Implementing Logical Grammar: CatLog3

Glyn Morrill

Department of Computer Science
Universitat Politecnica de Catalunya
Barcelona, Spain.

LACompLing, August 2017, Stockholm

Abstract

CatLogg3 is a Prolog parser/theorem-prover for (type) logical
(categorial) grammar. In such logical grammar, grammar is
reduced to logic: a string of words is grammatical if and only if an
associated logical statement is a theorem. CalLog3 implements a
logic extending displacement calculus, a sublinear fragment
including as primitive connectives the continuous (Lambek) and
discontinuous wrapping connectives of the displacement calculus,
additives, 1st order quantifiers, normal modalities, bracket
modalities and subexponentials. In this paper we survey how
CatLog3 is implemented on the principles of Andreoli’s focusing
and a generalisation of van Benthem’s count-invariance.

A view of the field

» Logical grammar dates back at least to Bar-Hillel (1953) and
Ajdukiewicz (1935).

» It aspires to practice grammar as mathematical logic.

» For example, the seminal paper Lambek (1958) defines a
(sublinear) syntactic calculus and proves Cut-elimination for it.

» Chomsky (1957) introduced transformational grammar as a
formal system also, but such generative linguistics has
relaxed the reigns of formalisation.

» Discrete formal grammar also flourished in computational
linguistics in the 1980s: LFG, GPSG, HPSG, TAG, ... but such
computational linguistics has given way to statistical NLP.

» Logical grammar remains as one of the oldest traditions of
grammar.

Continuity and discontinuity

The Lambek calculus is a calculus of concatentation which is free
of structural rules. The displacement calculus of Morrill et al.
(2011) generalises Lambek calculus with intercalation, containing
both continuous and discontinuous connective families, while
remaining free of structural rules, and preserving Cut-elimination
and its good corollaries: the subformula property, decidability, the
finite reading property, and the focusing property.

CatlLog

The CatlLog program series comprises implementations in Prolog
of type logical parser/theorem-provers starting from the basis of
logic programming of displacement calculus theorem-proving
(Morrill 2011):

» CatLog1 (Morrill 2012) was based on uniform proof (Miller et
al. 1991), and count-invariance for multiplicatives (van
Benthem 1991).

» CatLog2 was based on Andreoli’s focusing (Andreoli 1992),
and count-invariance for multiplicatives, additives and bracket
modalities (Valentin et al. 2013).

» Catlog3 is based on focalisation and count-invariance for
multiplicatives, additives, bracket modalities and
(sub)exponentials (Kuznetov et al. 2017).

Outline

In this paper we survey the methods on which the implementation
of CatLog3 is based.

» We describe the primitive connectives of the logical fragment
for which parsing/theorem-proving is implemented.

» We discuss focusing.

» We discuss count-invariance.

» We illustrate in relation to the Montague Test (Morrill and
Valentin 2016): the task of providing a computational
grammar of Montague’s (1973) fragment.

Displacement logic

The formalism used comprises the following connectives.

cont.

disc.

norm.

brack.

lim.

mult. mult. add. | qu. mod. mod. p- contr.
& weak.
/ \ & o - ! |
primary . (0]
! J ® <o O ? w
sem. | e —o o— —e n v]
inactive
variants ©) u E] 3
det. <1 »1 v
diff.
synth. < > -
nondet. +
synth. X €]

» The heart of the logic is the displacement calculus of Morrill
and Valentin (2010) and Morrill, Valentin and Fadda (2011)
made up of twin continuous and discontinuous residuated
families of connectives having a pure Gentzen sequent
calculus —without labels and free of structural rules— and
enjoying Cut-elimination (Valentin 2012).

» Other primary connectives making up DA1S4b!,? include
additives, 1st order quantifiers, normal (i.e. distributive)
modalities, bracket (i.e. nondistributive) modalities, and
(sub)exponentials.

We can draw a clear distinction between the primary connectives,
the semantically inactive connectives, and the synthetic
connectives; the latter two are abbreviatory and are there for
convenience, and to simplify derivation.

There are semantically inactive variants of the continuous and
discontinuous multiplicatives, and semantically inactive variants of
the additives, 1st order quantifiers, and normal modalities. For
example, the semantically inactive additive conjunction ArB: ¢
abbreviates A&B: (¢, ¢).

Synthetic connectives (Girard 2011) divide into the continuous and
discontinuous deterministic (unary) synthetic connectives, and the
continuous and discontinuous nondeterministic (binary) synthetic
connectives. For example, the nondeterministic continuous division
B+A abbreviates (A\B)n(B/A).

Syntactic types

The syntactic types of displacement logic are sorted Fq, 1, 72, . ..
according to the number of points of discontinuity 0,1,2, ... their
expressions contain.

