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Introduction

Introduction

I Questions

I How is linguistic meaning related to perception?
I How do we learn and agree on the meanings of our words?

I We are developing a formal judgement-based semantics where notions
such as perception, classification, judgement, learning and dialogue
coordination play a central role

I See e.g. Cooper (2005), Cooper and Larsson (2009), Larsson (2011),

Dobnik et al. (2011), Cooper (2012), Dobnik and Cooper (2013),

Cooper et al. (2015a)

I Key idea:
I modeling (perceptual) meanings as classifiers of real-valued

(perceptual) data, and training these classifiers in interaction with the
world and other agents

I This presentation based on Larsson (2011) and Larsson (2013)
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Introduction

Classification is subjective?
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Introduction

Coordination can be creative
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Introduction

I What is meaning?
I When a community is coordinated on the use of an expression, that

expression has meaning in that community; it can be used for
communicating

I Meaning is regarded as being acquired by an agent through its
perception of, and interaction with, the world and other agents.

I This makes meaning agent-relative but essentially
I social and intersubjective, in the sense of being coordinated in

interaction between individuals
I dynamic, in the sense of always being up for revision and negotiation as

new perceptual and conversationally mediated information is
encountered
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Semantic coordination

Communicative grounding

I Utterances incrementally add to Common Ground
I The collection of mutual knowledge, mutual beliefs, and mutual

assumptions that is essential for communication between two people
(Clark and Schaefer, 1989)

I “To ground a thing ... is to establish it as part of common ground
well enough for current purposes.”

I Making sure that the participants are perceiving, understanding, and
accepting each other’s utterances; dealing with miscommunication

I See e.g. Clark and Schaefer (1989), Clark and Brennan (1990), Clark
(1996)
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Semantic coordination

Semantic coordination

I Research on alignment shows that agents negotiate domain-specific
microlanguages for the purposes of discussing the particular domain
at hand

I See e.g. Clark and Gerrig (1983), Clark and Wilkes-Gibbs (1986),
Garrod and Anderson (1987), Pickering and Garrod (2004), Brennan
and Clark (1996), Healey (1997), Larsson (2007)

I Two agents do not need to share exactly the same linguistic resources
(grammar, lexicon etc.) in order to be able to communicate

I An agent’s linguistic resources can change during the course of a
dialogue when she is confronted with a (for her) innovative use

I Semantic coordination: the process of interactively coordinating the
meanings of linguistic expressions
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Semantic coordination

Information coordination and language coordination

I Two kinds of coordination in dialogue:
I Information coordination: agreeing on information (facts, what is true,

what the relevant questions are, etc.); including communicative
grounding

I Language coordination: agreeing on how to talk; incl. semantic
coordination
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Semantic coordination

Dialogue strategies for semantic coordination

I Semantic coordination can occur as a side-effect of information
coordination, e.g.

I Acknowledgements
I Clarification requests
I Repair
I Accommodation/deference: “silent” coordination where a DP observes

the language use of another and adapts to it

I There are also dialogue strategies whose primary purpouse is to aid
semantic coordination

I In online discussion forums (Myrendal, 2015)
I Explicification: giving definitions
I Exemplification: providing examples
I Contrast: rejecting one description and proposing another
I . . .

I In first language acquisition
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Semantic coordination

Semantic coordination in first language acquisition

I “non-repair” indirect offer:
I D (1;8.2, having his shoes put on; points at some ants on the floor):

Ant. Ant.
I Father (indicating a small beetle nearby): And that’s a bug.
I D: bug.

I offers-in-repairs
I explicit

I explicit replace (“That’s not an X, that’s a Y”)
I clarification question (“You mean Y?”)

I implicit/embedded (reformulation, corrective feedback)
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Semantic coordination

Semantic coordination in first language acquisition, cont’d

(examples from Eve Clark et. al., most from CHILDES corpus)
I Example 1: “In-repair”

I Abe: I’m trying to tip this over, can you tip it over? Can you tip it
over?

I Mother: Okay I’ll turn it over for you.

I Example 2: Clarification request
I Adam: Mommy, where my plate?
I Mother: You mean your saucer?

I Example 3: “Explicit replace”
I Naomi: Birdie birdie.
I Mother: Not a birdie, a seal.

I Example 4: “Bare” correction
I Naomi: mittens.
I Father: gloves.
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Symbol grounding and perceptual meaning

The Symbol Grounding Problem

I If a speaker of English is unable to distinguish gloves from mittens,
most people would probably agree that something is missing in this
person’s knowledge of the meaning of “glove”.

