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Nonassociative Lambek Calculus

NL, Lambek (1961), On the calculus of syntactic types
connectives: ⊗, \, / (product, right and left implication)
Bunches (trees of formulas): elements of the free groupoid generated
by the set of formulas
Atomic bunches: formulas; compound bunches: (Γ,∆)
Sequents: Γ⇒ A, where Γ is a bunch, A is a formula

(NL-id) A⇒ A (NL-cut)
Γ[A]⇒ B ∆⇒ A
Γ[∆]⇒ B

(⊗ ⇒)
Γ[(A, B)]⇒ C
Γ[A ⊗ B]⇒ C

(⇒ ⊗)
Γ⇒ A ∆⇒ B
(Γ,∆)⇒ A ⊗ B

(\ ⇒)
Γ[B]⇒ C ∆⇒ A
Γ[(∆, A\B)]⇒ C

(⇒ \) (A,Γ)⇒ B
Γ⇒ A\B

(/⇒)
Γ[A]⇒ C ∆⇒ B
Γ[(A/B,∆)]⇒ C

(⇒ /)
(Γ, B)⇒ A
Γ⇒ A/B
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Residuated groupoids

The algebraic models for NL are residuated groupoids, i.e. ordered
algebras (M,⊗, \, /,≤) such that (M,≤) is a poset and ⊗, \, / are
binary operations on M, satisfying the residuation laws:

a ⊗ b ≤ c iff b ≤ a\c iff a ≤ c/b, for all a, b, c ∈ M.

Language models are algebras of phrase structure languages.

Let Σ be an alphabet. By Σ(+) we denote the smallest set such that:

(i) Σ ⊆ Σ(+), (ii) if X,Y ∈ Σ(+) then (XY) ∈ Σ(+).

For L1, L2 ⊆ Σ(+), one defines:

L1 ⊗ L2 = {(XY) : X ∈ L1,Y ∈ L2}
L1\L2 = {Z ∈ Σ(+) : L1 ⊗ {Z} ⊆ L2}, L1/L2 = {Z ∈ Σ(+) : {Z} ⊗ L2 ⊆ L1}
(P(Σ(+)),⊗, \, /,⊆) is a residuated groupoid.

One interprets each comma as ⊗ and⇒ as ≤.
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Syntactic types

A, A\B⇒ B ; A/B, B⇒ A (application laws)

A⇒ (B/A)\B ; A⇒ B/(A\B) (type raising laws)

A⇒ B\(B ⊗ A) ; A⇒ (A ⊗ B)/B (co-application laws)

Mary: pn, John: pn (proper noun)

knows: (pn\s)/pn (transitive verb)

(Mary (knows John)): s (sentence),

since (pn, ((pn\s)/pn, pn))⇒ s is provable in NL

np = s/(pn\s) noun phrase as subject, e.g. every student, she, he

pn⇒ np by type raising

np′ = (s/pn)\s noun phrase as object, e.g. every student, her, him

pn⇒ np′ as above
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Lambek Calculus

L, Lambek (1958), The mathematics of sentence structure

L adds to NL: (A ⊗ B) ⊗C ⇔ A ⊗ (B ⊗C) (the associative law)

⇔ means: ⇒ and⇐
In the sequent system one usually employs finite sequences of
formulas instead of bunches.

A\B, B\C ⇒ A\C; A/B, B/C ⇒ A/C (composition laws)

A\B⇒ (C\A)\(C\B); A/B⇒ (A/C)/(B/C) (Geach laws)

A\(B/C)⇔ (A\B)/C (the associative law for \, /)

she knows him: s,

since s/(pn\s), (pn\s)/pn, (s/pn)\s⇒ s is provable in L.

With NL one needs a new type, say, she: (s/pn)/((pn\s)/pn). In L it
is derivable from s/(pn\s) by the second Geach law.
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Type logics

There were considered many extensions of NL and L.
NL1, L1 admit constant 1 and axioms 1 ⊗ A⇔ A, A ⊗ 1⇔ A.
In sequent systems one employs the empty bunch ϵ, satisfying:
(ϵ, Γ) = (Γ, ϵ) = Γ.
One writes⇒ A for ϵ ⇒ A. If this is provable, then A is a theorem.
In NL, L no formula is a theorem.
Lattice connectives ∧,∨ and constants ⊥,⊤ (additives). This leads to
Full NL (FNL), FL, etc.
Unary modalities ♢,�↓, connected by the residuation rule:

♢A⇒ B

A⇒ �↓B
The multi-modal framework, developed by Moortgat (1996), Morrill
(1994) and others, employs many different modalities in order to
make language processing more flexible.
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Type grammars

Let L be a type logic, which yields sequents Γ⇒ A.