Each type predicate letter has a sort and an arity which are
naturals, and a corresponding semantic type.

Assuming ordinary terms to be already given, where P is a type
predicate letter of sort i and arity nand t, ..., t, are terms,

Pt ...ty is an (atomic) type of sort i of the corresponding semantic
type.

Compound types of DA1S4b!,? are formed as follows, and the
structure preserving semantic type map T associates these with
semantic types.

ONoO G rN

ARAARARNIANA

3

i= FiglF T(C/B
i= F\Fisy T(A\C
= FieF T(AeB
a= T(!
i= FigTkFjp1 <k <i+j T(CT«B
i= FipdkFipp 1<k <i+1 T(ALC
= FipokF1 <k <i+1 T(AokB) = T(A)&T(B) discontinuous product
n=J TY) = T discontinuous unit

) = T(B)->T(C) over
)
)
)
)
)
g
n= Fi&Fi T(A&B) = T(A)&T(B) additive conjunction
)
)
)
)
)
)
)
)
)

= T(A)->T(C) under

= T(A)&T(B) continuous product
= T continuous unit

= T(B)—T(C) circumfix

= T(A)>T(C) infix

= Fef T(AeB) = T(A)+T(B) additive disjunction
i= A VF T(AVA) = F-T(A) 1st order univ. qu.

. \V VF; T = F&T(A) 1st order exist. qu.
OF; T(oA) = LT(A) universal modality

= MT(A) existential modality
= T(A) univ. bracket modality

= OF; T(CA
w= (7' T([I'A
n= OF T(OA
= 1% T('A
= %0 T(?A

T(A) exist. bracket modality
= T(A) universal exponential
T(A)*" existential exponential

Gentzen sequent calculus

We use a Gentzen sequent presentation standard from Gentzen
(1934) and Lambek (1958).

In Gentzen sequent antecedents for displacement logic with
bracket modalities (structural inhibition) and exponentials
(structural facilitation) there are also bracket constructors and
‘stoups’.

Stoups (cf. the linear logic of Girard 2011[?]) (¢) are stores read as
multisets for re-usable (nonlinear) resources which appear at the
left of a configuration marked off by a semicolon (when the stoup is
empty the semicolon may be ommited). The stoup of linear logic is
for resources which can be contracted (copied) or weakened
(deleted). By contrast, our stoup is for a linguistically motivated
variant of contraction, and does not allow weakening. Furthermore,
whereas linear logic is commutative, our logic is in general
noncommutative and here the stoup is used for resources which
are also commutative.

A configuration together with a stoup is a zone (=).

The bracket constructor applies not to a configuration alone but to
a configuration with a stoup, i.e a zone: reusable resources are
specific to their domain.

Stoups S and configurations O are defined by (0 is the empty
stoup; A is the empty configuration; the separator 1 marks points of
discontinuity) (note that only types of sort 0 can go into the stoup;
reusable types of other sorts would not preserve the sequent
antecedent-succedent sort equality under contraction or
expansion: 0 +0 =0, but i+ i+ ifori> 0):

(1Y 8§ == 0|%0S
O = N|T,0
T == 1|FolFisolO:...: 0} [S; O]

i0's

For a type A, its sort s(A) is the i such that A € F;.

For a configuration I', its sort s(I') is |I'];, i.e. the number of points
of discontinuity 1 which it contains.

Sequents are of the form:

(2) S;0 = F such that s(0) = s(F)
The figureX of a type A is defined by:

if s(A)=0
1:...:1} ifs(A)>0
{ s(A) 1’s | ()

LA
@) A=A

Where I is a configuration of sort i and Ay, ..., A; are
configurations, the fold I ® (A : ... : Aj) is the result of replacing
the successive 1’sin I by Aq,..., A; respectively.

Where I is of sort i, the hyperoccurrence notation A(l")
abbreviates Ag(l ® (Aq :...: Aj)), i.e. a context configuration A
(which is externally Ag and internally Ay, ..., A;) with a potentially
discontinuous distinguished subconfiguration I (continuous if

i = 0, discontinuous if i > 0).
Where A is a configuration of sort i > 0 and I is a configuration,
the kth metalinguistic intercalation A|x ', 1 < k < i, is given by:
4) AkTlN=g A1 :...:1:T:1:...:1)

k-1 1's i-k 1's

i.e. A I is the configuration resulting from replacing by I' the kth
separator in A.

Rules and linguistic applications

A semantically labelled sequent is a sequent in which the
antecedent type occurrences A, ..., A, are labelled by distinct
variables x1,. .., x, of types T(A1),..., T(An) respectively, and the
succedent type A is labelled by a term of type T(A) with free
variables drawn from x1, ..., Xn.

