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A personal perspective

language: ‘alignment’ between sapient entities
what is communicated depends on world context, status of
the entities, amount of inference they do etc etc
but we can use language in many ‘artificial’ ways, such as
mathematics (perhaps surprising . . . )
there are conventions which are (mostly) shared by
speakers of a language: grammars and lexicons
there are regularities across languages
language has to be learnable and usable

And so on . . . Different fields of linguistics focus on different
aspects.



The formal semantics tradition

Takes the relationship between language and the world
(really a microworld) as primary.
Only fully covers very regular/limited contexts (potentially
maths, with a lot more work: see Ganesalingam 2013).
Considers some aspects of grammar in depth: formal
syntax-semantics interface for grammar fragments.
Usually trivializes the open-class lexicon.
Some interest in regularities across languages:
e.g., generalized quantifiers.
Reasonably clear (though limited) methodology.



Computational formal semantics

Long history: first(?) explicitly Montogovian work by
Bronnenberg et al (1980), but note Woods et al (1972).
SRI: Core Language Engine (Alshawi et al, 1992),
Hobbs (1985) etc.
Main application was Natural Language Interfaces to
Databases: good match for formal semantics.
More recently: several high-to-medium-throughput
broad-coverage grammars with semantic output:
e.g., C&C/Boxer, XLE, DELPH-IN.
Classical formal semantics relevant but not simply
transferable.



Compositional semantics for broad-coverage
grammars

Meaning representation for every sentence (and phrase).
But not all sentences are logically interpretable. So:

Meaning representation supports logical interpretation in
suitable contexts (incl. model to constrain interpretation).
Logical interpretation guides representation decisions.

Also:
Capture all and only semantically-relevant information from
syntax and morphology.
Underspecify when information is absent (e.g., quantifier
scope).
No hidden syntactic assumptions in the representation.



Some other desiderata

Cross-linguistically adequate
Usable in realization and parsing
Statistical ranking of analyses
Support applications (robust inference)
Usable for shallow parsing
Incremental processing (e.g., Haugereid 2009)
Lexical semantics . . .
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Broad-coverage computational syntax and
compositional semantics

DELPH-IN collaboration (www.delph-in.net):
English Resource Grammar (Flickinger 2000); Minimal
Recursion Semantics (MRS: Copestake et al, 2005);
English Resource Semantics (ERS: Bender et al, 2015).
tools for processing (Oepen, Packard, Callmeier, Carroll,
Copestake . . . )
Statistical techniques for parse and realization ranking.
Other resource grammars: Jacy (Japanese), GG
(German), SRG (Spanish),
also varying size grammars for Norwegian, Portuguese,
Korean, Chinese . . .
Grammar Matrix: Bender et al (2002).

www.delph-in.net


ERG: some practicalities

ERG: hand-written, domain-independent grammar
Maxent parse selection models based on manual choice of
analyses (Redwoods Treebanks: Oepen et al 2002, etc)
ERG has about 80± 10% coverage on edited text
Robustness: parsing: Packard and Flickinger, to appear;
realization: Horvat, to appear.
Downloadable corpora:

Manually selected/checked (Redwoods Treebank):
DeepBank (PTB/WSJ data), WeScience etc
Automatically processed: Wikiwoods (Flickinger et al, 2010)

All DELPH-IN resources are Open Source.
Various output formats for syntax and semantics.
Used on many projects since 1990s, including large-scale
end-user applications.