A type grammar based on L can be defined as a triple G = (Σ, I, A0)
such that:

- Σ is a finite lexicon (alphabet),

- I is a map which assigns finite sets of types (formulas of L) to
elements of Σ (the type lexicon),

- A0 is a designated type.

One says that G assigns type B to a string v1 . . . vn, where vi ∈ Σ, if
there exist types Ai ∈ I(vi), i = 1, . . . , n, such that A1, . . . , An ⇒ B is
provable in L. For nonassociative logics, one adds: under some
bracketing of the sequence A1, . . . , An.

This bracketing induces a phrase structure on v1 . . . vn.

The language of G, denoted by L(G), consists of all u ∈ Σ+ which
are assigned A0 by G.
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Classical NL, Involutive NL

CNL, de Groote and Lamarche (2002), Classical Non-Associative
Lambek Calculus

It can be presented as the extension of NL by negation ∼ with:

A∼∼ ⇔ A, A∼/B⇔ A\B∼

(CON∼)
A⇒ B

B∼ ⇒ A∼

de Groote and Lamarche (2002) defined and studied proof nets for
CNL, presented as a one-sided sequent system.

A weaker system InNL can be presented as the extension of NL by
two negations ∼,− with:

A∼− ⇔ A, A−∼ ⇔ A, A∼/B⇔ A\B−

and (CON∼), (CON−).
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Linear logics

In a similar way one can extend NL1, L, FL1 etc.

Involutive FL1 is Noncommutative MALL of Abrusci (1991).

MALL: Multiplicative-Additive Linear Logic (Girard 1987). It
assumes A ⊗ B⇔ B ⊗ A.

Classical FL1 is Cyclic Noncommutative MALL of Yetter (1990).

Involutive L1 is Noncommutative MLL.

Classical L1 is Cyclic Noncommutative MLL.

In these logics (also nonassociative): 1∼ ⇔ 1−. One defines 0 = 1∼.

Also: (A∼ ⊗ B∼)− ⇔ (A− ⊗ B−)∼.

One defines A ⊕ B = (B∼ ⊗ A∼)− (dual product, par).

0 ⊕ A⇔ A, A ⊕ 0⇔ A, A\B⇔ A∼ ⊕ B, A/B⇔ A ⊕ B−

A∼ ⇔ A\0, A− ⇔ 0/A, (0/A)\0⇔ A⇔ 0/(A\0) double negation

(A\0)/B⇔ A\(0/B) contraposition
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Syntactic types in linear logics

Some authors directly apply noncommutative linear logics in type
grammars.

C. Casadio (2001), Non-Commutative Linear Logic in Linguistics

G. Morrill (1995), Higher-order linear logic programming of
categorial deduction

J. Lambek (1999) employs a stronger logic, called by him Compact
Bilinear Logic (CBL), which amounts to Noncommutative MLL
with ⊗ = ⊕ and 1 = 0.

The algebraic models of CBL are called pregroups, hence the
resulting grammars are called pregroup grammars.

Lambek (2008), From Word to Sentence, elaborated a detailed type
lexicon for a fragment of English, using pregroup types. Several
authors proposed partial type lexicons for other languages, e.g.
French, German, Italian, Polish, Turkish, Chinese.
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Syntactic types in linear logics

word NL-type InNL-type pregroup type
works pn\s pn∼ ⊕ s [pn]r s
likes (pn\s)/pn (pn∼ ⊕ s) ⊕ pn− [pn]r s[pn]l

whom (n\n)/(s/pn) (n∼ ⊕ n) ⊕ (pn−− ⊗ s−) nrn[pn]llsl

‘whom’ in contexts like ‘girl whom John likes’

n common noun

Lambek writes Ar for A∼ and Al for A−.

In InNL one sees more symmetries (dualities).