In this section we give the semantically labelled Gentzen sequent
rules for the connectives of DA1S4b!,?, and indicate some
linguistic applications.

— —
l1;T = By =(£; A(C:2)) > D:w 4L, B:y=Ciy

— /L /R
(G W AC/B:x,TY) = D: wl(x y)/z} 4T = C/B: Ayy
H;T=A:¢ E({z;A(_C>:Z))=>D:w {;X:X,F:>C:)(
— \L \R
(1wl ATLA\C: y)) = D:wi(y ¢)/2} 4T = A\C: Axy
E(X:x,_B):y):D:w A= Ag fo;T = By
ol R
=(AeB: 2) = D: wim1z/x, 122/y) G190 AT = AeB:(4,4)
SN = A
4 ——nR
=HT:x)>Aé O;A= 10

Figure: Lambek multiplicatives

The continuous multiplicatives, the Lambek connectives of Lambek
(1958; 1988), defined in relation to concatenation/appending, are
the basic means of categorial categorization and
subcategorization.

Note that here and throughout the active types in antecedents are
figures (vectorial) whereas those in succedents are not;

intuitively this is because antecedents are structured but
succedents are not.

The directional divisions over, /, and under, \, are exemplified by
assignments such as the: N/CN for the man: N and sings: N\ S for
John sings: S, and loves: (N\S)/N for John loves Mary: S.

_ — —
;T =By =(L; A(C:2)) > D:w LT lkB:y=Ciy

s —F—F—FF kR
=(G Wi ACTkB: x [k T)) = D: wl(x ¥)/z) £T = CTB: Ayy
;T2 A9 E((g;A(—C>:z)):>D:w g;?\’:x|kr=>c:)(
L —F—F—F kR
(LWl ATk ALkC:y)) = D:wl(y ¢)/2} 5T = AlkC: Axy
=(A: x|k B:y) = D:w A=A &T=By
oL kR
=(A0KB: 2) = D: winiz/x, 122/y) $19 0 Al T = AokB: (4. ¢)
=) = A:
(1)=>A:¢ N JR
=J:x0 = A 0;1=J:0

Figure: Displacement multiplicatives

The discontinuous multiplicatives, the displacement connectives,
Morrill and Valentin (2010), Morrill et al. (2011), are defined in
relation to intercalation/plugging.

When the value of the k subindex indicates the first (leftmost) point
of discontinuity it may be omitted, i.e. it defaults to 1.
Circumfixation, T, is exemplified by a discontinuous particle verb
assignment calls+1-+up: (N\S)TN for Mary calls John up: S, and
infixation, |, and circumfixation together are exemplified by a
quantifier phrase assignment everyone: (STN)]S simulating
Montague’s S14 treatment of quantifying in; see the demo at the
end.

— =
=(A:x)= C:y =(B:yy=C:x

9. &L1 &Lz
— _—
=(A&B:z) = C: y{m1z/x} =(A&B:z) = C: y{n2z/y}
== A0 ==B:wy
&R
== A&B:(¢,¢)
- -
=(A:x) = C:xq =(B:yy= C:x2
10. oL
—
=(A®B:z) = C:z = X.x1; Y X2
== A0 == By
®R;4 ®R>
== A®B: ;1o == A®B: vy

Figure: Additives

The additives, Lambek (1961), Morrill (1990), Kanazawa (1992),
have application to polymorphism.

For example the additive conjunction & can be used for

rice: N&CN as in rice grows: S and the rice grows: S, and the
additive disjunction & can be used for is: (N\S)/(N&(CN/CN)) as
in Tully is Cicero: S and Tully is humanist: S.

The additive disjunction can be used together with the continuous
unit to express the optionality of a complement as in

eats: (N\S)/(Nel) for John eats fish: S and John eats: S.

Z(A[t/v]:xy = B:y == Ala/v]:¢

11. AL —_— AR
E(/\ VA: z) = B:y{(z t)/x} == /\vA:/lv¢
=(Ala/v]:x) = B:y == Alt/v]:¢
12. VLT — VR
=(\/ vA:2) = B: yin2z/x) == \/vA:(t,9)

Figure: Quantifiers, where T indicates that there is no a in the conclusion

The quantifiers, Morrill (1994), have application to features.

For example, singular and plural number in sheep: A nCNn for
the sheep grazes: S and the sheep graze: S.

And for a past, present or future tense finite sentence complement
we can have said: (N\S)/\/ tSf(t) in John said Mary walked: S,
John said Mary walks: S and John said Mary will walk: S.

