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Type theory and cognition

I TTR (Type Theory with Records) Cooper (2010, 2012);
Cooper and Ginzburg (2015); Cooper (in prep), https:
//sites.google.com/site/typetheorywithrecords/

I a rich type theory (includes types of objects like Tree and
events boy-hugs-dog)

I inspired by Martin-Löf type theory (Martin-Löf, 1984;
Nordström et al., 1990)

I central is the notion of judging an object (or event), a, to be
of a type, T :

a : T

4 / 49

https://sites.google.com/site/typetheorywithrecords/
https://sites.google.com/site/typetheorywithrecords/


Types and cognition
Neuroscience fiction
The binding problem

The recursion problem
Memory – a simple kind of learning

Prospects for more complex learning

Seeing a tree

Tree

"A	
  tree!"	
  

Tree'	
  

5 / 49



Types and cognition
Neuroscience fiction
The binding problem

The recursion problem
Memory – a simple kind of learning

Prospects for more complex learning

Seeing a tree

Tree

"A	
  tree!"	
  

Tree'	
  

invariance	
  
(type)	
  

5 / 49



Types and cognition
Neuroscience fiction
The binding problem

The recursion problem
Memory – a simple kind of learning

Prospects for more complex learning

Seeing a tree

Tree

"A	
  tree!"	
  

Tree'	
  

invariance	
  
(type)	
  

neural	
  
implementa4on	
  

of	
  type	
  

5 / 49



Types and cognition
Neuroscience fiction
The binding problem

The recursion problem
Memory – a simple kind of learning

Prospects for more complex learning

Seeing a tree

Tree

"A	
  tree!"	
  

Tree'	
  

invariance	
  
(type)	
  

neural	
  
implementa4on	
  

of	
  type	
  

5 / 49



Types and cognition
Neuroscience fiction
The binding problem

The recursion problem
Memory – a simple kind of learning

Prospects for more complex learning

Seeing a tree

Tree

"A	
  tree!"	
  

Tree'	
  

invariance	
  
(type)	
  

neural	
  
implementa4on	
  

of	
  type	
  

Gibson (1986); Barwise and Perry (1983)

5 / 49



Types and cognition
Neuroscience fiction
The binding problem

The recursion problem
Memory – a simple kind of learning

Prospects for more complex learning

Seeing a hugging event

d hug(b,d)

b

"The boy is hugging the 
dog." 
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A boy hugs a dog (record type)
x : Ind
cboy : boy(x)
y : Ind
cdog : dog(y)
e : hug(x,y)


A record of this type:

x = sam
cboy = s1
y = fido
cdog = s2
e = s3
. . .

 where:

sam : Ind
s1 : boy(sam)
fido : Ind
s2 : dog(fido)
s3 : hug(sam, fido)
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Dependent types

I dependent types — functions from objects to types

I λv :Ind . boy(v)

I more precise rendering of a boy hugs a dog, a dependent
record type

x : Ind
cboy : 〈λv :Ind . boy(v), 〈x〉〉
y : Ind
cdog : 〈λv :Ind . dog(v), 〈y〉〉
e : 〈λv1:Ind . λv2:Ind . hug(v1,v2), 〈x,y〉〉)


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Generalized quantifiers as relations between dependent
types

I dog′ — λv :Ind . dog(v)

I run′ — λv :Ind . run(v)

I functions of type (Ind→Type) — properties

I a ptype — every(dog′, run′)
“the type of situations in which every dog runs”
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Relating to classical GQ theory

I if T is a type, we use [̌ T ] to represent {a | a : T}
I propositions as types — T is “true” just in case [̌ T ] 6= ∅
I if P is a property, we use [↓ P] to represent

the extension of property P:

{a | [̌ P(a)] 6= ∅}

I [̌ every(P,Q)] 6= ∅ iff [↓ P] ⊆ [↓ Q]
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Neuroscience fiction

