
gp (2)

Montague IL for PTQ (1970-73)
Gallin TY2 (1975)
Lλar, Lλr (2006–now) and Lta

ar , Lta
r are

Type-Theories of Algorithms with
1 Recursion Operator (forming Recursion Terms)
2 Restrictor Operator (forming Restriction Terms):

can be added to all versions: Lλar, Lλr and Lta
ar , Lta

r , Lst
gp

3 Reduction Calculi

Reduction Calculi: reduction rules

for reducing every term A to a canonical form cf(A)

cf(A) of a meaningful term A determines the algorithm for computing den(A), in
a step-by-step mode, from the simplest components of A
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Motivation Examples
Syntax of Lλar
Denotational Semantics of Lλar
Examples

A ≡ (200 + 40)/6 (3a)

⇒ n/d where { n := (a1 + a2), (3b)

a1 := 200, a2 := 40, d := 6 } (3c)

B ≡ (120 + 120)/6 (4a)

⇒ n/d where { n := (a1 + a2), (4b)

a1 := 120, a2 := 120, d := 6 } (4c)

C ≡ n/d where { n := (a + a), a := 120, d := 6 } (5)

den(A) = den(B) = den(C ) = 40 (6a)

A 6≈ B 6≈ C (6b)
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Motivation Examples
Syntax of Lλar
Denotational Semantics of Lλar
Examples

A ≡ (200 + 40)/6 (7a)

⇒ n/d where { n := (a1 + a2), (7b)

a1 := 200, a2 := 40, d := 6 } (7c)

Recursion terms with restrictor:

D ≡
(
n/d such that { d 6= 0 }

)
where { (8a)

n := (a1 + a2), (8b)

a1 := 200, a2 := 40, d := 6 } (8c)

E ≡
(
n/d such that { d 6= 0 }

)
where { (9a)

n := (a1 + a2), (9b)

a1 := 200, a2 := 40, d := 0 } (9c)

den(A) = den(D) = 40; den(E ) = er (10a)

A 6≈ D 6≈ E (10b)
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Syntax of Lλar - acyclic recursion (Lλr full recursion without acyclicity)

Gallin Types: σ :≡ e | t | s | (τ1 → τ2)
Constants: Constτ = {cτ0 , cτ1 , . . . }
Variables: PureVarsτ = {vτ0 , vτ1 , . . . }, RecVarsτ = {pτ0 , pτ1 , . . . }

Terms of Lλar (Lλr )

A :≡ cτ : τ | xτ : τ (11a)

| B(σ→τ)(Cσ) : τ (11b)

| λ(vσ) (Bτ ) : (σ → τ) (11c)

|
[
Aσ0 where {pσ1

1 := Aσ1
1 , . . . , p

σn
n := Aσn

n }
]

: σ (11d)

given that pi ∈ RecVarsσi , Ai ∈ Termsσi satisfy Acyclicity Constraint:

{pσ1
1 := Aσ1

1 , . . . , p
σn
n := Aσn

n } is acyclic, i.e., exists a function

rank: {p1, . . . , pn} → N

s.th. for all i , j ∈ {1, . . . , n}:
if pj occurs freely in Ai , then rank(pi ) > rank(pj)
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Denotational Semantics of Lλar

For any semantic structure A(Const) = 〈T, I(Const) 〉, where

T = {Tσ | σ ∈ Types} is a frame of typed objects,
I : Constσ −→ Tσ is the interpretation function,
with G = {g | g : PureVars∪RecVars −→ T} — all variable valuations,
the denotation function, den: Terms −→ {f | f : G −→ T}
is defined by structural recursion:

(D1) den(x)(g) = g(x); den(c)(g) = I(c)

(D2) den(A(B))(g) = den(A)(g)(den(B)(g))

(D3) den(λx(B))(g)
(
t
)

= den(B)(g{x := t}), for every t ∈ Tτ
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The Denotation of the Recursion Terms (continuation)

(D4) den(A0 where {p1 := A1, . . . , pn := An})(g) =
den(A0)(g{p1 := p1, . . . , pn := pn}),

where pi ∈ Tτi , are defined by recursion on rank(pi ):

pi = den(Ai )(g{pk1 := pk1
, . . . , pkm := pkm}),

given that pk1 , . . . , pkm are all of the recursion variables
pj ∈ {p1, . . . , pn}, s.t. rank(pj) < rank(pi ).

Intuitively:

den(A1)(g), . . . , den(An)(g) are computed recursively and stored in
p1, . . . , pn, respectively

the denotation den(A0)(g) may depend on the values stored in
p1, . . . , pn
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Example

Kim
render−−−→ kim : ẽ (12a)

Maja
render−−−→ maja : ẽ (12b)

runs
render−−−→ runs : (ẽ→ t̃) (12c)

hugs
render−−−→ hugs : (ẽ→ (ẽ→ t̃)) (12d)

Kim hugs Maja. (13a)

render−−−→
[
hugs (̃e→(̃e→t̃))(majaẽ)

]
(̃e→t̃)(kimẽ) : t̃ (13b)

≡
[
hugs(maja)

]
(kim) : t̃ (13c)

⇒cf

[
hugs(m)(k) where { k := kim, m := maja }

]
: t̃ (13d)
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Example

John likes Mary’s father. (14a)

render−−−→
[
like
(
father of (mary)

)]
(john) : t̃ (14b)

≡ like
(
father of (mary), john

)
: t̃ (14c)

⇒cf like(f )(j) where {j := john, m := mary ,

f := father of (m)}
(14d)

≡ like(f , j) where {j := john, m := mary ,

f := father of (m)}
(14e)
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Example

A term with coordination:

Mary runs and smiles.
render−−−→ (15a)

A⇒cf λx
[
r(x) & s(x)

]
(m) where { r := run, s := smile,

m := mary }
(15b)

6≈
[
r(m) & s(m)

]
where { r := run, s := smile,

m := mary }
(15c)

This is justified because

(15a) and (15b) denote predication, while (15c) is a conjunction

β-reduction does not apply (in full) to algorithmic synonymy

β-reduction and the established results of λ-calculus are valid
denotationally
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Type Theory of Restricted Algorithms Lλra