=(A:x) = B:y K== A

13. oL —0OR
E(EZ:Z) = B:y{Vz/x} X= = 0A: "¢
®=(A:x) = OB:y oA
14. ol — oR
R=(CA: 2) = @B: y{Vz/x) == 0A"

Figure: Normal modalities, where /< marks a structure all the types of
which have main connective a box/diamond

With respect to the (S4) normal modalities, the universal (Morrill
1990) has application to intensionality.

For example, for a propositional attitude verb such as believes we
can assign type O((N\S)/0S) with a modality outermost since the
word has a sense, and a modality on the first argument but not the
second, since the sentential complement is an intensional domain,
but not the subject.

The modalities are in the categorial type, distinctly from, but in
relation to, the logical interpretation of the propositional attitude
verb.

The 0O Right rule is semantically interpreted by intensionalisation
and the O Left rule is semantically interpreted by
extensionalisation ¥ in such a way that the Curry-Howard
correspondence for the modality yields the law of down-up
cancellation (Dowty et al. 1981): V"¢ = ¢.

Z(A:x)= By [El= A4
15. - 't —'R

—

E([[]_1A:X]):>B:w E=>[]’1A:¢
E([/—&ZX]>=>B:¢ =S A¢
16. —0L —0R
E(ﬁ:x):s;w [Z] = O0A:¢

Figure: Bracket modalities

The bracket modalities, Morrill (1992) and Moortgat 1995), have
application to nonassociativity and syntactical domains such as
prosodic phrases and extraction islands.

For example, single bracketing for weak islands: walks: ()N\S for
the subject condition, and without: []~'(VP\VP)/VP for the
adverbial island constraint; and double bracketing for strong
islands such as and: (S\[]7'[]~'S)/S for the coordinate structure
constraint.

Z(CW{A:x};Tq,T2) = By LA A
=T,)A:x,T2) = By LA 1A

=4 T1,Aix,T2) = By
P

Z(Cw{A:x};T1,T2) = By

(LWL w{Axh T, [Lw{A:y);T2],T3) = By
IC

(G wlew({A:x}T,T2,T3) = Biy{x/y}

=(A:x1) = B:y([x1]) =Z(A:x1,A1x2) = By ([x1, x2]) .
18. ?L
=(?A:x) = B:y(x)

== A0 LT= A A= ?Ay
— 7R M
== 7A:[¢] Wl T,A = ?2A: [gly]

Figure: Exponentials

Finally, there is nonlinearity. The universal exponential, Girard
(1987), Barry, Hepple, Leslie and Morrill (1991), Morrill (1994),
Morrill and Valentin (2015), and Morrill (2017), has application to
extraction including parasitic extraction.

Using the universal exponential, !, for which contraction induces
island brackets, we can assign a relative pronoun type

that: (CN\CN)/(S/!N) allowing parasitic extraction such as
paper that John filed without reading: CN, where parasitic gaps
can appear only in (weak) islands, but can be iterated in
subislands, for example, man who the fact that the friends of
admire without praising surprises. Crucially, in the linguistic
formulation ! does not have weakening, i.e. deletion, since, e.g.,
the body of a relative clause must contain a gap:

*man who John loves Mary.

In the formulation here |L moves the operand of a universal
exponential (e.g. the hypothetical subtype of relativisation) into the
stoup, where it will percolate as indicated by the above rules. From
there it can be copied into the stoup of a newly-created bracketed
domain by the contraction rule |C (producing a parasitic gap), and
it can be moved into any position in the matrix configuration of its
zone by P (producing a normal nonparasitic or host gap).

The existential exponential ? has application to iterated
coordination (Morrill 1994; Morrill and Valentin 2015) and
(unboundedly iterated) respectively (Morrill and Valentin 2016).
Using the existential exponential, ?, we can assign a coordinator
type and: (?N\N)/N allowing iterated coordination as in

John, Bill, Mary and Suzy: N, or and: (?(S/N)\(S/N))/(S/N) for
John likes Mary dislikes, and Bill hates, London (iterated right
node raising), and so on.

Focusing

Spurious ambiguity is the phenomenon whereby distinct
derivations in grammar may assign the same structural reading,
resulting in redundancy in the parse search space and inefficiency
in parsing.

Understanding the problem depends on identifying the essential
mathematical structure of derivations.

This is trivial in the case of context free grammar, where the parse
structures are ordered trees; in the case of type logical categorial
grammar, the parse structures are proof nets.

However, with respect to multiplicatives intrinsic proof nets have
not yet been given for displacement calculus (but see Morrill and
Fadda (2008, Fadda 2010, and Moot 2014, 2016) In this context
CatLog3 approaches spurious ambiguity by means of Andreoli’s
(1982) proof-theoretic technique of focalisation, which engenders a
substantial reduction of spurious ambiguity.