A ⊗ (A\B)⇒ B is equivalent to B− ⇒ (A ⊗ (A\B))−, which is
translated into B− ⇒ (B− ⊗ A)/A.

So the first application law is dual to the second co-application law,
by contraposition.
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Other connections

In InNL one defines dual implications:

A↘ B = A− ⊗ B, A↙ B = A ⊗ B∼

We obtain dual residuation laws (here derivable rules)

C ⇒ A ⊕ B iff A↘ C ⇒ B iff C ↙ B⇒ A

Moortgat (2009), Symmetric Categorial Grammar, uses a logic
which extends NL by ⊕,↘,↙, satisfying the above and some
additional axioms, going back to Grishin (1983).

Without Grishin’s axioms this logic is a subsystem of InNL and with
these axioms of (commutative) MLL. M. Moortgat shows several
interesting linguistic interpretations of dual Lambek connectives.

A. Bastenhof (2013), Categorial Symmetry, PhD Thesis, Utrecht

Proof nets are interpreted as logical forms of expressions. R. Moot
and C. Retoré (2012), The Logic of Categorial Grammars
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Involutive residuated groupoids

The algebraic models of InNL are involutive residuated groupoids.

(M,⊗, \, /,∼ ,− ,≤) such that (M,⊗, \, /,≤) is a residuated groupoid
and the following hold:

a∼− = a = a−∼, a∼/b = a\b−

if a ≤ b then b∼ ≤ a∼ and b− ≤ a−

The algebraic models of CNL are cyclic involutive residuated
groupoids:

a∼ = a− for any element a.

An algebra of this kind is said to be unital, if it contains an element
1, satisfying: 1 ⊗ a = a = a ⊗ 1.

InNL1 - unital i.r.g.s, CNL1 - unital cyclic i.r.g.s

InL - involutive residuated semigroups, InL1 - involutive residuated
monoids
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Phase spaces

Girard (1987), Yetter (1990), Abrusci (1991) for linear logics

(M, ·, 1,O), where (M, ·, 1) is a (commutative) monoid, O ⊆ M. For
noncommutative logics, O must satisfy some conditions.

A phase space: (M, ·,R) such that (M, ·) is a groupoid and R ⊆ M2

For X ⊆ M define:

X∼ = {b ∈ M : ∀a∈XR(a, b)}, X− = {a ∈ M : ∀b∈XR(a, b)}.
Analogous to polarities X◃,Y▹ in concept lattices.

The pair ∼,− is a Galois connection: X ⊆ Y∼ iff Y ⊆ X−.

Then: X ⊆ Y implies Y∼ ⊆ X∼ and Y− ⊆ X−,

X∼−∼ = X∼, X−∼− = X−.

The operations ϕR(X) = X−∼, ψR(X) = X∼− are closure operations on
P(M).
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Phase spaces

(C1) X ⊆ C(X), (C2) if X ⊆ Y then C(X) ⊆ C(Y),

(C3) C(C(X)) = C(X)

A set X is C−closed, if C(X) = X.

P1. The ϕR−closed sets are of the form Y∼. The ψR−closed sets are
of the form Y−.

Define MR as the family of ϕR−closed subsets of M.

P2. If ϕR = ψR, then MR is closed under ∼ and −.

P3. R is symmetric iff for any X ⊆ M, X∼ = X−.

P4. If R is symmetric, then ϕR = ψR.

One defines: X ⊗ Y = {a · b : a ∈ X, b ∈ Y}
X\Y = {a ∈ M : X ⊗ {a} ⊆ Y}, X/Y = {a ∈ M : {a} ⊗ Y ⊆ X}
Then (P(M),⊗, \, /,⊆) is a residuated groupoid.
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Phase spaces

(C4) C(X) ⊗C(Y) ⊆ C(X ⊗ Y)

A closure operation C is a nucleus, if it satisfies (C4).

If C is a nucleus, then the family of C−closed sets is closed under
\, /.
One defines X ⊗C Y = C(X ⊗ Y).

(Shift) for all a, b, c ∈ M, R(a · b, c) iff R(a, b · c).

P5. (Shift) is equivalent to: for all X,Y ⊆ M, X∼/Y = X\Y−.

We call (M, ·,R) a phase space for InNL (resp. CNL), if it satifies
(Shift) and ϕR = ψR (resp. R is symmetric).