A :≡ cτ : τ | xτ : τ | B(σ→τ)(Cσ) : τ | λ(vσ) (Bτ ) : (σ → τ) (16a)

|
(
Aσ0

0 where {pσ1
1 := Aσ1

1 , . . . , p
σn
n := Aσn

n }
)

: σ0 (16b)

|
(
Aσ0

0 such that {C τ1
1 , . . . ,C

τn
n }
)

: σ′0 (16c)

In (16b):
pi ∈ RecVarsσi , Ai ∈ Termsσi satisfy Acyclicity Constraint:

{pσ1
1 := Aσ1

1 , . . . , p
σn
n := Aσn

n } is acyclic, i.e., exists a function
rank: {p1, . . . , pn} → N
s.th. if pj occurs freely in Ai , then rank(pi ) > rank(pj)

In (16c):
τi ≡ t (truth values) or τi ≡ t̃ ≡ (s→ t) (state dependent truth values)

σ′0 ≡

{
σ0, if τi ≡ t, for all i ∈ { 1, . . . , n }
σ̃0 ≡ (s→ σ0), if τi ≡ t̃, for some i ∈ { 1, . . . , n }

(17)
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Abbreviations

er ≡ error
τ̃ ≡ (s→ τ), where τ ∈ Types (the type of state dependent objects
of type σ)
Abbreviated sequences and mutually recursive assignments:
−→
X ≡ X1, . . . ,Xn, where Xi ∈ Terms for all i ∈ { 1, . . . , n } or

Xi ∈ Types for all i ∈ { 1, . . . , n }
(18)

(
Aσ0

0 such that {C τ1
1 . . . ,C τnn }

)
≡
(
Aσ0

0 such that {
−→
C }
)

(19a)

≡
(
Aσ0

0 such that
−→
C
)

(19b)

−→p :=
−→
A ≡

[
p1 := A1, . . . , pn := An

]
(n ≥ 0) (20)

(A0 s.t. {
−→
C }) where {−→p :=

−→
A }

≡ (A0 s.t.
−→
C ) where {−→p :=

−→
A }

(21)
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(D5)

Case 1: for all i ∈ { 1, . . . , n }, Ci : t
For every g ∈ G :

den
(
Aσ0

0 s.t. {
−→
C }
)
(g) =



den(A0)(g), if den(Ci )(g) = 1,

for all i ∈ { 1, . . . , n }

er if den(Ci )(g) = er or

den(Ci )(g) = 0,

for some i ∈ { 1, . . . , n }
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Case 2: for some i ∈ { 1, . . . , n }, Ci : t̃ (state dependent proposition)

For every g ∈ G , and every state s ∈ Ts:

den
(
Aσ0

0 s.t. {
−→
C }
)
(g)(s) =



den(A0)(g), if den(Ci )(g) = 1,

for all i s.th. Ci : t, and

den(Ci )(g)(s) = 1,

for all i s.th. Ci : t̃

er , if den(Ci )(g) = er or

den(Ci )(g) = 0,

for some i s.th. Ci : t

er , if den(Ci )(g)(s) = er or

den(Ci )(g)(s) = 0,

for some i s.th. Ci : t̃
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Immediate terms have no algorithmic meaning.

Definition (The set ImT of immediate terms)

ImTτ :≡ X τ | Y (τ1→···→(τm→τ))(vτ1
1 ) . . . (vτmm )

(immediate applicative terms)
(22a)

ImT(σ1→···→(σn→τ)) :≡ λ(uσ1
1 ) . . . λ(uσn

n )Y (τ1→···→(τm→τ))(vτ1
1 ) . . . (vτmm )

(immediate λ-terms) (22b)

where n ≥ 0, m ≥ 0;
ui , vj ∈ PureVars,
X ∈ Vars, Y ∈ RecVars

Definition (Proper terms)

PrT = (Terms− ImT) (23)
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Reduction rules of Lλar / Lλra (to be continued)

[Congruence:] If A ≡c B, then A⇒ B (cong)

[Transitivity:] If A⇒ B and B ⇒ C , then A⇒ C (trans)

[Compositionality:]

• If A⇒ A′ and B ⇒ B ′, then A(B)⇒ A′(B ′) (app-comp / rep1)

• If A⇒ B, then λ(u)(A)⇒ λ(u)(B) (λ-comp / rep2)

• If Ai ⇒ Bi , for i = 0, . . . , n, then

A0 where { p1 := A1, . . . , pn := An }
⇒ B0 where { p1 := B1, . . . , pn := Bn }

(wh-comp / rep3)

• If A0 ⇒ B0, Ci ⇒ Ri , for i = 0, . . . , n, then(
A0 such that {C1, . . . ,Cn }

)
⇒
(
B0 such that {R1, . . . ,Rn }

) (st-comp / rep4)
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Reduction rules of Lλar / Lλra (to be continued)

[Head Rule:] given that no pi occurs freely in any Bj(
A0 where {−→p :=

−→
A }
)

where {−→q :=
−→
B }

⇒ A0 where {−→p :=
−→
A , −→q :=

−→
B }

(head)

[Bekič-Scott Rule:] given that no qi occurs freely in any Aj

A0 where {p :=
(
B0 where {−→q :=

−→
B }
)
, −→p :=

−→
A }

⇒ A0 where {p := B0,
−→q :=

−→
B , −→p :=

−→
A }

(B-S)

[Recursion-Application Rule:] given that no pi occurs freely in B(
A0 where {−→p :=

−→
A }
)

(B) (27)

⇒ A0(B) where {−→p :=
−→
A } (recap)
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Reduction rules of Lλar / Lλra (to be continued)

[Application Rule:] given that B ∈ PrT is a proper term, and
p ∈

[
RecVars−

(
FV
(
A(B)

)
∪ BV

(
A(B)

))]
is fresh

A(B) ⇒
[
A(p) where {p := B}

]
(ap)

[λ-rule:] given fresh p′i ∈
[

RecVars−
(

FV(A) ∪ BV(A)
)]

, i = 1, . . . , n,
for A ≡ A0 where { p1 := A1, . . . , pn := An }

λ(u)
(
A0 where

{
p1 := A1, . . . , pn := An

})
(λ)