I Similarly, if we tell A to find some nice pictures of dogs chasing cats,
and A comes back happily with an assortment of pictures displaying
lions chasing zebras, we would question whether A really knows the
full meaning of the words “dog” and “cat”
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Symbol grounding and perceptual meaning

Perception and meaning

I Part of learning a language is learning to identify individuals and
situations that are in the extension of the phrases and sentences of
the language

I For many concrete expressions, this identification relies crucially on
the ability to

I perceive the world
I use perceptual information to classify individuals and situations as

falling under a given linguistic description or not

I This view was put forward by Harnad (1990) as a way of addressing
the “symbol grounding problem” in artificial intelligence:

How can the meanings of the meaningless symbol tokens,
manipulated solely on the basis of their (arbitrary) shapes,
be grounded in anything but other meaningless symbols?”

(Harnad, 1990)
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Symbol grounding and perceptual meaning

How to solve the symbol grounding problem

I Harnad’s own sketch of a solution to the symbol grounding problem:
I A hybrid system encompassing both symbolic and non-symbolic

representations, the latter such that they “can pick out the objects to
which they refer, via connectionist networks that extract the invariant
features of their analog sensory projections”

I Learning non-symbolic representations from interaction; “a
connectionist network that learns to identify icons correctly from the
sample of confusable alternatives it has encountered by dynamically
adjusting the weights of the features”

I Compositionality, where complex constructions “will all inherit the
intrinsic grounding of [the grounded set of elementary symbols]”

I All these components are needed for a solution to the symbol
grounding problem

I We follow these ideas, specify them further and formalize them
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Symbol grounding and perceptual meaning

Statistical classifiers

I Harnad proposed using connectionist networks to ground symbols
I This was also followed by Steels and Belpaeme (2005)

I Connectionist networks are one kind of (statistical) classifier, a
computational device determining what class an item belongs to,
based on various properties of the item.

I Crucially, these properties need not be encoded in some high-level
representation language (such as logic or natural language)

I Instead, it may consist entirely of numeric data encoding more or less
“low-level” information about the item in question, for example
perceptual data.
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Symbol grounding and perceptual meaning

Classifiers, intensions and extensions

I Classifiers can be defined formally as mathematical functions.

I Typically, the domain of a classifier function is numerical (e.g.
real-valued, integer or binary) vectors and the range is a set of
categories

I When making use of classifiers in formal semantics we will regard
them as (parts of) representations of (agents’ takes on) intensions of
linguistic expressions.

I Classifiers (as intensions) produce judgements whether some perceived
thing or situation falls within the extension of a linguistic expression
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Symbol grounding and perceptual meaning

Perceptual meaning

I Perceptual meaning is an important aspect of the meaning of
linguistic expressions referring to physical objects (such as concrete
nouns or noun phrases).

I Knowing the perceptual meaning of an expression allows an agent to
identify perceived objects and situations falling under the meaning of
the expression.

I For example, knowing the perceptual meaning of “blue” would allow
an agent to correctly identify blue objects.

I Similarly, an agent which is able to compute the perceptual meaning
of “a boy hugs a dog” will be able to correctly classify situations
where a boy hugs a dog.
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Symbol grounding and perceptual meaning

Using classifiers to represent perceptual meanings

I Steels & Belpaeme (2005): Robots coordinating on colour terms
through a simple language game of pointing and guessing; meanings
of colour terms are captured in (weight vectors describing) neural
networks; utterances describe single objects

I This can be seen as a further specification implementation of
Harnad’s ideas, adding interaction to the mix

I We follow Steels & Belpaeme in representing (takes on) meanings
using classifiers, and training these classifiers based on dialogue
interaction

I We add a connection to formal semantics as well as an account of
compositionality
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Symbol grounding and perceptual meaning

Formal semantics for perceptual meanings

I We want to integrate perceptual meanings and low-level perceptual
data into formal semantics

I This means mixing low-level (perceptual) and high-level
(logical-inferential) meaning in a single framework

I A hybrid system, as proposed by Harnad

I To enable learning and coordination, we need a framework where
intensions

1) are represented independently of extensions, and
2) are structured objects which can be modified (updated)
3) can be modeled as classifiers of perceptual data

I (Possible worlds semantics does not represent intensions
independently of extensions)
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Symbol grounding and perceptual meaning

Type Theory with Records

I We want to use a framework which also encompasses accounts of
many problems traditionally studied in formal semantics1

I We will be using Type Theory with Records, or TTR (Cooper, 2012)

I TTR starts from the idea that information and meaning is founded on
our ability to perceive and classify the world

I Based on the notion of judgements of entities and situations being of
certain types

1Semantic phenomena which have been described using TTR include modelling of
intensionality and mental attitudes (Cooper, 2005), dynamic generalised quantifiers (
Cooper, 2004), co-predication and dot types in lexical innovation, frame semantics for
temporal reasoning, reasoning in hypothetical contexts (Cooper, 2011), enthymematic
reasoning (Breitholtz and Cooper, 2011), clarification requests (Cooper, 2010), negation
(Cooper and Ginzburg, 2011), and information states in dialogue (Cooper, 1998;
Ginzburg, 2012).
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Symbol grounding and perceptual meaning

Related work
I Perceptual aspects of meanings have been explored in previous

research, e.g. Barsalou et al. (2003),Roy (2005),Steels and Belpaeme
(2005),Kelleher et al. (2005),Skočaj et al. (2010).