Theorem. Let (M, ·,R) be a phase space for InNL (resp. CNL).
Then, ϕR is a nucleus, and (MR,⊗ϕR , \, /,∼ ,− ,⊆) is a (resp. cyclic)
involutive residuated groupoid.

We refer to this algebra as the complex algebra of (M, ·,R).
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More on phase spaces

For O ⊆ M, one defines RO ⊆ M2:

RO(a, b) iff a · b ∈ O.

If (M, ·) is unital, then every R ⊆ M2, satisfying (Shift), equals RO for
O = {a ∈ M : R(a, 1)}. We have: X∼ = X\O, X− = O/X.

(Shift) is equivalent to: (a · b) · c ∈ O iff a · (b · c) ∈ O.

If (M, ·) is a free groupoid, then every R ⊆ M2 equals RO for
O = {a · b : R(a, b)}.
There exist non-unital phase spaces (M, ·,R) such that R , RO, for
any O ⊆ M.

We have: X∼ = {b ∈ M : ∀x∈M(¬R(x, b)→ x < X)},
X− = {a ∈ M : ∀x∈M(¬R(a, x)→ x < X)}.
So X− = �Xc, X∼ = �↓Xc, where � corresponds to Rc and �↓ to the
converse of Rc. A− ⇔ �¬A, A∼ ⇔ �↓¬A.
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CNL as a one-sided sequent system

variables: p, q, r, . . ., negated variables: p∼, q∼, r∼, . . .

connectives: ⊗,⊕
sequents: all bunches containing at least two formulas (we omit
outer parentheses)

(id) p, p∼ (cut)
A,Γ A∼,∆
∆,Γ

(r-⊗)
(A, B),Γ
A ⊗ B,Γ

(r-⊕)
A,Γ B,∆

A ⊕ B, (∆,Γ)

(r-sym)
Γ,∆

∆,Γ
(r-shift)

(Γ,∆),Θ

Γ, (∆,Θ)

This system is dual to that of de Groote and Lamarche (2002).

Metalanguage negation A∼

(p∼)∼ = p, (A ⊗ B)∼ = B∼ ⊕ A∼, (A ⊕ B)∼ = B∼ ⊗ A∼
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CNL as a one-sided sequent system

A model: (M, µ), M is a cyclic i.r.g., µ is a valuation of formulas.

µ((Γ,∆)) = µ(Γ) ⊗ µ(∆)

A sequent (Γ,∆) is true in the model, if µ(Γ) ≤ µ(∆)∼ (equivalently
µ(∆) ≤ µ(Γ)∼).

(de Groote and Lamarche 2002) is a purely proof-theoretic paper.

(1) a theory of proof nets,

(2) the cut-elimination theorem,

(3) CNL is a conservative extension of NL,

(4) the polynomial time complexity of CNL.

The paper, cited above, focuses on proof nets for CNL. (2), (3) are
proved, using proof nets.
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My results on CNL

W. B., On Classical Nonassociative Lambek Calculus, Logical
Aspects of Computational Linguistics LACL 2016, LNCS 10054.

(1) The weak completeness of the cut-free system (this implies cut
elimination).

(2) CNL is a strongly conservative extension of NL.

Γ⇒ A an NL-sequent, Φ a set of NL-sequents.

Φ ⊢CNL Γ⇒ A iff Φ ⊢NL Γ⇒ A

(3) The strong finite model property for CNL.

Φ ⊢CNL Γ (Φ finite) iff Φ entails Γ in finite models.

(4) The polynomial time complexity of the finitary consequence
relation.

(5) The context-freeness of the generated languages (by the type
grammars based on CNL, possibly with nonlogical axioms).
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Some lemmas

We define: Γ ∼ ∆ iff ∆ can be derived from Γ by (r-sym), (r-shift).

Extraction lemma. For any sequent Γ′, containing one marked
formula A, there exists a unique bunch ∆′ such that Γ′ ∼ (A,∆′).

Every finite set of formulas can be extended to a finite set, closed
under subformulas and ∼.

By a T−sequent we mean a sequent whose formulas belong to T .

Every sequent Γ,∆ is deductively equivalent to a sequent of the form
A, B.

We define Γ⇒ A as Γ, A∼ (equivalently: A∼,Γ).