⇒
[
λ(u)A′0 where

{
p′1 := λ(u)A′1, . . . , p

′
n := λ(u)A′n

}]
where, for all i = 0, . . . , n,

A′i ≡
[
Ai

{
p1 :≡ p′1(u), . . . , pn :≡ p′n(u)

}]
(29)
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Reduction rules of Lλra

[st / Restriction Rule:]
1 given that:

A0, Ci (i = 1, . . . , n, n ≥ 0) are proper terms, and
−→
R (if not empty) are immediate
a0, ci ∈ RecVars (i = 1, . . . , n) are fresh

(A0 such that {C1, . . . ,Cn,
−→
R }) (st1)

⇒ (a0 such that { c1, . . . , cn,
−→
R })

where { a0 := A0, c1 := C1, . . . , cn := Cn }

2 given that:

Ci (i = 1, . . . , n, n ≥ 0) are proper terms

A0,
−→
R (if not empty) are immediate, and

ci ∈ RecVars (i = 1, . . . , n) are fresh

(A0 such that {C1, . . . ,Cn,
−→
R }) (st2)

⇒ (A0 such that { c1, . . . , cn,
−→
R })

where { c1 := C1, . . . , cn := Cn }



Proposition (Basic Restricted Memory Variables)

Assume that, for n ≥ 1:
−→
Rj are immediate terms, and

pi ∈ RecVars, i = 2, . . . , n, are fresh with respect to p1,
−→
Rj

(j = 1, . . . , n)

Then:
((. . . ((p1 s.t.

−→
R1) s.t.

−→
R2) . . . ) s.t.

−→
Rn) (32a)

⇒ (pn s.t.
−→
Rn) where { pn := (pn−1 s.t.

−−→
Rn−1), (32b)

. . . ,

p3 := (p2 s.t.
−→
R2), (32c)

p2 := (p1 s.t.
−→
R1) } (32d)

Proof: by induction on n.

Case1: n = 1
(p1 s.t.

−→
R1)⇒ (p1 s.t.

−→
R1) is trivially true

Case2: Assume (32a)–(32d), for n ≥ 1. Then, we reduce the term (33a)
to the canonical form (33h)–(33j), by applying the reduction rules
(compositionally).



( ((. . . ((p1 s.t.
−→
R1) s.t.

−→
R2) . . . ) s.t.

−→
Rn)︸ ︷︷ ︸

pn+1

s.t.
−−→
Rn+1) (33a)

(st1) ⇒(pn+1 s.t.
−−→
Rn+1) where { (33b)

pn+1 := ((. . . ((p1 s.t.
−→
R1) s.t.

−→
R2) . . . ) s.t.

−→
Rn)︸ ︷︷ ︸ } (33c)

(ind.hyp.; wh-comp) (33d)

⇒ (pn+1 s.t.
−−→
Rn+1) where { (33e)

pn+1 :=
[
(pn s.t.

−→
Rn) where { pn := (pn−1 s.t.

−−→
Rn−1), (33f)

. . . ,

p3 := (p2 s.t.
−→
R2), p2 := (p1 s.t.

−→
R1) }

]
(33g)

(B-S) ⇒ (pn+1 s.t.
−−→
Rn+1) where { (33h)

pn+1 := (pn s.t.
−→
Rn), pn := (pn−1 s.t.

−−→
Rn−1), (33i)

. . . ,

p3 := (p2 s.t.
−→
R2), p2 := (p1 s.t.

−→
R1) } (33j)



Restricted Memory Variables

Proposition (Restricted Memory Variables)

Assume that, for n ≥ 1:
−→
Rj are proper terms, and

−→
Ij are immediate

pi ∈ RecVars (i = 2, . . . , n) and rj ∈ RecVars (j = 1, . . . , n) are fresh

with respect to p1,
−→
Rj ,
−→
Ij (j = 1, . . . , n)

Then:
((. . . ((p1 s.t. {

−→
R1,
−→
I1 }) s.t. {

−→
R2,
−→
I2 }) . . . ) s.t. {

−→
Rn,
−→
In }) (34a)

⇒ (pn s.t. {−→rn ,
−→
I1 }) where { pn := (pn−1 s.t. {−−→rn−1,

−−→
In−1}), (34b)

. . . ,

p3 := (p2 s.t. {−→r2 ,
−→
I2 }), (34c)

p2 := (p1 s.t. {−→r1 ,
−→
I1 }), (34d)

−→r :=
−→
R } (34e)

Proof: by induction on n ≥ 1.
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Theorem (Canonical Form Theorem)

For each A ∈ Terms, there is a unique up to congruence, irreducible
cf(A) ∈ Terms s.th.:

1 cf(A) ≡ A0 where {p1 := A1, . . . , pn := An}
for some explicit, irreducible A0, . . . ,An ∈ Terms (n ≥ 0)

2 A⇒ cf(A)
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Algorithmic Semantics of Lλar and Lλr

Every term A reduces to cf(A)

How is the algorithmic semantics of an algorithmically meaningful
term A determined?

Algorithmic Semantics: Recursors, i.e., Recursive Computations

For every proper term A, such that

A⇒ cf(A) ≡ A0 where {p1 := A1, . . . , pn := An} (35)

alg(A) is the recursor, i.e., the algorithm, for computing den(A) :

alg(A) =
(

den(A0), den(A1), . . . , den(An)
)

(36)

which computes den(Ai )(g), for every g ∈ G ,

alg(A)(g) = den(A)(g) = den(A0)(g) (37)

according to rank(pi ), i = 1, . . . , n
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Algorithmic Equivalence

Intuitively: Lλr is a formalization of the mathematical notion of algorithm,
for computing values of recursive functions, by recursion terms and terms
in canonical forms.
I.e., the concept of algorithm is defined formally, at the object level of its
syntax.