MRS

Some big angry dog barks loudly

Fully specified logical form:
some(x4, big(e8,x4) ∧ angry(e9,x4) ∧ dog(x4), bark(e2,x4) ∧
loud(e10,e2))

ERS, generalized quantifiers, lots of ‘event’ variables

MRS:
l1:_some_q (x4, h5, h6),
l2:_big_a(e8,x4),
l2:_angry_a(e9,x4),
l2:_dog_n(x4),
l4:_bark_v(e2,x4),
l4:_loud_a(e10,e2),
h5 =q l2



Scope underspecification

Some big dog chased every cat

l1:some(x,h1,h2), h1 qeq l2, l2:big(x), l2:dog(x),
l4:chase(e,x,y), l5:every(y,h3,h4), h3 qeq l6, l6:cat(y)

Elementary predications (EPs) and scope constraints (qeqs)

some(x, big(x) ∧ dog(x), every(y, cat(y), chase(e,x)))

h1=l2, h3=l6, h2=l5, h4=l4

every(y, cat(y), some(x, big(x) ∧ dog(x), chase(e,x)))

h1=l2, h3=l6, h2=l4, h4=l1
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RMRS

Some big angry dog barks loudly

MRS:
l1:_some_q (x4, h5, h6), l2:_big_a(e8,x4),
l2:_angry_a(e9,x4), l2:_dog_n(x4),
l4:_bark_v(e2,x4), l4:_loud_a(e10,e2),
h5 =q l2

RMRS:
l1:a1:_some_q, BV(a1,x4), RSTR(a1,h5), BODY(a1,h6),
l2:a2:_big_a(e8), ARG1(a2,x4),
l2:a3:_angry_a(e9), ARG1(a3,x4),
l2:a4:_dog_n(x4),
l4:a5:_bark_v(e2), ARG1(a5,x4),
l4:a6:_loud_a(e10), ARG1(a6,e2), h5 =q l2



DMRS

Some big angry dog barks loudly

RMRS:
l1:a1:_some_q, BV(a1,x4), RSTR(a1,h5), BODY(a1,h6),
l2:a2:_big_a(e8), ARG1(a2,x4),
l2:a3:_angry_a(e9), ARG1(a3,x4),
l2:a4:_dog_n(x4),
l4:a5:_bark_v(e2), ARG1(a5,x4),
l4:a6:_loud_a(e10), ARG1(a6,e2), h5 =q l2

DMRS:

_some_q _big_a _angry_a _dog_n _bark_v* _loud_a
-

ARG1/EQ
�

ARG1/EQ
�
ARG1/NEQ

-
ARG1/EQ

-
RSTR/H



A real example sentence

Very few of the Chinese construction companies consulted
were even remotely interested in entering into such an
arrangement with a local partner.
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A real example sentence

Very few of the Chinese construction companies consulted
were even remotely interested in entering into such an
arrangement with a local partner.

compound nominal



A real example sentence

Very few of the Chinese construction companies consulted
were even remotely interested in entering into such an
arrangement with a local partner.

reduced relative



A real example sentence

Very few of the Chinese construction companies consulted
were even remotely interested in entering into such an
arrangement with a local partner.

modified modifier



A real example sentence

Very few of the Chinese construction companies consulted
were even remotely interested in entering into such an
arrangement with a local partner.

predeterminer



What can I do with an ERS?

Applications investigated include:
Machine translation: e.g., Bond et al (2011)
Information extraction and QA: e.g., MacKinlay et al (2009)
Ontology extraction: e.g., Herbelot and Copestake (2006)
Question generation: e.g., Yao et al (2012)
Entailment recognition: e.g., Lien and Kouylekov (2014)
Preprocessing for distributional semantics: e.g., Herbelot
(2013)
Detection scope of negation: e.g., Packard, Bender, Read,
Oepen and Dridan (2014)
Robot control interface: e.g., Packard (2014)
Logic to English (for teaching logic): e.g. Flickinger (2017)



MRS vs (deep) syntax

MRS more abstract, less language-dependent than (detailed)
syntax: e.g., Bender (2008) on Wambaya.