I However, the connection to logical-inferential meaning and
compositionality as traditionally studied in formal semantics has not
been a focus of this body of work.

I There have also been attempts to extend semantic formalisms to
cover embodied meaning, e.g. Feldman (2010)

I However, this line of work has tended to concentrate on abstract
(high-level) representations and has generally not paid attention to
low-level perceptual aspects of context.

I More recently, there has been computational work which is more in
line with the approach taken here, e.g. Kennington and Schlangen
(2015)

I We propose a way of connecting this line of work to formal semantics,
to enable combining it with the successes of formal semantics
(compositionality, quantification, etc.)
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Symbol grounding and perceptual meaning

Classifier example: the Perceptron

I The general account is intended to work for any type of classifier that
takes low-level input and is trainable (using machine learning
techniques)

I As a simple example of how perceptual classifiers can be integrated in
formal semantics, we will use the perceptron (Rosenblatt, 1958)

I Classification of perceptual input can be regarded as a mapping of
sensor readings (corresponding to situations) to types

I The perceptron is a very simple neuron-like object with several inputs
and one output.

o(x) =

{
1 if w · x > t
0 otherwise

where w · x =
∑n

i=1 wixi = w1x1 + w2x2 + . . .+ wnxn

I Limited to learning problems which are linearly separable; the
distinction between left and right is one such problem.
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Symbol grounding and perceptual meaning

Classifying objects as being to the left or to the right

I Suppose we have a square surface, and object are placed on the
surface

I To classify objects as being to the right or not:
I Direct a sensor (e.g. a camera) towards the surface
I Get a sensor reading (a picture from the camera)
I Apply an algorithm which returns a vector of the coordinates of the

object on the surface (assuming there is only one); this is a slightly
higher-level rendering of our initial sensor reading

I

r
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Symbol grounding and perceptual meaning

Classifying objects as being to the left or to the right

I Suppose we have a square surface, and object are placed on the
surface

I To classify objects as being to the right or not:
I Direct a sensor (e.g. a camera) towards the surface
I Get a sensor reading (a picture from the camera)
I Apply an algorithm which returns a vector of the coordinates of the

object on the surface (assuming there is only one); this is a slightly
higher-level rendering of our initial sensor reading

I Apply a perceptron classifier to the coordinate vector and returns 1 or 0

r ⇒ 1

E
E
E
E
E
E
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Symbol grounding and perceptual meaning

The TTR perceptron cont’d

A TTR perceptron classifier can be represented as a record:

κ =


w =

[
0.800 0.010

]
t = 0.090

f = λv : RealVector(

{
1 if v · w > t
0 otherwise

)


Where κ.f will evaluate to

λv : RealVector (

{
1 if v ·

[
0.800 0.010

]
> 0.090

0 otherwise
)

I This representation allows modifying w and t by updating the record
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Symbol grounding and perceptual meaning

The TTR perceptron

I The basic perceptron returns a real-valued number (1 or 0) but when
we use a perceptron as a classifier of situations we want it to instead
return a type.

I Typically, such types will be built from a predicate and some number
of arguments; a type of proof, or a “proposition”.

A TTR classifier perceptron for a type P can be represented as a record:

κ =


w =

[
0.800 0.010

]
t = 0.090

f = λv : RealVector(

{
P if v · w > t
¬P otherwise

)


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Symbol grounding and perceptual meaning

The meaning of “(that is to the) right” in TTR

Uses a TTR classifier perceptron to represent a agent’s take on perceptual
meaning:

[[right]]Agt =

w =
[
0.800 0.010

]
t = 0.090

bg =

 srpos : RealVector
foo : Ind
spkr : Ind


f = λr :bg(

[
cpercright=

[
foo = r .foo
srpos = r .srpos

]
:

{
right(r .foo) if r .srpos · w > t
¬ right(r .foo) otherwise

]
)


(Note how this representation combines low-level real-valued information
and high-level logical/inferential information.)
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Symbol grounding and perceptual meaning

Classifying objects as being to the right or not, TTR style

I Representation of current situation s
I Coordinates of object in focus of attention
I Label for object (obj45)

robj45
s =

 srpos=
[
0.900 0.100

]
: RealVector

foo=obj45 : Ind
spkr=A : Ind


I Apply [[right]].f to s:

robj45 ⇒ right(obj45)

E
E
E
E
E
E
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Learning meanings from interaction

Information coordination and semantic coordination
(reprise)

I Semantic coordination can occur as a side-effect of information
coordination, e.g.

I Accommodation/deference
I Acknowledgements
I Clarification requests
I Repair

I There are also dialogue strategies whose primary purpouse is to aid
semantic coordination, e.g.