In focalisation, situated (in the antecedent of a sequent, input, */ in
the succedent of a sequent, output, °) non-atomic types are
classified as of reversible/negative or irreversible/positive polarity
according as their associated rule is reversible or not.

For example, \R is reversible, but &L is not reversible.

A,F:>C\ A(A)=C
= A\C A(A&B)=C

There are alternating phases of don’t-care nondeterministic
negative rule application, and positive rule application locking on to
focalised formulas.

Given a sequent with no occurrences of negative formulas, one
chooses a positive formula as principal formula (which is boxed;
we say it is focalised) and applies proof search to its subformulas
while these remain positive.

When one finds a negative formula or a literal, reversible rules are
applied in a don’t care nondeterministic fashion until no longer
possible, when another positive formula is chosen, and so on.
CatLog3 can be set to focus all atoms in the input (as in the
example at the end) or in the output, i.e. it implements uniform bias.

A sequent is either unfocused and as before, or else focused and
has exactly one type boxed. This is the focused type.

The focalised logical rules for displacement calculus are given
below.

Sequents are accompanied by judgements: focalised or not
focalised and reversible or not reversible.

The completeness of this focalisation, together with additives, is
proved in Morrill and Valentin (2015).

The completeness of focalisation for other connectives of CatLog3
is a topic of ongoing research.

- -
A:x,T = C:y -foc IB:y= C:xy —foc
\R /R
= A\C:Axy —foc A rev = C/B:1yy -—foc A rev

- =
A(A:x,B:y)=> D:w -foc
ol

A(K:é: z) = D:wln1z/x,mpz/y} —foc A rev

AN = A:¢p —foc

IL
N
A(l:x)= A:¢ —foc A rev
- -
A:x|xF= C:xy -foc [Nk B:y= C:xy -foc
kR TR
= AlxC:axy —foc A rev = CTxB:Ayy —foc Arev

— E=3
A(A:x|x B:y)= D:w —foc

okl
oo
A(AGkB:z) = D:wlnyz/x,m2z/y} —foc A rev

A(ly= A:¢ —foc
JL

N
A(J:x)y=> A:¢ —foc A rev

Figure: Reversible multiplicative rules

—
M= E]:¢ foc A —rev A(@: z)= D:w foc A -rev

— \L
A<|',: y)= D:wl(y ¢)/z} foc A -rev
M= :¢ foc A —rev A(I?g):z) = D:w —foc A ?Pyrev
— \L
A(F,: y) = D:w{(y ¢)/z} foc A -rev
—
M= Q:¢ -focA?Qirev A(: z)=D:w foc A -rev
— \L
AT, : y) = D:w{(y ¢)/z} foc A -rev
= Q:¢ -focA?Qrev A(TD): z)= D:w -foc A ?7Prev
\L

—
A(F,:y) = D:wl(y 6)/2) foc A —rev

—
r= E]: ¥ foc A —rev A(@: z)y= D:w foc A -rev

— /L
A(: x.T) = D:w{(x ¥)/z) foc A -rev
—
= Qi:¢y —focA7Qqrev A(:z) = D:w foc A -rev
— /L
A(: X,y = D:wl(x y)/z) foc A —rev
r= :n// foc A —rev A(Fé:z) = D:w -foc A ?7Porev
— /L
A<:x, M= D:wl(xy)/z}) foc A -rev
= Q:y -foc A ?Qrev A(B:z) = D:w —foc A ?Prev
/L

A(: x,[) = D:w{(xy)/z} foc A -rev

Figure: Left non-reversible continuous multiplicative rules

—
r= E]; ¢ foc A —rev A(@: zy=D:w foc A -rev

— kL
AT |k :y) = D:w{(y ¢)/z} foc A -rev
r= :¢ foc A —rev A(Fg’:z) = D:w -foc A ?Porev
— kL
AT |k :y} = D:w{(y ¢)/z} foc A -rev
—
= Qi:¢ —foc A?Qqrev A(:z) = D:w foc A -rev
— lkL
AT : ¥) = D:wl(y ¢)/z) foc A -rev
F=Q:¢ -focA?Qrev A(P:2)= D:w —foc A 7Prev
Ll

—
AT [QUP [1) = Diw(y 6)/2) foc A -rev

e
r= E]:w foc A —-rev A(@: z)= D:w foc A —rev

p— Tkl
A(: x|k M) = D:w{(xy)/z} foc A -rev
—
= Qi:¢y —foc A?7Qqrev A(: zy= D:w foc A —rev
Tkl
A(:x\k M= D:wi(x ¥)/z) foc A -rev
r= :w foc A —-rev A(Fg): z)y= D:w —foc A ?Porev
—— kL
A(: x|k M) = D:w{(xy)/z} foc A -rev
I=Qy -focA ?Qrev A(P:z)= D:w —foc A 7Prev
Tkl