1. Construction semantics: e.g., relative clauses:
every cat who slept snored
l5:every(y,h3,h4), h3 qeq l6, l6:cat(y), l6:sleep(e,y), l7:snore(e1,y)
2. Construction semantics: additional predications:
tree house
l1:house(x), l3:udef_q(y,h2,h3), h2 qeq l2, l2:tree(y), l2:cmpd(e,x,y)
house in a tree
l1:house(x), l3:a(y,h2,h3), h2 qeq l2, l2:tree(y), l2:in(e,x,y)
3. Words with no direct semantic contribution:
relative clause who, infinitival to, expletive it etc
4. Multiword expressions: verb-particle, idioms etc.



MRS vs predicate calculus

Copestake et al (2005) formally describe MRS as a
meta-language for predicate calculus object language.
As used in ERS:

NOT a fragment: produce some sort of MRS for everything
including: generics, liar sentences, circular square,
greetings . . .
contradictions, speakers with different word uses . . .
interpretation of ‘logical’ vocabulary isn’t determined:
or (exclusive or not?), all (domain of quantification, really
universal?) and so on.

Much of this is not new to MRS, but rarely explicit . . .



DMRS as a more meta meta-language?

Some big angry dog barks loudly

_some_q _big_a _angry_a _dog_n _bark_v* _loud_a
-

ARG1/EQ
�
ARG1/EQ

�
ARG1/NEQ

-
ARG1/EQ

-
RSTR/H

Current ERS: some(x4, big(e8,x4) ∧ angry(e9,x4) ∧ dog(x4),
bark(e2,x4) ∧ loud(e10,e2))
Normal Davidsonian: some(x4, big(x4) ∧ angry(x4) ∧ dog(x4),
bark(e2,x4) ∧ loud(e2))
No event variables: some(x4, big(x4) ∧ angry(x4) ∧ dog(x4),
loud(bark)(x4))



DMRS composition

chase:

chase_v
ARG1/ueq

SUBJ

X ARG2/ueq

COMP1

red dashed circle — slot
red circle — ltop
red rectangle — index

chase it:

chase_v
ARG1/ueq

SUBJ

X ARG2/eq
pron



The ‘logical’ fragment of ERS

Cannot produce model-theoretic interpretation for all ERS.
But: reasonable semantics for a (substantial) fragment.
Methodology:

Use intuitions about truth conditions to develop ERS for a
small test set (fragment).
Assume similar structures outside fragment.
Note: there are some structures which don’t simply follow
from syntax: e.g., generalized quantifiers, ‘small clauses’.

Even without model-theoretic semantics, we want
compositionality (motivation from learnability, substitution).
Think of *MRS as annotation, not replacement.



Exploiting models

Given a limited domain, expressed as a model, map
(some) MRS relations to concepts in model.
Classic Natural Language Interface (e.g., Woodley Packard
demo).
Other applications:

Flickinger (2017): teaching logic.
Shapeworld: generating material for training and testing
neural network models (Kuhnle and Copestake 2017).



Shapeworld

Training and testing NNs with grounded language:

All circles are to the left of a red cross.

∀s1 ∈W : circle(s1.shape)⇒(
∃s2 ∈W : cross(s2.shape) ∧ red(s2.colour) ∧ s1.x < s2.x

)



Shapeworld (cont.)

Automatically generate huge number of models in various
classes: generate diagrams and DMRS using models.
Generate English captions from DMRS using ERG (both
true and false captions).
Use pictures and captions to train NNs: evaluate
performance on examples including unseen combinations
(e.g., red triangle).
Finding: performance of successful standard VQA
approaches surprisingly bad (need new models).
In progress: more languages.
Compared with alternatives: no need for human
annotation, less limited than simple template generation.
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Compositional semantics and lexical semantics

One version . . .
Lexical semantics via Distributional Semantics (DS).
Predicates are pointers into a context-dependent semantic
space.
Every dog barked — predicate points to the space
corresponding to contextually-relevant dogs.
Conventional meaning usually bounds the space
(otherwise language wouldn’t be learnable and novel
utterances wouldn’t be interpretable).
Word ‘senses’ are somewhat conventionalized subspaces,
systematically arising in particular contexts.