Theorem (of Algorithmic Synonymy)

Two terms A,B ∈ Terms are algorithmically equivalent, A ≈ B, iff there
are explicit, irreducible terms A0,A1, . . . ,An, B0,B1, . . . ,Bn (n ≥ 0) s.th.:

A⇒cf A0 where {p1 := A1, . . . , pn := An}
B ⇒cf B0 where {p1 := B1, . . . , pn := Bn}
|= Ai = Bi (i = 0, . . . , n), i.e.,

den(Ai )(g) = den(Bi )(g), for all g ∈ G (38)
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Example

Given that dog and runs are constants, the following terms are
algorithmically, synonymous, but can not be reduced to each other:

λx dog(x) ≈ dog : (ẽ→ t̃) (39)

λx runs(x) ≈ runs : (ẽ→ t̃) (40)

λ x some(x) ≈ some : [(ẽ→ t̃)→ ((ẽ→ t̃)→ t̃)] (41)

some dog
render−−−→ some (̃e→t̃)→((̃e→t̃)→t̃)(dog (̃e→t̃)) :

(
(ẽ→ t̃)→ t̃

)
(42a)

≡ some(dog) :
(
(ẽ→ t̃)→ t̃

)
(42b)

⇒cf

[
some(d) where { d := dog }

]
:
(
(ẽ→ t̃)→ t̃

)
(42c)

recursion term



Example

Some dog runs
render−−−→ (43a)(

some(dog)
)
(runs) : t̃ (43b)

≡ some(dog , runs) (rel. not.) (43c)

⇒cf

[(
some(p1)

)
(p2) where {p1 := dog , p2 := runs}

]
: t̃ (43d)

≈
[(

some(p1)
)
(p2) where {p1 := λx dog(x),

p2 := λx runs(x)}
]

: t̃
(43e)

Some dog runs
render−−−→[(

Q(p1)
)
(p2) where {Q := some, p1 := dog , p2 := runs}

] (44a)

6≈
[(

some(p1)
)
(p2) where {p1 := dog , p2 := runs}

]
(44b)
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Example: rendering of the definite article “the” Option 1

We may consider rendering the definite article “the” to a constant:

the
render−−−→ the ∈ Const((̃e→t̃)→ẽ) (45)

and the following denotation of the constant the:

[(
den(the)

)
(g)
]
(p̄)(s0) =



y , in case (i.e., iff) y is

the unique y ∈ Te,

for which p̄(s 7→ y)(s0) = 1

er, otherwise

i.e., there is no unique entity

which has the property p̄ in s0

(46)

for every p̄ ∈ T(̃e→t̃) and every s0 ∈ Ts

There are other possibilities for rendering the definite article “the”, e.g.,
with complex terms of generalized quantifiers or by using the restrictor.
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Example: possible rendering of the definite article “the” Option 2

We may consider rendering the definite article “the” to a term:

the
render−−−→ A ≡ λ(x)

[(
q such that { unique(p)(q) }

)
(47a)

where { p := x }
]

(47b)

: ((ẽ→ t̃)→ ẽ) (47c)

for q ∈ RecVarse, p ∈ RecVars(̃e→t̃),
unique ∈ Const(((̃e→t̃)→e)→t̃),
and the following denotation (by ignoring the variable assignment g) of
the constant unique : (((ẽ→ t̃)→ e)→ t̃):

[
den(unique)

]
(p̄)(y)(s0) =


1, in case (i.e., iff) y is

the unique y ∈ Te,

for which p̄(s 7→ y)(s0) = 1

er, otherwise

(48)

for every p̄ ∈ T(̃e→t̃), y ∈ Te, and every s0 ∈ Ts
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Example: possible rendering of the definite article “the” Option 3

We may consider rendering the definite article “the” to a term that is
underspecified for the property p:

the
render−−−→ A ≡

(
q such that { unique(p)(q) }

)
(49a)

: ẽ (49b)

for q ∈ RecVarse, p ∈ RecVars(̃e→t̃),
unique ∈ Const(((̃e→t̃)→e)→t̃)

Then, p gets specified, by NPs:

the dog
render−−−→ A ≡

(
q such that { unique(p)(q) }

)
(50a)

where { p := dog } (50b)

: ẽ (50c)
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Neural Networks by Type Theory of Restricted Algorithms Lλra

The term N in (51a)–(51b) represents a neural network:

N ≡
([
Aσ0

0 (−→q ) such that {Cτ1
1 , . . . ,C

τm
m }
]

(51a)

where { pσ1
1 := Aσ1

1 , . . . ,

pσn
n := Aσn

n }
) (51b)

Aσ0
0 (−→q ) in (51a) can represent

the nucleus of N, which has structure over the dependent
components −→q
the structure of N is determined by the entire term (51a)–(51b)
the membrane of N

(51b) represents procedural memory of N

{Cτ1
1 , . . . ,C

τm
m } represents declarative memory of N
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Early work on Situation Theory

Barwise and Perry [1] (1983): Situation Theory as model theory of
Information, incl. the idea of restricted parameters

Loukanova (1990ties) introduced Situation Theory (SitT) as math
structures with:

situated types as semantic objects (not as a formal language)
early mathematics of recursiely defined semantic parameters that are
restricted with situated types
Cooper Storage by Situation Theory: underspecified semantic
quantification
restricted parameters: Cooper and Loukanova, 1994
restricted parameters to represent space-time locations as
components in information
restricted parameters to represent reference to individuals by proper
names
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A New Approach to Situation Theory: Type Theory of Algorithms & Information Content

B Loukanova [4] (2014) is an intro to set-theoretic foundations of SitT
by the following ideas

information in context and agents

primitive and complex parameters

represent objects, by partially available information
represent objects that are undeveloped or in developmental stage
(e.g., objects in nature)
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Typed Theory of Situated Algorithms and Information

formal syntax of situated algorithms & information

Some key points:

theory of typed recursion (new) on relations and functions

two kinds of typed variables, across types:

pure variables (corresponding to classic variables): for λ-abstractions
memory / recursion variables (new):
designating typed semantic parameters and memory locations

recursion terms (new): designating calculations, i.e., algorithms;

restrictor terms: designating constraints

generalized, memory networks (new) with constraints

recursion terms with constraints: designating situated algorithms
operating over structured information and objects in situations, in
space-time locations
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Memory Variables — Some Key Intuitions

Memory variables designate semantic parameters (per se semantic
entities that are underspecified objects)

Values can be assigned to memory variables by recursive
computations.