Interpolation lemma. Let T be closed under subformulas and ∼. Let
Φ be a finite set of T−sequents of the form A, B. Let Φ ⊢CNL Γ[∆],
where Γ[∆] , ∆ is a T−sequent. Then, there exists D ∈ T such that
Φ ⊢CNL Γ[D] and Φ ⊢CNL ∆⇒ D.

We refer to D as an interpolant of ∆ in Γ[∆].
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Canonical frames

We define a phase space (M, ·,R) such that

- (M, ·) is the free groupoid of bunches,

- R(Γ,∆) iff ⊢ Γ,∆
Let ⊢ mean the provability in the cut-free CNL. R is symmetric and
satisfies (Shift) due to (r-sym), (r-shift), hence this is a frame for
CNL.

We define: [A] = {Γ ∈ M :⊢ Γ⇒ A}
We have: [A] = {A∼}∼. So [A] is ϕR−closed.

We define: µ(p) = [p], µ(p∼) = [p]∼.

We prove: A ∈ µ(A) ⊆ [A], for any formula A.

Consequently Γ ∈ µ(Γ), for any bunch Γ.

If ̸⊢ Γ,∆, then ¬R(Γ,∆). So Γ ∈ µ(Γ) but Γ < µ(∆)∼. Consequently
Γ,∆ is not true for µ in the complex algebra of the frame.
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Canonical frames

This proof is an adaptation of similar proofs for linear logics and
other substructural logics (Lafont 1997, Galatos et al. 2007).

CNL with (cut) is strongly complete with respect to cyclic i.r.g.s:
Φ ⊢CNL Γ iff Γ is true in every cyclic i.r.g. and every valuation µ that
satisfies all sequents from Φ.

The proof is similar. Due to (cut), we obtain: µ(A) = [A]. This is
needed to show that all sequents from Φ are true for µ.

In a similar way we prove the extended subformula property for the
provability from assumptions in CNL and the strong finite model
property for CNL.

Now (M, ·) is the free groupoid generated by T (a finite set, closed
under subformulas and ∼).

Although the resulting frame is infinite, its complex algebra is finite.
This follows from the interpolation lemma.
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Strong conservativity

The strong conservativity of CNL over NL is obtained by a
model-theoretic proof.
We consider a phase space (M, ·,R) such that M is the free groupoid
generated by all NL-formulas and their formal negations A∼, i.e. A
with superscript ∼.
R is the smallest relation containing all pairs ⟨A∼,Γ⟩ such that
Φ ⊢NL Γ⇒ A and being closed under (r-sym), (r-shift). So (M, ·,R)
is a phase space for CNL.
Let A be an NL-formula. We define [A] = {Γ : Φ ⊢NL Γ⇒ A}.
Let µ be defined as above. We prove µ(A) = [A], for any NL-formula
A.
All sequents from Φ are true for µ. If Φ ̸⊢NL Γ⇒ A, then Γ⇒ A is
not true for µ, hence Φ ̸⊢CNL Γ⇒ A.
This proof can easily be adapted for stronger logics (associative,
commutative, with multiplicative constants, lattice connectives etc.).
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Context-freeness

From the interpolation lemma it follows that every type grammar
G = (Σ, I, A0) based on CNL with Φ (finite) is equivalent to a
context-free grammar such that:

- Σ is the terminal alphabet,

- the nonterminal alphabet is the closure of all types involved in G
and Φ under subformulas and ∼,

- A0 is the start symbol,

- the lexical rules are A 7→ v, whenever A ∈ I(v),

- the non-lexical rules are A 7→ B, whenever Φ ⊢CNL B⇒ A, and
A 7→ B,C, whenever Φ ⊢NL B,C ⇒ A, where A, B,C are nonterminal
symbols.

Theorem. For any finite set of sequents Φ, the type grammars based
on CNL with Φ generate precisely the ϵ−free context-free
languages.
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Complexity

The sequents containing at most three formulas are said to be
restricted.

Let T be a finite set of formulas, closed under subformulas and ∼.

We prove that a restricted T−sequent is provable in CNL from Φ if
and only if it is provable in this system limited to restricted
T−sequents.

Accordingly the relation Φ ⊢CNL A, B, where Φ is finite, is P-TIME.