Using DELPH-IN resources in DS and deep learning

Lots of treebanked data: automatically parsed data,
checked by humans, annotated with grammar constraints.
Much wider range of genres than standard NLP treebanks.
Large quantities of automatically parsed data (e.g,.
Wikiwoods — Wikipedia dump): currently using this in
experiments on distributional semantics, SMT, sentence
chunking.
Implemented theoretically-grounded models which connect
DELPH-IN style compositional semantics with distributions.



Ideal words

Central discrepancy: DS gives observations about use,
while formal semantics talks about denotation/reference.
Copestake and Herbelot (2014), Herbelot and Copestake
(in progress)
ideal corpus — everything you could truthfully say about a
situation (generative grammar, filtered by model).
ideal distribution: a distribution derived from the ideal
corpus.
Direct formal link between distributional and
model-theoretic semantics.



Emerson and Copestake (2016, 2017)

Functional Distributional Semantics: functions mapping
from semantic space (representing entities) to truth values.
Distinguish between probabilistic truth values and
observed text.
DMRS gives joint distribution between entities.
Implementation using deep learning techniques.
Inference via conditional probabilities, also distributional
similarity.
e.g., lion, stone lion; roses, plastic roses, stone roses



Functional Distributional Semantics

y zx

∈ X

ARG2ARG1

tp, x tq, y tr , z

∈{⊥,>} |V |

dog chase cat

dog(x) chase(y) cat(z)p(x) q(y) r(z)

p q r

∈ V
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Alternative philosophical accounts?

Fregean tradition has problems if we assume we want a
meaning representation for every utterance.
Also has problems as a psycholinguistically plausible
account (e.g., generics learned earlier than quantifiers).
CL can use explicit models for interfaces to databases etc,
but no obvious counterpart in broad-coverage systems.
Rare to see full Montague Grammmar (intensional contexts
etc), and only done for smallish fragments.
Meaning as use (late Wittgenstein): explicit in some early
Computational Linguistics (Masterman/CLRU).
But late Wittgenstein much more about what we can’t do
than what we can . . .



One alternative: Brandom’s version of Inferentialism

Brandom (1994, 2000): non-Platonist,
non-representationalist philosophical approach.
cf ‘meaning as use’ but prioritizes ‘giving and asking for
reasons’.
‘good inference’ as prior to truth (cf early Frege).
Logical inferences are a subset of material inferences.

Pittsburgh is to the west of Philadelphia
Philadelphia is to the east of Pittsburgh

Top-down: propositions decomposable but not built from
atomic meanings (cf Frege’s Context Principle).
Emphasis on pragmatics.



Inferentialism for computational linguists?

Methodology of using human judgements (RTE etc) fits
better with Brandom’s ‘commitment’ to propositions than
model-theoretic account: no theoretical problem with
differing judgements.
Not much in Brandom about differences in lexical
semantics between speakers, but not obviously
inconsistent.
Lexical semantics: material inferences without further
justification (e.g., ‘east’ and ‘west’).
Explicitly logical vocabulary has important role: no need for
us to abandon the stuff that works.
MRS is a representation but use for
decomposition/substitution consistent with inferentialism.



Shopping for philosophy?

Not at all helpful for immediate grammar engineering!
Philosophers and linguists taking us seriously (or not) . . .
Less contingent explanations for why we DON’T do things:
e.g., intensional contexts.
The point isn’t whether or not Brandom (or others) are
right, but what it leads us to investigate.
e.g., use of language in more varied social contexts.
Computational linguistics as empirical investigation of
approaches to language semantics.



Concluding

Lots of work on building grammars and compositional
semantics in DELPH-IN . . .
Reasonable confidence that this works at scale and across
languages
At some point, get away from hand-built grammars, but not
urgent for English!
Theoretical and practical work which relies on combination
of compositional semantics and DS.
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