I Cannot (yet) hope to observe brain activity corresponding to
single types

I Available techniques (e.g. FMRI) do not have fine enough
resolution

I Too much noise

I The hope: if we have a theory of what we might be looking
for, then perhaps at some point we will be able to find it
amongst all the noise
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Top-down vs bottom-up approach to neuroscience

bottom-up I show a subject a picture of a boy hugging a dog
I see what is common in brain activity on the

basis of a large number of trials

top-down I create a theory which makes a prediction of brain
activity corresponding to a boy hugging a dog

I test the prediction in subjects shown a picture of
a boy hugging a dog
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Neural plausibility

I We do not know how a boy hugging a dog is represented

I . . . but we aim for neural plausibility based on what we do
know about the brain
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Computational modelling

I Python implementation of TTR: pyttr
(https://github.com/GU-CLASP/pyttr)

I a simple implementation of transparent neural networks
(Stranneg̊ard and Nizamani, 2016), accessible to a treatment
in terms of types of neural events (https://github.com/
GU-CLASP/pyttr/blob/master/neurons.py)

I implementation of a mapping, ν, from external (non-neural)
types to types of neural events. (https:
//github.com/GU-CLASP/pyttr/blob/master/nu.py)
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What we are not doing (yet)

I machine learning — just the question of how types could be
represented in a neurologically plausible network

I recognizing witnesses for types — just the representation of
the types themselves

I Staffan Larsson will have something to say about how types
can be related to classifiers as in machine learning — types
used to classify external objects and events
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A neuron
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Synapse
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Some assumptions

I input on a dendrite can correspond to a real number

I output on an axon is boolean (based on a computation of
dendritic input)

I there is some computation (converting a boolean to a real)
carried out by a synapse

I a simplified representation of a neural state is a
characterization of which neurons have active axons (i.e.
output of 1)
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TTR ptypes

I hug(a,b) — ptype, constructed from a predicate and its
arguments. Intuitively, a type of situation in which a hugs b.
(“True” if there is such a situation.)

I Representation of a history of activation on a network:

a 0 0 1 0 0

b 0 0 0 1 0

hug_n 0 1 0 0 0
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Phasing rather than temporal order of firing

I a 0 0 1 0 0

b 0 0 0 1 0

hug_n 0 1 0 0 0

ptype2 * 1 1 1 0

rel * 1 0 0 0

arg0 * 0 1 0 0

arg1 * 0 0 1 0

I Phasing rather than strict temporal order (cf. Shastri, 1999;
Kiela, 2011)

I The network will create “labelling” neurons as needed during
the course of a computation. (‘*’ represents neuron not
present at time step.)

I Such neurons will remain available for future runs
22 / 49
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Structural modification in biological brains

I compare creation of neurons in computational model with
making connections to unused neurons

I But also neurogenesis (structural plasticity) - hippocampus in
London taxi drivers vs bus drivers (Maguire et al., 2000, 2006)
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Some important principles

I neural events (with phasing) important for neural
representation (rather than just neural architecture)

I neural event types can be realized differently on different
networks (cf. work by Fedorenko). Which neurons are
dedicated to a particular purpose depends in part on previous
experience.

I a kind of compositionality. Whatever pattern of activation a
network uses to represent ‘hug’ (firing of a single neuron or
multiple neurons) that pattern of activation will occur in
phase with a ‘rel’ pattern of activation in representing a ptype
with ‘hug’.
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Recursion

I in the linguistic sense — types can be arguments within ptypes

I believe(c , hug(a,b))
know(d , believe(c , hug(a,b)))

I Another important thing to get right in a neural
representation: an object can play more than one role in such
a recursive structure.
believe(a, believe(b, hug(a,b)))
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Dealing with recursion

I Already have the tools we need

I Any snapshot of the network will have the capability to deal
with a finite level of embedding

I if it encounters a deeper level it will create/devote the
resources needed (up to limits on overall memory)