I Word meaning negotiation / litigation
I Corrective feedback
I Clarification requests

I How are perceptual meanings learnt/updated based on dialogue
interaction?
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Learning meanings from interaction

The left-or-right game

I A and B are facing a framed surface on a wall, and A has a bag of
objects which can be attached to the framed surface.

I A round of the game is played as follows:

1. A places an object in the frame
2. B orients to the new object, assigns it a unique individual marker and

labels it ”foo” in B’s take on the situation
3. A says either ”left” or ”right”
4. B interprets A’s utterance based on B’s take on the situation.

Interpretation includes determining whether A’s utterance is consistent
with B’s take on the situation.

5. If an inconsistency results from interpretation, B assumes A is right (B
defers to A), says “aha”, and learns from this exchange; otherwise, B
says “okay”
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Learning meanings from interaction

”right"	
  

[right]
]	
  

x
x	
  

y	
  

-­‐−right	
  

right	
  

LEARNING	
  
	
  

Staffan Larsson (UGOT) Modeling Intensions as Classifiers 2017-08-19 40 / 90



Learning meanings from interaction

Updating perceptual meaning

Perceptrons are updated using the perceptron training rule:

wi ← wi + ∆wi

where

∆wi = η(ot − o)xi

where ot is the target output, o is the actual output, and wi is associated
with input xi .

I Note that if ot = o, there is no learning.

I This rule can be formulated as a TTR update function (see Larsson,
2013)

I In the LoR-game, training results in moving the line dividing “(to the)
right” from “not (to the) right”
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Learning meanings from interaction

Agent B’s initial take on the meaning of “right”:

[[right]]B =

w =
[
0.800 0.010

]
t = 0.090

bg =

 srpos : RealVector
foo : Ind
spkr : Ind


f = λr :bg(

[
cpercright =

[
foo = r .foo
srpos = r .srpos

]
:

{
right(r .foo) if r .srpos · w > t
¬ right(r .foo) otherwise

]
)


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Learning meanings from interaction

r
E
E
E
E
E
E

A: “right”
B: “okay”

r b
E
E
E
E
E
E

A: “right”
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Learning meanings from interaction

I B’s classifier applied to this situation yields that the object is not to
the right

I B applies the perceptron training rule to adjust the classifier

Agent B’s revised on the meaning of “right”:
[[right]]B =

w =
[
0.808 0.200

]
t = 0.090

bg =

 srpos : RealVector
foo : Ind
spkr : Ind


f = λr :bg(

[
cpercright =

[
foo = r .foo
srpos = r .srpos

]
:

{
right(r .foo) if r .srpos · w > t
¬ right(r .foo) otherwise

]
)


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Learning meanings from interaction

A: “right”

r
E
E
E
E
E
E

B: “okay”
A: “right”

r b
E
E
E
E
E
E

B: “aha”

br
E
E
E
E
E
E
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Learning meanings from interaction

From learning to coordination

I In the left-or-right game, as described above, there is an asymmetry
in that agent A is assumed to be fully competent at judging whether
objects are to the right or not, whereas agent B is to learn this.

I By contrast, when humans interact they mutually adapt to each
others’ language use on multiple levels (semantic coordination, as
above)

I The LoR game could quite easily be altered to illustrate coordination
directly

I Let A and B switch roles after each round
I In this symmetric LoR game, the agents would converge on a meaning

of “right” that neither of them may subscribe to initially.
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Compositionality

Compositionality

Nor can categorical representations yet be interpreted as
“meaning” anything. It is true that they pick out the class of
objects they “name,” but the names do not have all the
systematic properties of symbols and symbol systems (...). They
are just an inert taxonomy. For systematicity it must be possible
to combine and recombine them rulefully into propositions that
can be semantically interpreted.

(Harnad, 1990)
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Compositionality

Compositionality

I A crucial step in demonstrating the usefulness of the proposed
approach is to show how the principle of compositionality can be
applied also to subsymbolic aspects of meaning

I Exploring compositionality in something like the left-or-right game
requires extending it.

I add more words (e.g. “upper” and “lower”) and some simple grammar
(“upper left”, “lower right” etc).

I additional sensors and classifiers, e.g. for colour, shape and relative
position, can be added, thus enabling meanings of colour and shape
terms as well as complex phrases like “the green box is to the left of
the upper red circle”.
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Compositionality

Compositionality: Basic Example

I Proof of concept of compositionality: show how to compute the
meaning of “upper right” from the meanings of “upper” and “right”.