The recursive computations are determined by recursion terms in the
formal language Lst

gp.

Memory variables are constrained to satisfy situation-theoretic
restrictions, expressed by recursion terms with constraints /
restrictions

Memory variables can be underspecified.

Recursion terms can be underspecified.

The semantic parameters designated by memory variables can be
“anchored” to more specific values, which can be still parametric.

“Anchoring” corresponds to recursive assignments and satisfies
restrictions.
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Computational Neuroscoence of languge and memory

From the perspective of neuroscience:

The generalized recursion terms of TTofSitAlg and TTSitInfo
represent neural nets of recursively linked memory cells for
processing and saving information

My inspiration for this:
Kandel et al. [3] and Squire and Kandel [5]

TTofSitAlg in the functional settings is insufficient

I extend TTofSitAlg, to TTSitInfo by formalizing Situation Theory
and extending it

Extending the formal language of TTofSitAlg and TTSitInfo to a
formal language LNNets Lst

gp.
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Primitive (basic) types of Lst
gp: a (relatively small) set of constants

BTypes = { ind,rel, fun,ArgR, loc,pol,par,

infon, sit,prop, set,type, |=, . . . }
(52)

ind: for primitive and complex individuals;

rel: for primitive and complex relations;

fun: for functions, primitive and complex;

ARoles: for primitive and complex argument roles;

loc: for space-time locations;

pol: for polarities 0 and 1 (these are not truth values);

par: for primitive and complex parameters;

infon: for basic or complex information units;

sit: for situations;

prop: for basic or complex propositions;

type: for basic and complex types;

|= is a designated type

set: the type of sets
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|= is a special type called “supports” (“holds”), e.g., used in the
type of propositions that a situation s and an infon σ are of the type
“supports”, i.e., “s supports σ”:

(s |= σ) (a proposition)

s |= σ (a verified proposition)

A class of primitive and complex types

Complex types are constructed at stages, e.g., as needed (not
necessarily all)

Types0,Types1, . . . ,Typesn, . . . (54a)

where Typesi ⊆ Typesi+1, for i ≥ 0 (54b)

τ : type ⇐⇒ τ ∈ Typesi , for some i ≥ 0 (54c)
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Vocabulary of Lst
gp

Typed constants K =
⋃
τ∈Types Kτ , where

Kτ = { cτ0 , c
τ
1 , . . . , c

τ
kτ }, for τ ∈ Types (55)

Typed pure and memory (recursion) variables

pure variables (for λ-abstractions) PureVarsτ = PVτ = { vτ0 , v
τ
1 , . . . },

for τ ∈ Types
memory (recursion) variables (for memory “slots”)
MVτ = RVτ = { pτ0 , p

τ
1 , . . . }, for τ ∈ Types

basic restricted memory variables (sometimes marked by dots), for
saving information

Notations for typed constants, variables, and terms
(the class Terms to be defined)

A : τ ⇐⇒ Aτ ∈ Terms ⇐⇒ A ∈ Termsτ (56)
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Relations and Types with Argument Roles

Every expression γ, denoting a relation, a function, or a type, comes
with a set ArgR(γ) of expressions argi for argument roles and
types for appropriateness constraints:

ArgR(γ) = {T1 : arg1, . . . ,Tn : argn }
for all γ ∈ Krel ∪ Ktype ∪ Varsrel ∪Varstype

(57)

ArgR(smile) = {Ta : smiler} (58a)

ArgR(read) = {Ta : reader,To : readed} (58b)

ArgR(read-to) = {Ta1 : reader, Tm : readed, (58c)

Ta2 : readee}
ArgR(give) = {Ta : giver, Tr : receiver, Tg : given} (58d)
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Every function constant and function variable γ, i.e.,
γ ∈ Kfun ∪ Varsfun, is associated with two sets of typed expressions:

ArgR(γ) = {T1 : arg1, . . . ,Tn : argn } (59a)

Value(γ) = {Tn+1 : argn+1 } (59b)

In classic notations from λ-calculi:

γ : ((T1 × · · · × Tn)→ Tn+1) (60a)

γ : (T1 → . . . (Tn → Tn+1)) (currying) (60b)

The full class of typed terms is defined by recursion (I do not present
the full definition).

Next I shall introduce some of the terms.
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Every function constant and function variable γ, i.e.,
γ ∈ Kfun ∪ Varsfun, is associated with two sets of typed expressions:

ArgR(γ) = {T1 : arg1, . . . ,Tn : argn } (59a)

Value(γ) = {Tn+1 : argn+1 } (59b)

In classic notations from λ-calculi:

γ : ((T1 × · · · × Tn)→ Tn+1) (60a)

γ : (T1 → . . . (Tn → Tn+1)) (currying) (60b)

The full class of typed terms is defined by recursion (I do not present
the full definition).

Next I shall introduce some of the terms.
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Every function constant and function variable γ, i.e.,
γ ∈ Kfun ∪ Varsfun, is associated with two sets of typed expressions:

ArgR(γ) = {T1 : arg1, . . . ,Tn : argn } (59a)

Value(γ) = {Tn+1 : argn+1 } (59b)

In classic notations from λ-calculi:

γ : ((T1 × · · · × Tn)→ Tn+1) (60a)

γ : (T1 → . . . (Tn → Tn+1)) (currying) (60b)

The full class of typed terms is defined by recursion (I do not present
the full definition).

Next I shall introduce some of the terms.
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Every function constant and function variable γ, i.e.,
γ ∈ Kfun ∪ Varsfun, is associated with two sets of typed expressions:

ArgR(γ) = {T1 : arg1, . . . ,Tn : argn } (59a)

Value(γ) = {Tn+1 : argn+1 } (59b)

In classic notations from λ-calculi:

γ : ((T1 × · · · × Tn)→ Tn+1) (60a)

γ : (T1 → . . . (Tn → Tn+1)) (currying) (60b)

The full class of typed terms is defined by recursion (I do not present
the full definition).

Next I shall introduce some of the terms.
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Infons: information pieces

Infon Terms: The class of expressions of the form

� ρ,T1 : arg1 : ξ1, . . . ,

Tn : argn : ξn,

loc : Loc : τ, pol : Pol : t � : infon

for any given

ρ ∈ Termsrel, s.t.