I cf. Christiansen and Chater (1999), a classic discussion of
recursion in neural networks, where a network has a finite
upper limit on depth of embedding.
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believe(c , hug(a,b))

a 0 0 0 0 1 0 0 0

b 0 0 0 0 0 1 0 0

hug_n 0 0 0 1 0 0 0 0

ptype2 0 1 1 1 1 1 1 0

rel 0 1 0 0 0 0 0 0

arg0 0 0 1 0 0 0 0 0

arg1 0 0 0 1 1 1 1 0

c 0 0 1 0 0 0 0 0

believe_n 0 1 0 0 0 0 0 0

ptype2 * 0 0 1 1 1 0 0

rel * 0 0 1 0 0 0 0

arg0 * 0 0 0 1 0 0 0

arg1 * 0 0 0 0 1 0 0
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Dependent types as functions of arbitrary depth

I Creating a dependent type in pyttr

I T = DepType(’v’,Ind,PType(hug,[’v’,’b’]))

print(show(T))

⇒
lambda v:Ind . hug(v, b)
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Neural event representing this dependent type

b 0 0 0 0 1 0 0

hug_n 0 0 1 0 0 0 0

ptype2 0 0 1 1 1 0 0

rel 0 0 1 0 0 0 0

arg0 0 0 0 1 0 0 0

arg1 0 0 0 0 1 0 0

lambda * 1 1 1 1 1 0

dom * 1 0 0 0 0 0

var * 1 0 1 0 0 0

rng * 0 1 1 1 1 0
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Every dog runs

I compositional combination of function representation and
ptype representation

I every(lambda x:Ind . dog(x), lambda x:Ind . run(x))
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every_n 0 1 0 0 0 0 0 0 0 0 0 0 0

dog_n 0 0 0 1 0 0 0 0 0 0 0 0 0

run_n 0 0 0 0 0 0 0 0 1 0 0 0 0

Ind_n 0 0 1 0 0 0 0 1 0 0 0 0 0

ptype2 * 1 1 1 1 1 1 1 1 1 1 1 0

rel * 1 0 0 0 0 0 0 0 0 0 0 0

arg0 * 0 1 1 1 1 1 0 0 0 0 0 0

arg1 * 0 0 0 0 0 0 1 1 1 1 1 0

lambda * 0 1 1 1 1 0 1 1 1 1 0 0

dom * 0 1 0 0 0 0 1 0 0 0 0 0

var * 0 1 0 1 0 0 1 0 1 0 0 0

rng * 0 0 1 1 1 0 0 1 1 1 0 0

ptype1 * 0 0 1 1 0 0 0 1 1 0 0 0

rel * 0 0 1 0 0 0 0 1 0 0 0 0

arg0 * 0 0 0 1 0 0 0 0 1 0 0 0
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A problem with representing types as neural events

I What would it mean to know, believe or remember something?

I In type theoretic terms: what would it mean to store a
judgement that some object (or event) is of a certain type
(Cooper et al., 2015)?

I Presumably not: constant repetition of events corresponding
to what you have in memory

I Seems like we need something architectural after all
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Solution — memory neurons

I introduce memory neurons which, when activated, give rise to
an appropriate neural event

I cf. top-active neurons representing concepts in Stranneg̊ard
and Nizamani (2016)

I implementing this involves delay neurons which will delay
firing until a later timestep (Stranneg̊ard et al., 2015)

I for delay circuitry in nature (crickets) see Schöneich et al.
(2015)
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Running a memory of hug(a,b)

a 0 0 0 0 1 0 0

b 0 0 0 0 0 1 0

hug_n 0 0 0 1 0 0 0

ptype2 0 0 0 1 1 1 0

rel 0 0 0 1 0 0 0

arg0 0 0 0 0 1 0 0

arg1 0 0 0 0 0 1 0

hug(a,b) 0 1 1 1 1 1 0

Delay 0 0 1 1 1 1 0

Delay 0 0 0 1 1 1 0

Delay 0 0 0 0 1 1 0

Delay 0 0 0 0 0 1 0
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Some top-level code

m = N.memorize_type(hug_a_b_n,’hug(a,b)’)

N.ntrace()

m.excite()

N.run()

N.display_history()
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Linking to the environment

I what we have seen so far says nothing about how these types
are related to the environment

I . . . or how a network could learn about this

I Maud is a virtual sheep in a virtual environment based on a
simple example in Stranneg̊ard et al. (2017).