[[upper]]B =

wupper = . . .
tupper = . . .

bg =

 srpos : RealVector
foo : Ind
spkr : Ind


f = λr :bg(

[
cpercupper =

[
srpos = r .srpos
foo = r .foo

]
: πupper(wupper, tupper)(r)

]
)


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Compositionality

Compositionality: Basic Example

Compositional meaning of “upper right” obtained by merging of meanings
of “upper” and “right”

[[upper right]]B=[[upper]]B∧. [[right]]B=

wupper = . . .
tupper = . . .
wright = . . .
tright = . . .

bg =

 srpos : RealVector
foo : Ind
spkr : Ind


f = λr :bg(

cpercupper =

[
srpos = r .srpos
foo = r .foo

]
:πupper(wupper,tupper)(r)

cpercright =

[
srpos = r .srpos
foo = r .foo

]
:πright(wright,tright)(r)

)


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Compositionality

Compositionality: Basic Example

“upper”

∧.

“right”

E
E
E
E
E
E

=

“upper right”

E
E
E
E
E
E
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Compositionality

Compositionality: Degree modifiers

I What are the compositional semantics for degree modifiers, e.g. “far”
in “far right”

I Proposal: “far” takes parameters of the “right” classifier and yields
modified classifier for “far rightness” (increased threshold)

[[far]]=

α = 1.4
f = λm:

[
t : Real

]
(mu.

[
t = α ∗m.t

]
)


[[far right]] = [[far]].f([[right]]) =t = 0.090

bg = . . .
f = . . .

 u. [
t = 1.4*0.090

]
=

t = 0.126
bg = . . .
f = . . .


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Compositionality

Compositionality: Degree modifiers

“right”:

E
E
E
E
E
E

“far right”:

E
E
E
E
E
E
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Vagueness

Vagueness

I A weakness of the perceptron classifier is that it does not allow
modeling of vague concepts

I What is needed is a “noisy threshold” classifier

I In Fernández and Larsson (2014), we formulate a Bayesian noisy
threshold classifier for vague concepts such as “tall”

I The classifier is trained on previous observations tall entities, and is
sensitive to the kind of entity

I skyscraper, human, basketball player, ...

I Instead of a binary judgement, the classifier returns an probabilistic
Austinian proposition saying that a situation is of a certain type with
a certain probability

I This account connects to the recently developed probabilistic version
of TTR (Cooper et al., 2014, Cooper et al., 2015b)
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Vagueness

Vagueness for scalar predicates

I Case study: scalar predicates
I e.g. ‘tall’, ‘long’ and ‘expensive’
I Interpreted with respect to a scale, i.e., a dimension such as height,

length, or cost along which entities for which the relevant dimension is
applicable can be ordered.

I Have a relatively simple semantics (they are often uni-dimensional) and
thus constitute a perfect case-study for investigating the properties and
effects of vagueness on language use.

I (However, our account should also work for n-dimensional concepts,
e.g. colours, shapes)
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Vagueness

Modeling vagueness using a noisy threshold

I There are several ways in which one can account for vagueness

I Here, in line with Lassiter (2011), we opt for substituting the precise
threshold with a noisy, probabilistic threshold.

I We consider the threshold to be a normal random variable, which can
be represented by the parameters of its Gaussian distribution, the
mean µ and the standard deviation σ (the noise width).

I Which noise function may be the most appropriate is an empirical
question we do not tackle here.

I Our choice of Gaussian noise follows Schmidt et al. (2009).
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Vagueness

The meaning of ‘Tall’

tall =



Tctxt=

 c : Type
x : c
h : R+


µ = µtall
σ = σtall

f = λr : Tctxt .

sit = r
sit-type =

[
ctall : tall(r .x)

]
prob = κtall(σ, µ, r)




I Tctxt .c is the comparison class (allowing us to model context

sensitivity)

I Tctxt .x is an individual of type Tctxt .c

I The output of the function tall.f is now a probabilistic Austinian
proposition (Cooper et al., 2014).
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Vagueness

A classifier for tallness

I We define a tallness classifier κtall that takes as parameters µtall and
σtall , both of them dependent on a comparison class and hence of
type Type → R+.

I The comparison class here specifies a type, e.g. Human, Child or
BasketballPlayer

I The output of the classifier is a probability

κtall(µ, σ, r) =
1

2

[
1 + erf

(
r .h− µ(r .c)

σ(r .c)
√

2

)]
κtall : (Type→R+,Type→R+,Tctxt)→ [0, 1]
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Vagueness

I Here erf is the error function, defined as

erf(x) =
2√
π

∫ x

t=0
e−t2dt

I The error function defines a sigmoid shape, in line with the upward
monotonicity of ‘tall’.

I The output of κtall(µ, σ, r) corresponds to the probability that h will
exceed the normal random threshold with mean µ and deviation σ.
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Vagueness

Example
I Assume that we have µtall(Human)=1.87 and σtall(Human)=0.05.