O(n7), where n is the size of T .

All results remain true for CNL1.

The finitary consequence relation for CNL with ∧,∨ (not satisfying
the distributive laws) is undecidable.

This relation is undecidable for FNL (Chvalovsky 2015), and Full
CNL is a strongly conservative extension of FNL.
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InNL

Observe that CNL can be presented InNL with A∼ ⇔ A−.
Accordingly, InNL is intermediate between NL and CNL.

As a consequence, InNL is a strongly conservative extension of NL.

InNL does not possess the strong finite model property.

In finite i.r.g.s, a∼ ≤ a− entails a∼ = a−, since a∼ < a− yields a < a∼∼,
which generates the infinite chain:

a < a∼∼ < a∼∼∼∼ < · · ·.
There exists an infinite i.r.g. with an element a such that a∼ < a−.

Not all tools employed for CNL can be adapted for InNL. In
particular, a finite set T cannot be extended to a finite set closed
under ∼ and −.

The complexity of the consequence relation for InNL remains an
open problem.
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A one-sided sequent system for InNL

atoms: p(n), where p is a variable, n ∈ Z
sense: p(0) is p, p(3) is p∼∼∼, p(−3) is p−−−

(id) p(n), p(n+1)

(r-⊗)
Γ[(A, B)]
Γ[A ⊗ B]

(r-⊕1)
Γ[B] ∆, A
Γ[(∆, A ⊕ B)]

(r-⊕2)
Γ[A] B,∆
Γ[(A ⊕ B,∆)]

(r-shift)
(Γ,∆),Θ

Γ, (∆,Θ)

(cut−)
Γ[A] A−,∆
Γ[∆]

(cut∼)
Γ[A] ∆, A∼

Γ[∆]
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A one-sided sequent system for InNL

A∼ and A− are defined in metalanguage:

(p(n))∼ = p(n+1), (p(n))− = p(n−1)

(A ⊗ B)∼ = B∼ ⊕ A∼, (A ⊕ B)∼ = B∼ ⊗ A∼, and similarly for −.

The following rules are admissible in the cut-free system.

(r-∼∼)
A,Γ
Γ, A∼∼

(r-−−)
Γ, A

A−−,Γ

With the cut rules, they are derivable.

So A−,Γ is equivalent to Γ, A∼. Both represent Γ⇒ A.

A model: (M, µ), M is an i.r.g., µ is a valuation, satisfying:
µ(p(n+1)) = µ(p(n))∼. A sequent (Γ,∆) is true in the model, if
µ(Γ) ≤ µ(∆)− (equivalently µ(∆) ≤ µ(Γ)∼).
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My results on InNL

W. B., Involutive Nonassociative Lambek Calculus: Sequent
Systems and Complexity. To appear in Bulletin of The Section of
Logic (2017?).

This paper introduces the sequent system, presented above.

We prove its strong completeness with respect to i.r.g.s, using
Lindenbaum-Tarski algebras. The cut elimination theorem is proved
in a proof-theoretic way.

We also prove that the pure InNL is P-TIME.

W. B., Phase spaces for Involutive Nonassociative Lambek Calculus.

(1) phase spaces for InNL. (2) a model-theoretic proof of cut
elimination,

(3) the P-TIME complexity of InNL by reduction to an auxiliary
system InNL(k), which is P-TIME, (4) the equivalence of type
grammars based on InNL and context-free grammars.
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InNL(k)

Let k > 0 be an even integer.
InNL(k) arises from InNL as follows.
One admits atoms p(n) for 0 ≤ n < k only.
The axioms (id) are p(n), p(n+1), for 0 ≤ n < k, where n + 1 is
computed modulo k.
CNL amounts to InNL(2).
Using phase spaces, one proves that InNL(k) is strongly complete
with respect to i.r.g.s, satisfying a(k) = a, for all a, i.e. k−cyclic
i.r.g.s.
Our results for CNL can be extended for systems InNL(k) with quite
similar proofs, e.g. interpolation, P-TIME complexity,
context-freeness, strong finite model property.
One proves that a sequent Γ is provable in InNL if and only if it is
provable in InNL(k), where k is computed from Γ in polynomial
time. First, one must modify Γ to eliminate p(n) with n < 0.
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The end

Thank you!
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