ArgR(ρ) = {T1 : arg1, . . . ,Tn : argn } (62)

ξ1 ∈ TermsT1 , . . . , ξn ∈ TermsTn

τ ∈ Termsloc

t ∈ TermsPOL
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Example (infons: specific or parametric)

ca reads cb to cc at the space-time location l (specific objects)

� read-to, Ta1 : reader : ca,

Tm : readed : cb,

Ta2 : readee : cc ,

loc : Loc : l ;

pol : Pol : 1�

(63)

ca reads cb to the unknown z at the unknown location l̇

� read-to, Ta1 : reader : ca, (specific)

Tm : readed : cb, (specific)

Ta2 : readee : z , (par)

loc : Loc : l̇ ; pol : Pol : 1� (par)
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Example (infons in linear notations)

ca reads (the unknown y to unknown z at l̇)

� read-to, Ta1 : reader : ca, (specific)

Tm : readed : y , Ta2 : readee : z , (param.)

loc : Loc : l̇ ; pol : Pol : 1� (param.)

the info whether ca either reads or does not available with unknown
polarity ṗ

� read-to, Ta1 : reader : ca, (specific)

Tm : readed : y , Ta2 : readee : z , (param.)

loc : Loc : l̇ ; pol : Pol : ṗ � (param.)
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Proposition Terms

For every term (basic or complex) γ ∈ Termstype, with argument roles

ArgR(γ) = {T1 : arg1, . . . ,Tn : argn } (67)

and every ξ1 ∈ TermsT1 , . . . , ξn ∈ TermsTn ,

a proposition term in postfix notation

({T1 : arg1 : ξ1, . . . ,Tn : argn : ξn} : γ) ∈ Termsprop (68a)

({T1 : arg1 : ξ1, . . . ,Tn : argn : ξn} : γ) : prop (not-n) (68b)

a proposition term in prefix notation

(γ, {T1 : arg1 : ξ1, . . . ,Tn : argn : ξn }) : prop (69a)

(γ, T1 : arg1 : ξ1, . . . ,Tn : argn : ξn) : prop (69b)
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Definition (Terms of Situated Propositions)

The type |= (“supports”):

ArgR(|=) = {sit : arg sit, infon : arg infon} (70)

Terms of situated propositions: for any

s ∈ PureVarssit ∪MVsit (71a)

σ ∈ Termsinfon (71b)

In prefix notation

(|=, s, σ) (72)

In infix notation

(s |= σ) (73)
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Example (The proposition that s supports a positive infon)

(s |= � book, ind : arg : b, (74a)

loc : Loc : l ;pol : Pol : 1�) (74b)

Example (The proposition that s supports a negative infon)

(s |= � book, ind : arg : b, (75a)

loc : Loc : l ;pol : Pol : 0�) (75b)
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Example (The situation s does not support a positive infon)

(s 6|= � book, ind : arg : b, (76a)

loc : Loc : l ;pol : Pol : 1�) (76b)

Example (The situation s does not support a negative infon)

(s 6|= � book, ind : arg : b, (77a)

loc : Loc : l ;pol : Pol : 0�) (77b)
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Example (A situation s can “carry” partial information)

(s 6|= � book, b, l ; 1�) (78a)

(s 6|= � book, b, l ; 0�) (78b)

Both propositions (78a) and (78b) can be true.
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Terms for complex propositions can be formed by using the usual logic
connectives, ¬, ∧, ∨, etc.

Example (conjunctive propositions)

the situation is the same

(s |= � smiles, ind : arg : a, l ; 1�) (79a)

(s |= � cries, ind : arg : a, l2; 1�) (79b)

∧ (s |= � animate, ind : arg : a, l1; 1�) (79c)

∧ (l ◦ l1) ∧ (l ◦ l2) (79d)

different situations

(s |= � smiles, ind : arg : a, l ; 1�) (80a)

(s2 |= � cries, ind : arg : a, l2; 1�) (80b)

∧ (s1 |= � animate, ind : arg : a, l1; 1�) (80c)

∧ (l ◦ l1) ∧ (l ◦ l2) (80d)
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Terms for complex propositions can be formed by using the usual logic
connectives, ¬, ∧, ∨, etc.

Example (conjunctive propositions)

the situation is the same

(s |= � smiles, ind : arg : a, l ; 1�) (79a)

(s |= � cries, ind : arg : a, l2; 1�) (79b)

∧ (s |= � animate, ind : arg : a, l1; 1�) (79c)

∧ (l ◦ l1) ∧ (l ◦ l2) (79d)

different situations

(s |= � smiles, ind : arg : a, l ; 1�) (80a)

(s2 |= � cries, ind : arg : a, l2; 1�) (80b)

∧ (s1 |= � animate, ind : arg : a, l1; 1�) (80c)

∧ (l ◦ l1) ∧ (l ◦ l2) (80d)
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Example (conjunctive information)

a conjunctive infon in a proposition

(s |= � smiles, ind : arg : a, loc : Loc : l ; 1� (81a)

∧ � animate, ind : arg : a, l1; 1� (81b)

∧ l ◦ l1) (81c)

a conjunctive proposition

(s |= � smiles, ind : arg : a, l ; 1�) (82a)

∧ (s |= � animate, ind : arg : a, l1; 1�) (82b)

∧ (l ◦ l1) (82c)
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Example (conjunctive information)

a conjunctive infon in a proposition

(s |= � smiles, ind : arg : a, loc : Loc : l ; 1� (81a)

∧ � animate, ind : arg : a, l1; 1� (81b)

∧ l ◦ l1) (81c)

a conjunctive proposition

(s |= � smiles, ind : arg : a, l ; 1�) (82a)

∧ (s |= � animate, ind : arg : a, l1; 1�) (82b)

∧ (l ◦ l1) (82c)
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Example

The propositional content of the sentence (83) might be expressed
by the proposition (84a)–(84c), with some (great) approximation.