I Let’s also assume ctxt =

 c = Human
x = john smith
h = 1.88


I In this case, tall.f(ctxt) will compute as follows:

λr : Tctxt .

sit = r
sit-type =

[
ctall : tall(r .x)

]
prob = κtall(µtall , σtall , r)

(

 c = Human
x = john smith
h = 1.88

) =


sit =

 c = Human
x = john smith
h = 1.88


sit-type =

[
ctall : tall(john smith)

]
prob = 0.579


since κtall(µtall , σtall ,

c=Human
x=john smith
h=1.88

) = 1
2

[
1 + erf

(
1.88−1.87
0.05
√
2

)]
= 0.579
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Vagueness

I This probability can now be used in further probabilistic reasoning, to
decide whether to refer to an individual x as tall, or to evaluate
someone else’s utterance describing x is tall.

I For example, an agent may map different probabilities to different
adjective qualifiers of tallness to yield compositional phrases such as
‘sort of tall’, ‘quite tall’, ‘very tall’, ‘extremely tall’, etc.

I The meanings of these composed adjectival phrases could specify
probability ranges trained independently.

I Compositionality for vague perceptual meanings, and the interaction
between compositionality and learning, is an important area for future
research.
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Vagueness

Computing the Noisy Threshold

I for a vague scalar predicate like ‘tall’, we assume that an agent will
have at its disposal a set of observations ΩT

tall consisting of entities of
a particular type T (a comparison class such as Human) that have
been judged to be tall, together with their observed heights.

I Different functions can be used to compute µtall and σtall from ΩT
tall .

I What constitutes an appropriate function for a certain predicate is an
empirical matter; Schmidt et al. (2009) collect judgements of people
asked to indicate which items are tall given distributions of items of
different heights.
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Vagueness

Computing the Noisy Threshold, cont’d

I The best performing threshold model in their study is the relative
height by range model, where (in our notation):

µtall(T ) = max(ΩT
tall)− k · (max(ΩT

tall)−min(ΩT
tall))

I max(ΩT
tall) and min(ΩT

tall) stand for the maximum and the minimum
height, respectively

I The model includes two parameters, k and a noise-width parameter
that in our approach corresponds to σtall .

I Any item within the top k% of the range of heights that have been
judged to be tall counts as tall.

I Schmidt et. al. report that the best fit of their data was obtained with
k = 29% and σtall = 0.05.
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Vagueness

Updating Vague Meanings

I How is the vague meaning of ‘tall’ updated as an agent is exposed to
new judgements via language use?

I If a new entity x : T with height h is referred to as tall, the agent
adds h to its set of observations ΩT

tall and recomputes µtall(Human),
for instance using RH-R

I This in turn will trigger an update to the probability outputted by
κtall .
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Vagueness

Connection to probabilistic TTR

I Generally, we want classifiers for vague perceptual terms which take
real-valued input (derived from sensor input) and give probabilistic
judgements as output

I These judgements can be used as input to probabilistic reasoning

I For example, we can imagine an agent having vague and
context-sensitive classifiers for shape and colour, taking real-valued
vector input derived from digitized pictures

I The output of these classifiers can be used as input to a classifier of
objects, e.g. fruits, in a Bayes net

I The fruit classifier would be used to specify the perceptual meanings
of words denoting fruits (‘apple’, ‘pear’, ‘orange’ etc.)

I All classifiers are continually updated as interaction proceeds
(semantic coordination again)
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Vagueness

Learning in probabilistic TTR
The fruit classifier would be trained from interaction using the learning
theory of probabilistic TTR (Cooper et al., 2014)

κ: Sit → Set(
 sit : Sit

sit-type : Type
prob : [0,1]

) such that if s:Sit then

κ(s)= {


sit = s
sit-type = T
prob = pA,J(s : T | s : Te1

, . . . , s : Ten )
pA,J(s : Te1

) . . . pA,J(s : Ten )

| T ∈ 〈Tc1 , . . . ,Tcm〉}

where

I An agent, A, makes judgements based on a finite string of
probabilistic Austinian propositions, J

I For a type, T , JT = {j | j ∈ J and j .sit-type = T}
I pA,J(r : Tc | r : Te1 , . . . , r : Ten) = priorJ(Tc)

pA,J(s:Te1
|s:Tc )...pA,J(s:Ten |s:Tc )

priorJ(Te1
)+...+priorJ(Ten )

I pA,J(s : T1 | s : T2) = ||T1∧T2||J
||T2||J , if || T2 ||J 6= 0, and 0 otherwise.

I priorJ(T ) = ||T ||J
P(J) =

∑
j∈JT

j.prob∑
j∈J j.prob if P(J) > 0, and 0 otherwise.
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Other approaches, and desiderata on a solution

Compositionality for perceptual meaning

I Problem of compositionality for perceptual classification:

Given an NL expression (phrase or sentence) e that includes
n ≥ 2 perceptual words (or subexpressions) e1, . . . , en, how
can an agent decide whether e correctly describes a visual
scene (perceptually given situation) s?