—
A(:X\K = D:wl(x¥)/z) foc A -rev

Figure: Left non-reversible discontinuous multiplicative rules

A::¢ foc A —rev F::w foc A —rev

R
AT > : (¢.) foc A —rev
A :E]:rp foc A —rev = Q:y -foc A ?Qrev
R
AT = : (¢.¢) foc A -rev
A= N:¢ —foc A ?Nrev r= E]:x// foc A —rev
R
AT = : (¢,y) foc A -rev
A= Ny:¢ =—foc A ?Nirev = Np:y foc A ?Nprev
R
AT = : (¢.y) foc A -rev
IR

A :»:O foc A —rev

Figure: Right non-reversible continuous multiplicative rules

Figure:

A=>:¢ foc A —rev F=>:w foc A —rev

oxR
Al = : (¢.y) foc A -rev
A:?E]:¢ foc A —rev = Q:y -foc A ?Nrev
okR
A= : (¢.¥) foc A —rev
A= Q:¢ -foc A ?Nrev r= E]:n// foc A —rev
okR
A= : (¢.y) foc A —rev
A= Q:¢ —foc A?7Qirev = Q¢ —foc A ?7Qorev
okR
A= : (¢.y) foc A -rev
JR

1 ::0 foc A —rev

Right non-reversible discontinuous multiplicative rules

Count-invariance

We employ infinitary count invariance for categorial logic
(Kuznetsov 2017), extending count invariance for multiplicatives
(van Benthem 1991) and additives and bracket modalities (Valentin
et al. 2013) to include exponentials.

This affords effective pruning of proof search in categorial
parsing/theorem-proving.

Count invariance for multiplicatives in (sub)linear logic is
introduced in van Benthem (1991).

This involves simply checking the number of positive and negative
occurrences of each atom in a sequent.

Thus where #(X) is a count of the sequent X we have:

By rE=#(X)=0
I.e. the numbers of positive and negative occurrences of each
atom must exactly balance.

This provides a necessary, but of course not sufficient, criterion for
theoremhood, and it can be checked rapidly.

It can be used as a filter in proof search: if backward chaining
proof search generates a goal which does not satisfy the count
invariant, the goal can be safely made to fail immediately.

This notion of count for multiplicatives was included in the
categorial parser/theorem-prover CatLog(1) (Morrill 2012).

In Valentin et al. (2013) the idea is extended to additives (and
bracket modalities).

Instead of a single count for each atom of a sequent ¥ we have a
minimum count #min(X) and a maximum count #max(X) and for
a sequent to be a theorem it must satisfy two inequations:

(6) F X = #min(X) <0< #max(X)

l.e. the count functions # yiy and #max define an interval which
must include the point of balance 0; for the multiplicatives,

#min = #max = # and (6) reduces to the special case (5).
This count-invariance is included in the categorial
parser/theorem-prover CatLog?2.

Here we describe the count-invariance of CatLog3 which includes
further infinitary count functions for exponentials (Kuznetsov et al.
2017).

Infinitary Count Algebra

We consider terms built over constants 0, 1, L (—co, minus infinity),
and T (4o, plus infinity) by operations plus (+), minus (-),
minimum (min) and maximum (max), and infinitary step functions
Xand Y thus; ihjeZandne Zt:

+]j LT - LT

i+ L T i|li—f T 1

1l 1L 1 = 1] 1L = 1

T T % T T| T T =

min| LT max | j LT

i |I+1|£|l—fl T : |’+J|;r|’—]| i T

1 1 1 1 j 1 7T
T T T

Where # is the set of primitive types, P € P, Q e P U {[]}, p € {*,°},
and * = ° and ° = * we define the count functions for DA1S4b!,?
as shown below.

#ma(©A)
#np(A)
Hp (A) =1
#np(A)
#h (A +1
Y(#gin o))

X(#max.p(A)

o

I -
=]

" a(A)
(Fmaxa(A)
Frina)

#ma(A)

X
Y

o3 o

#ma(C) ’#%.Q(A)
4 2(0)-#2 (B)
oA +#0 ()
0

#ma(A)
#n o(A)

For zones, stoups, tree terms and configurations, counts are as
follows:

#ma(S:0) = #ma(S) + #ma(0)
#m,Q(Q)) =0
#m,Q(?’ S) = #m,Q(q:) + #m,Q(S)
#m,Q(A) =0
#m,O(T7 O) = #m,O(T) + #m,Q(O)
#m,o(1) =
#m,Q(7:) = (7:)
#m,Q({ .t Oi}) = () + Zn 1#m Q(On)
#mp([Z]) = #m []()+
#mp([Z]) = #mp(Z)

The count-invariance theorem is:

(7) Theorem.
F==A=VYQecPU{[]},
#min,o(E = A) <0< #maxa(==A)
where, #ma(==> A) = #m,Q(A) - #m.a(2)-

Relativisation including medial and parasitic extraction is obtained
by assigning a relative pronoun a type (CN\CN)/(!N\S) whereby
the body of a relative clause is analysed as IN\S.