The book b is read (83)

(s |= � read , reader : ẋ , readed : b, readee : ẏ , (84a)

Loc : l ; 1�
∧ � book, arg : b, Loc : l1; 1�) (84b)

∧ (l ⊂ l1) (84c)

(84b) and (84c) are presented as parts of the propositional content of
(83). There are other ways to include this information (later).
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λ-Terms

For every term (basic or complex) Φ ∈ Terms and any pure variables
ξ1, . . . , ξn ∈ PV, the expression λ{ ξ1, . . . , ξn }Φ is a λ-abstraction term,
i.e.:

λ{ ξ1, . . . , ξn }Φ ∈ Terms (85a)

[ξ1], . . . , [ξn] are expressions for the argument roles of λ{ ξ1, . . . , ξn }Φ,
and are associated with corresponding appropriateness constraints as
follows:

ArgR(λ{ ξ1, . . . , ξn }Φ) =

{T1 : [ξ1], . . . ,Tn : [ξn] }
(86)

where, for each i ∈ { 1, . . . , n }, Ti is the union of all sets (of types) that
are the appropriateness constraints of all the argument roles that occur in
Φ, and such that ξi fills up them, without being bound. (Note that ξi
may fill more than one argument role in Φ.)
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Complex Relations

Case 1: complex relations with complex argument roles. In the case
when Φ ∈ Termsinfon the expression λ{ ξ1, . . . , ξn }Φ is a
complex-relation term, i.e.:

λ{ ξ1, . . . , ξn }Φ ∈ Termsrel (87a)

λ{ ξ1, . . . , ξn }Φ : rel (87b)

Example

R1 ≡λ(x)
[
� read-to, reader : x, readed : b, readee : z ,

Loc : l; Pol : 1�
] (88a)

R2 ≡λ(x , z)
[
� read-to, reader : x, readed : b, readee : z ,

Loc : l; Pol : 1�
] (88b)
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Example (Underspecified complex infons in linear notation)

b, z ∈ RVind are recursion (memory) variables

l ∈ RVloc is a recursion (memory) variable for space-time location

x ∈ PVind is a pure variable for an individual

I ≡ � book, arg : b, Loc : l; Pol : 1� ∧ (89a)

� read-to, reader : x, readed : b, readee : z , (89b)

Loc : l; Pol : 1�

R ≡λ(x , z)
[
� book, arg : b, Loc : l; Pol : 1� ∧ (90a)

� read-to, reader : x, readed : b, readee : z , (90b)

Loc : l; Pol : 1�
]

Note: (89a)–(89b) is a complex infon, not a proposition!
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Complex Types

Case 2: complex types with complex argument roles.
In the case when Φ ∈ Termsprop, the expression λ{ ξ1, . . . , ξn }Φ is a
complex-type term, i.e.:

λ{ ξ1, . . . , ξn }Φ ∈ Termstype (91a)

λ{ ξ1, . . . , ξn }Φ : type (91b)

Notations:

[T1 : ξ1, . . . ,Tn : ξn | Φ] ∈ Termstype (92a)

[T1 : ξ1, . . . ,Tn : ξn | Φ] : type (92b)
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Recursion Terms

The expression in (93) is a recursion term of type σ0:[
A0 where { p1 := A1, . . . , pn := An }

]
: σ0 (93)

for any terms Ai : σi , i = 0, . . . , n (n ≥ 0), and
pairwise different memory variables pi ∈ MVσi i = 1, . . . , n,
such that the set of the assignments (94)

{ p1 := A1, . . . , pn := An } (94)

satisfies the Acyclicity Constraint RT,

Definition (Acyclicity Constraint RT)

The assignments { p1 := A1, . . . , pn := An } are acyclic iff there is a rank
function

rank: {
⋃
{ pi }ni=1} −→ N (95)

such that:

if pj occurs freely in Ai , then rank(pj) < rank(pi )



Terms with (Acyclic) Constraints

The expression in (96) is a restriction (constraned) term of type σ0:[
A0 such that { (q1,1, . . . , q1,l1 : C1), . . . ,

(qm,1, . . . , qm,lm : Cm) }
]

: σ0

(96)

for

any type terms Ck : type, k = 1, . . . ,m (m ≥ 0) that have
argument roles:

ArgR(Ck) = {Tk,1 : argk,l1 , . . . ,Tk,lk : argk,lk } (97)

any memory (recursion) variables qk,j ∈ MVTk,j
, j = 1, . . . , lk ,

and any term A0 : σ0,
such that the set of propositions (98)

{ (q1,1, . . . , q1,l1 : C1), . . . , (qm,1, . . . , qm,lm : Cm) } (98)

satisfies the Acyclicity Constraint CT (99), p. 68,

Note: If the acyclicity is dropped, we have a formal language with ‘cyclic’
constraints.
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Definition (Acyclicity Constraint CT)

A set of propositions (99):

{ (q1,1, . . . , q1,l1 : C1), . . . , (qm,1, . . . , qm,lm : Cm) } (99)

is acyclic iff there is a rank function

rank: {
m⋃

k=1

{ qk,j }lkj=1} −→ N (100)

such that:

if qk′,j′ occurs freely in Ck , then rank(qk′,j′) < rank(qk,j)
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Restricted-Recursion Terms

The expression in (101) is a restricted-recursion term of type σ0:[[
A0 such that { (q1,1, . . . , q1,l1 : C1), . . . ,

(qm,1, . . . , qm,lm : Cm) }
]

where { p1 := A1, . . . , pn := An }
]

: σ0

(101)

for

type terms Ck : type, k = 1, . . . ,m (m ≥ 0) with argument roles:

ArgR(Ck) = {Tk,1 : argk,l1 , . . . ,Tk,lk : argk,lk } (102)

memory (recursion) variables (not necessarily pairwise different):
qk,j ∈ MVTk,j

, j = 1, . . . , lk ,

terms Ai : σi , i = 0, . . . , n (n ≥ 0),

pairwise different memory (recursion) variables: pi ∈ MVσi

i = 1, . . . , n,
such that the sequences (103a) and (103b) jointly satisfy the
Acyclicity Constraint-CRT

{ (q1,1, . . . , q1,l1 : C1), . . . , (qm,1, . . . , qm,lm : Cm) } (103a)

{ p1 := A1, . . . , pn := An } (103b)



Definition (Acyclicity Constraint-CRT)