I This minimally requires
I computing the meaning c of e
I using c , classify a situation s as being described (or not) by e

I Different approaches to compositionality for classifiers give different
solutions to how this is to be done.
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Other approaches, and desiderata on a solution Desiderata on solution

Desiderata on solution

I Possible desiderata on solutions to the problem of compositionality for
perceptual meanings.

I For each desideratum/feature, each approach will be marked with
”+”, ”-” or ”?”.

I ”+”: a proof of concept solution addressing the desideratum in
question exists

I ”-”: no proof of concept exists
I ”?”: unclear (to me) if a proof of concept exists

A solution to the problem of compositionality for perceptual classification
should...
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Other approaches, and desiderata on a solution Desiderata on solution

...handle intersective compositionality [COM].

I ”light green” interpreted as ”light and green”

I ”upper right” interpreted as ”upper and right”
I Definition, discrete case: c is obtained by intersective composition

from c1 and c2 provided that s : c iff s : c1 and s : c2
I s:[[light green]] iff s:[[light]] and s:[[green]]

I Definition, generalisation: c is obtained by intersective composition
from c1 and c2 provided that

δ(s : c) = f (δ(s : c1), δ(s : c2))

for some f , where δ(x : t) is a measure of the degree to which x is
judged to be t (e.g. the probability that x is of type t)

I δ(s : [[light green]]) = f (δ(s : [[light]]), δ(s : [[green]]))

I Most work on compositionality for classifiers focuses on intersective
compositionality
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Other approaches, and desiderata on a solution Desiderata on solution

...handle non-intersective compositionality [NON].

I There seem to be cases where intersective compositionality does not
work.

I For example, “sort of green” probably does not mean “sort of and
green”

I Definition: c is obtained by non-intersective composition from c1 and
c2 provided that

I there is no f such that δ(s : c) = f (δ(s : c1), δ(s : c2))
I but there is a function f such that δ(s : c) = f (s, c1, c2)

I For example, e.g. δ(s : c) = δ(s : (c1(c2)))
I For ”sort of green”, δ(s : [[sort of green]]) = δ(s : [[sort of]]([[green]]))
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Other approaches, and desiderata on a solution Desiderata on solution

...account for learning of perceptual meanings [LEA].

I This amounts to accounting for how classifiers are updated based on
sensory observations of visual scenes and associated linguistic
descriptions.

I This can be done in different ways, e.g. from corpora or from
interaction with humans.
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Other approaches, and desiderata on a solution Desiderata on solution

...account for vagueness [VAG].

I This is especially relevant for vague judgements (which may possibly
include all perceptual judgements).
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Other approaches, and desiderata on a solution Desiderata on solution

...work with state of the art classifiers [SOA].

I There are many approaches to visual classification, and recently deep
learning approaches have made great strides.

I It is of course an advantage if an account of compositionality for
visual classifiers can benefit from these advances

I Hence, it is desirable that the account is neutral to the type of
classifier, as far as possible (or, if a particular type of classifier is
deemed to be the best, that it is compatible with that type).
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Other approaches, and desiderata on a solution Desiderata on solution

...connect perceptual meanings to other semantic
phenomena [SEM].

I Of course, perceptual meaning is but one of a multitude of semantic
phenomena

I Inference, quantification, modality, intensionality, etc.

I An account of perceptual semantics is more useful if it is formulated
in a framework where many other semantic phenomena are also
accounted for
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Other approaches, and desiderata on a solution Approaches to compositionality for visual classifiers

Approaches to compositionality for visual classifiers

I Meanings as sets

I Meanings as transparent functions

I Meanings as opaque functions
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Other approaches, and desiderata on a solution Approaches to compositionality for visual classifiers

Meanings as sets

I Formal semantics in the context of perception in robots

I E.g. Matuszek et al. (2012), Krishnamurthy and Kollar (2013)

I Using classifiers in conjunction with NL semantics based on first order
logic (FOL) in the Possible Worlds Semantics (PWS) tradition
(Montague, 1974).

I Basic method: Apply all classifiers to all objects in the scene,
producing a first order model where meanings of predicates are sets of
referents (or n-tuples of referents in the case of n-place relations).
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Other approaches, and desiderata on a solution Approaches to compositionality for visual classifiers

Transparent vs. opaque functions

I In general, a parameterised function takes an input (domain) and a
set of parameters, and yields an output (range).