I https://github.com/GU-CLASP/pyttr/blob/master/

animat.ipynb

I For simplicity Maud’s types correspond to neural events where
a single neuron is activated

I Shows how a simple variant of reinforcement learning can
interact with neural TTR
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Maud — a simple sheep

I Maud’s evironment: areas (in a one dimensional array)
characterized by type Green (grass), Blue (water), Brown
(sand), Green∧Blue (swamp)

I Maud’s available action types: Eat, Drink, MoveLeft,
MoveRight

I Maud has Pleasure and Pain neurons
I Pleasure is activated when eats in a green area or drinks in a

blue area (provided she is hungry or thirsty)
I Pain is activated when eats or drinks in a green and blue area

(and loses food and water)
I Learning involves pleasure seeking and pain avoidance

I Maud dies if she has no food or no water in her body
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Maud’s life expectancy

I With no learning and random actions, she survives for around
ten actions

I With learning based on single types of the environment (no
conjunction), she survives for around 15–20 actions

I With learning including conjunction of types of the
environment, she apparently (with luck) can survive
indefinitely
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Learning not to drink in the swamp

3

Green_n to Perception0 Pleasure: False

Blue_n to Perception0 Pleasure: False

Perception0 inhibit Drink_n Pain: True

42 / 49



Types and cognition
Neuroscience fiction
The binding problem

The recursion problem
Memory – a simple kind of learning

Prospects for more complex learning

----------- - - - - - - -

Green_n 0 0 1 1 1 1 1

Blue_n 1 0 0 1 1 1 1

Brown_n 0 0 0 0 0 0 0

Eat_n 0 0 0 0 0 0 0

Drink_n 0 0 0 0 1 1 1

MoveLeft_n 1 0 0 0 0 0 0

MoveRight_n 0 0 0 0 0 0 0

Pleasure_n 0 0 0 0 0 0 0

Pain_n 0 0 0 0 0 1 1

Perception0 * * * * * * 0

----------- - - - - - - -

food: 0.5800000000000001

water: 0.3800000000000001

loc: loc2
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Learning to eat when it’s green

19

Green_n to Eat_n Pleasure: True

----------- - - - - -

Green_n 0 0 1 1 1

Blue_n 0 0 0 0 0

Brown_n 1 0 0 0 0

Eat_n 0 0 0 1 1

Drink_n 0 0 0 0 0

MoveLeft_n 1 0 0 0 0

MoveRight_n 0 0 0 0 0

Pleasure_n 0 0 0 0 1

Pain_n 0 0 0 0 0

Perception0 0 0 0 0 0
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food: 0.16000000000000011

water: 0.6600000000000001

loc: loc0
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Deciding not to eat in the swamp

47

----------- - - - - - - -

Green_n 0 0 1 1 1 1 1

Blue_n 1 0 0 1 1 1 1

Brown_n 0 0 0 0 0 0 0

Eat_n 0 0 0 0 0 1 0

Drink_n 0 0 0 0 0 0 0

MoveLeft_n 1 0 0 0 0 0 0

MoveRight_n 0 0 0 0 0 0 0

Pleasure_n 0 0 0 0 0 0 0

Pain_n 0 0 0 0 0 0 0

Perception0 0 0 0 0 1 1 1

----------- - - - - - - -
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food: 0.8400000000000001

water: 0.9400000000000001

loc: loc2
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Future work

I learning involving more complex types

I proper reinforcement learning with policies, probabilities

I connecting to the world (and language) through conventional
classifiers using conventional neural nets, e.g. connecting to
Kille (de Graaf and Dobnik, 2015; Dobnik and de Graaf, 2017)

I implementing Staffan Larsson’s work on perceptual meanings
for spatial expressions in neural networks
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Conclusions

I simple-minded view of types related to perception and action
as a basis for meaning

I a culture of neuroscience fiction — types correspond to events
on a network

I the binding and recursion problem in terms of neural events
and dynamic networks

I memory as the addition of a neuron which when activated will
trigger a neural event corresponding to a type (delay circuitry
important)

I something like reinforcement learning seems appropriate
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