By way of example of count-invariance, we show how it discards
N, N\S = IN\S corresponding to the ungrammaticality of a
relative clause without a gap: *paper that John walks.

We have the max N-count:

#maxn(NN\S = IN\S) = #may f(IN\S) = #, (N.N\S) =
#:nax n(S) - #;mn NN - #;nln n(N) = #;nln N(N\S) =

0- Y(#mln N(N)) -1- #mm N()+ #mm N()=
-Y(1)—1—0+1 =—-1-14+1=-1%0
which means that the count-invariance is not satisfied.

Iterated sentential coordination is obtained by assigning a
coordinator the type (?S\S)/S.

By way of a second example we show how count-invariance
discards N, N, N\S = ?S corresponding to the ungrammaticality of
unequilibrated coordination: *John Mary walks and Suzy talks.
Max N-count is: .

#maxN(N,N,N\S = ?S) = #max. N(?S)- #'mm,N(M N,N\S) =

X(#;nax n(S)) - #;nin,N(N) ;nln vV - #mln N(N\S) =

X(0)-1-1 _#mlnN()+#max,N(N) =0-2-0+1=-1%0
which means that the count-invariance is not satisfied.

lllustration

Morrill and Valentin (2016) proposes as the Montague Test the
task of providing a computational grammar of the PTQ fragment of
Montague (1973), and shows how CatLog meets this task. We are
not aware of any other system which has passed the Montague
Test. The example sentences of Chapter 7 of Dowty et al. (1981)
and the CatLog lexicon for them are given below.

str(dwp("7-7)’), [b([john]), walks], s(f)).

str(dwp(’(7-16)’), [b([every, man]), talks], s(f)).

str(dwp(’(7-19)), [b([the, fish]), walks], s(f)).

str(dwp(’(7-32)"), [b([every, man]), b([b([walks, or, talks])])], s(f)).
str(dwp(’(7-34)’), [b([b([b([every, man]), walks, or, b([every, man]), talks])])], s(f)).
str(dwp(’(7-39)’), [b([b([b([a, woman]), walks, and, b([she]), talks])])], s(f)).
str(dwp(’(7-43, 45)’), [b([john]), believes, that, b([a, fish]), walks], s(f)).
str(dwp(’(7-48, 49,

(dwp("7

(dwp('(

(awp('(

(awp('(

(awp('(

(dwp('(

(awp('(),

(((52)"), [b([every, man]), believes, that, b([a, fish]), walks], s(f)).
str(dwp(’(7-57)’), [b([every, fish, such, that, b([it]), walks]), talks], s(f)).
str(dwp(’(7-60, 62)’), [b([john]), seeks, a, unicorn], s(f)).
str(dwp(’(7-73)"), [b([john]), is, bill], s(f)).
str(dwp(’(7-76)’), [b([john]), is, a, man], s(f)).

((([necessarily, b([john]), walks], s(f)).

((([b(liohn]), walks, slowly], s(f)).

(awp('(

(dwp('(

(awp('(

(awp('(

(awp('(

(awp('(

)
)
str(dwp(’(7-83)’
str(dwp(’(7-86)’
str(dwp(’(7-91)’), [b([john]), tries, to, walk], s(f)).

)), [b([john)), tries, to, b([b([catch, a, fish, and, eat, it])])], s(f)).
str(dwp(’(7-98)"), [b([iohn]), finds, a, unicorn], s(f)).
str(dwp(’(7-105)’), [b([every, man, such, that, b([he]), loves, a, woman)]), loses, her], s(f)).
str(dwp(’(7-110)’), [b([john]), walks, in, a, park], s(f)).
str(dwp(’(7-116, 118)"), [b([every, man]), doesnt, walk], s(f)).