I We distinguish transparent and opaque functions:
I A transparent function is a parameterised function where

I the inputs and parameters have clear interpretations understandable to
humans

I the effects on the output of manipulating the parameters are
predictable.
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Other approaches, and desiderata on a solution Approaches to compositionality for visual classifiers

Meanings as transparent functions

I simple threshold classifier (parameter: threshold)

I noisy threshold classifier (parameters: threshold, standard deviation)

I simple perceptron (parameters: weights and threshold)

I cubic spline function (multiple parameters) (Gapp, 1994)

We count the above TTR account as transparent functions.
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Other approaches, and desiderata on a solution Approaches to compositionality for visual classifiers

Opaque functions

I An opaque function is a parameterised function where
I the inputs and parameters do not have clear interpretations

understandable to humans.
I the effects on the output of manipulating the parameters are not

predictable.
I Examples include most neural networks, including deep neural nets, and

probability distributions collected from observations
I (Note that if a probability distribution derived from observations is

analysed using some kind of curve-fitting, it may become transparent)
I (Also, in some cases it may be possible to retroactively analyse and

understand the roles of the parameters (weights) of a neural network.)

I Note that the distinction is slightly vague and that there are
borderline cases.

I For example, a n-input neuron with a threshold can implement a
transparent linear classifier function in n-dimensional space.
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Other approaches, and desiderata on a solution Approaches to compositionality for visual classifiers

Meanings as opaque functions

I Opaque functions are functions whose parameters (if any) are not
understandable to human interpreters

I A couple of related approaches to meanings as classifiers can be seen
as examples of this overall approach.

I functions which are defined extensionally (e.g. as a table)
I (most) neural networks with hidden layers

I Early example (from psychology): Logan and Sadler (1996), modeling
”degrees of goodness” of spatial descriptions based on informants’
judgements
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Other approaches, and desiderata on a solution Approaches to compositionality for visual classifiers

Opaque Bayesian and RNN models of colour word
meanings

I McMahan et. al. (2015) model meanings of colour words as
probability distributions over colour spaces, derived from a corpus of
colour descriptions

I Monroe (2016) build on this but instead encode such distributions
implicitly in a recurrent neural network (RNN) sequence decoder.

I Input: word sequence and a colour sample
I Output: probability of the sequence as describing the colour sample,

equal to the product of probabilities of each successive word in the
sentence conditioned on the colour sample input and the preceding
words.
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Other approaches, and desiderata on a solution Approaches to compositionality for visual classifiers

How the different approaches satisfy the desiderata

Meanings as... INT NON LEA VAG SOA SEM

... sets + - ? ? + +

... transparent functions + + + + - +

... opaque functions + - + + + ?

I INT=intersective compositionality

I NON=non-intersective compositionality

I LEA=learning perceptual meanings

I VAG=accounting for vagueness

I SOA=work with state of the art classifiers

I SEM=connect to other semantic phenomena

For details, see 2017 IWCS paper (Montpellier).
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Other approaches, and desiderata on a solution Approaches to compositionality for visual classifiers

Current work on non-intersective compositionality for
classifiers

I The lack of an account of non-intersective compositionality is, on our
view, a serious shortcoming of both the “meanings as sets” and the
“meanings are opaque functions” approaches

I The main drawback of the “transparent functions” approach is that it
seems to exclude state of the art classifiers, such as deep neural nets.

I This means that none of the current approaches fulfill all our
desiderata.

I The question is then if any of the approaches can be improved to
satisfy all the desiderata, or if some kind of hybrid approach is needed.

I We are working on a hybrid approach
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Other approaches, and desiderata on a solution Approaches to compositionality for visual classifiers

Perceptrons and other neural classifiers

I A possible additional desideratum is biological plausibility

I The perceptron is a very simple classifier, yet biologically plausible

I Over the last 5 years or so, (much) more complex neural classifiers
have been used with great success for image classification, captioning,
and visual question answering

I Classifiers based on neural networks also have the benefit of being
(more or less) biologically plausible

I Neural TTR (cf. Robin’s talk) provides a mapping from regular TTR
types to biologically plausible representations

I Neural classifiers for perceptual input can straightforwardly be
connected to neural TTR

I This combination offers the possibility of a biologically plausible model
of how human language is grounded in perception and interaction
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Summary

Summary
I Central tasks of semantic theory:

I model semantic plasticity and semantic coordination
I connect language and the world

I We model how individuals
I represent meanings
I use meanings to form judgements
I coordinate on meanings and judgements

I By incorporating classifiers into formal semantics as a way of
representing perceptual (intensional) meanings, and by training these
classifiers in interaction, we show how these meanings are related to
(perception of) the world and to interaction

I This model is useful for understanding the emergence, perpetuation
and variation of meaning in a linguistic community.

I Although our representations concern individual agents, meaning itself
is inherently social and dependent on learning and adaptation through
interaction
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Summary

Future work areas

I Classifiers in probabilistic TTR: Bayesian vs. neural

I Compositionality (intersective and non-intersective) for perceptual
meanings

I Dialogue strategies for semantic coordination, and how they update
(takes on) meanings

I Exploit potential of TTR for combining perception and inference,
including hybrid inference rules

I Implement and connect to dialogue system

I Apply to Visual Question Answering task

I Connect to neural TTR

I Philosophical consequences of intensions as classifiers (what happens
to extensions?)
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