{ (q1,1, . . . , q1,l1 : C1), . . . , (qm,1, . . . , qm,lm : Cm) } (104a)

{ p1 := A1, . . . , pn := An } (104b)

(104a) and (104b) are (jointly) acyclic iff there is a rank function

rank: {
m⋃

k=1

{ qk,j }lkj=1 ∪
⋃
{ pi }ni=1} −→ N (105)

such that:

1 if qk′,j′ occurs freely in Ck , then rank(qk′,j′) < rank(qk,j)

2 if pj occurs freely in Ai , then rank(pj) < rank(pi )

3 if pi occurs freely in Ck , then rank(pi ) < rank(qk,j)

4 if qk,j occurs freely in Ai , then rank(qk,j) < rank(pi )

By dropping any of the acycliciy conditions, we obtain a corresponding
class of formal languages.
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Example (restricted-memory variables: for denoting semantic parameters)

Restricted-memory variables are a special case of restricted-recursion
terms.

q is a restricted-memory variable

{q} such that { (C : q) } (106a)

where {C := λ(y)
(
s |=� read-to, (106b)

Ta1 : reader : ca, (106c)

Tm : readed : y , (106d)

Ta2 : readee : z , (106e)

loc : Loc : l ; (106f)

pol : Pol : 1�
)
} (106g)
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The language Lst
gp / LNNets has terms for propositions:

({ arg1 : p1, . . . , argm : pm } : T ) (107a)

for T : type, (107b)

ArgR(T ) = { arg1, . . . , argm }, (107c)

p1, . . . , pm : MV (107d)

The proposition term (107a) designates simultaneous restrictions over
sets of objects: p1, . . . , pm.

Definition (Memory Network / Restricted Memory Net )

{qk1 , . . . , qkl} s.t. { (q1, . . . , qk : C),

(−→q :
−→
C ) }

where {−→p :=
−→
A }

(108)
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Reduction Calculus

Reduction Calculus: an effective system of reduction rules

for reducing every term A to a canonical form cf(A)

cf(A) of a meaningful term A determines the algorithm for
computing den(A), in a step-by-step mode, from the simplest
components.

The algorithm designated by a term of restricted recursion respects
the restrictions.
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Generalized, restricted recursion variables: memory variables

Example (recursion variables: for denoting semantic parameters)

{ q, l̇ } is a generalized, restricted recursion variable, i.e.,
a restricted memory net

{q, l̇} s.t. { (C : (q, l̇)) } (109a)

where {C := λ(y , l)
(
s |=� read-to, (109b)

Ta1 : reader : ca, (109c)

Tm : readed : y , (109d)

Ta2 : readee : z , (109e)

loc : Loc : l ; (109f)

pol : Pol : 1�
)
} (109g)
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Complex Relations and Propositions

Example (A proposition with a basic infon having a complex relation)

(
s |= (110a)

�λ x, y, z
[
� read-to, reader : x, readed : y, (110b)

readee : z, Loc : l; 1� ∧
� book, arg : y, Loc : l1; 1� ∧ (110c)

� listen, arg : z, Loc : l2; 1� ∧ (110d)

l ⊆ l1 ∧ l2 ⊆t l
]
, (110e)

[x] : a, [y] : b, [z] : c, Loc : l; 1�
)

(110f)

The complex relation (110b)–(110e) has new, its own, argument-roles
denoted by [x ], [y ], and [z ], which are filled up by the objects denoted by
a, b, and c , respectively.

75 / 81



Memory variables instantiated by assignments

P where { (111a)

P :=
(
s |=

[
(111b)

� r1, [x
′] : a, [y′] : b, [z′] : c; 1� ∧ (111c)

� r2, [y
′] : b; 1� ∧ (111d)

� r3, [z
′] : c; 1� ∧ (111e)

i4 ∧ i5
])
, (111f)

r1 := λ x′, y′, z′ � read-to, reader : x′,

readed : y′, readee : z′,

Loc : l; 1�,
(111g)

r2 := λ y′ � book, arg : y′, Loc : l1; 1�, (111h)

r3 := λ z′ � listen, arg : z′, Loc : l2; 1�, (111i)

i4 := (l ⊆ l1), (111j)

i5 := (l2 ⊆t l) } (111k)



Syntax of Lstgp
Restricted Memory Network

Some References
Applications

T0 is the proposition that a, b, c are in relation R ∈ RV in the
situation s ∈ Vars.

T0 ≡
(
s |=� R, [x] : a, [y] : b, [z] : c, Loc : l; 1�

)
(112)

T1 is the proposition that a, b, c are in relation R ∈ RV in the
situation s ∈ Vars, where R is a complex, parametric relation with
r1, r2, r3 as sub-relations in a conjunctive infon.

T1 ≡
(
s |=� R, [x] : a, [y] : b, [z] : c, Loc : l; 1�

)
(113a)

where {R := � λ x, y, z
[

(113b)

� r1, [x
′] : x, [y′] : y, [z′] : z; 1� ∧ (113c)

� r2, [x
′] : x, [y′] : y, [z′] : z; 1� ∧ (113d)

� r3, [x
′] : x, [y′] : y, [z′] : z; 1� ∧ (113e)

i4 ∧ i5
]
} (113f)
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(114a)–(114f) is a complex proposition containing restrictions

via propositional constraints
assignments

T s.t. { (l : loc), (l1 : loc), (l2 : loc), (a : T), (c : T), (114a)

l ⊆ l1, l2 ⊆t l } (114b)

where {r1 := λ x′, y′, z′ � read-to, reader : x′, readed : y′, (114c)

readee : z′, Loc : l; 1�,
r2 := λ x′, y′, z′ � book, arg : y′, Loc : l1; 1�, (114d)

r3 := λ x′, y′, z′ � listen, arg : z′, Loc : l2; 1�, (114e)

T := λ u(s |=� person, u, l, 1�) } (114f)
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Existing and potential applications

Typed syntax-semantics interfaces for information representation

programming languages
algorithm specifications: higher-order type theory of algorithms
data science / database

Computational semantics

Syntax-semantics interface in computational grammar of human
language

Applications to:

Language Processing / Technology
AI
Neuroscience
Life sciences

Thanks!
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