)
)s
)
)
str(dwp(’(7-94)),
),
)
)

a: mYg(Vf((SfimNt(s(g)))LSf)/CNs(g)) : AAABAC[(A C) A (B C)]

and : mvf((w?SA\[]71[]71 Sf)/mSf) : (67T 0 and)

and : mvavf((m?((ONa\SHO\[]7' |77 ((ONa\Sf))/m((ONa\Sf)) : (®" (s 0) and)

believes : 0((()3IgNt(s(g))\Sf)/(CPthatLnSf)) : "AAAB(Pres (("believe A) B)) bill : mNt(s(m)) : b

catch : 0((()JaNa\Sb)/3aNa) : "AAAB(("catch A) B)

doesnt : mYgva((SgT((()Na\Sf)/(()Na\Sb)))!Sg) : 1A~(A ABAC(B C))

eat : 0((()daNa\Sb)/3aNa) : "1AAB(("eat A) B)

every : mYg(Vf((SfTNt(s(g)))!Sf)/CNs(g)) : AAABYC[(A C) — (B C)]

finds : Dg(()ﬂgNt(s(g))\Sf)/ﬂaNa) : "AAAB(Pres ((“find A) B)) fish : 0CNs(n) : fish

he : m[]7'Vg((mSg/mNt(s(m)))/((YNt(s(m))\Sg)) : 1AA

her : mYgva(((()Na\Sg) mNt(s(f)))!(m(()Na\Sg)mNt(s(f)))) : 1AA

in : o(Yavf((()Na\Sf)\(()Na\Sf))/JaNa) : "AAABAC(("in A) (B C))

is : m((()3gNt(s(g))\Sf)/(FaNae(3g((CNg/CNg)L(CNg\CNg))-1))) : AAAB(Pres (A — C.[B= C]; D.((D AE[E =
B]) B))) it : m¥fva(((()Na\Sf) mNt(s(n)))!(m(()Na\Sf)mNi(s(n)))) : 1AA

it : m[] =" vf((wSfimNt(s(n)))/(ONt(s(n))\SF)) : AAA john : mNt(s(m)) : j

loses : O((()AgNt(s(g))\Sf)/3aNa) : "AAAB(Pres ((“lose A) B))

loves : o((()3gNt(s(g))\Sf)/3aNa) : "AAAB(Pres (("love A) B)) man : CNs(m) : man

necessarily : m(SA/0SA) : Nec or : mYf((w?SA\[]71[]~" Sf)/mSf) : (6" 00r)

or : mvavf((w2(ONa\S\[I 7' 171 (ONa\Sf))/m((YNa\SH)) : (" (s 0) or)

or - mvF((m?(Sf/(OAgNt(s(g))\SH\ =" 17" (SF/(OIgNt(s(g))\SF)))/m(SF/(()IgNt(s(g))\SF))) : (#" (s 0) or)
park : OCNs(n) : park

seeks : 0((()AgNt(s(g))\Sf)/ovavf(((Na\Sf)/3bNb)\(Na\Sf))) : "1AAB(("tries *((*A “find) B)) B)

she : m[]~'vg((mSgimNt(s(f)))/(ONt(s(f))\Sg)) : 1AA

slowly : ovavYf(o(()Na\Sf)\(()oNa\Sf)) : "1AAB("slowly "("A"B))

such-that : m¥n((CNn\CNn)/(SfimNt(n))) : AAABAC[(B C) A (A C)] talks : 0(()3gNt(s(g))\Sf) : "A1A(Pres (“talk A))
that : m(CPthat/0Sf) : AAA the : m¥n(Nt(n)/CNn) : « to : m((PPto/3aNa)rvn((()Nn\Si)/(()Nn\Sb))) : 1AA
tries : 0((()3gNt(s(g))\Sf)/o(()IgNt(s(g))\Si)) : "1AAB((tries *("A B)) B) unicorn : 1CNs(n) : unicorn

walk : O(()JaNa\Sb) : "AA("walk A) walks : O(()3gNt(s(g))\Sf) : "AA(Pres ("walk A)) woman : oCNs(f) : woman

The CatlLog3 IATEX output for the (ambiguous) last sentence is as
follows:

(dwp((7-116, 118))) [every+man|+doesnt+walk : Sf

[mVg(Yf((SfTNt(s(g)))LSf)/CNs(g)) : AAABYC[(A C) —
(B C)],oCNs(m):

man], mYgVa((Sg'((()Na\Sf)/(()Na\Sb)))!Sg) :
AD=(D AEAF(E F)),n({)(3aNa—-3gNt(s(g)))\Sf) :
"AG(Pres ("walk G)) = Sf

[mVg(Yf((SfTNt(s(g)))LSf)/CNs(g)) : ZAABYC[(A C) —
(B C)],oCNs(m) :

man], mYg¥a((Sg"((()Na\Sf)/(()Na\Sb)))!Sg) :

AD—(D AEAF(E F)),0(()3aNa\Sb) : "AG(*walk G) = Sf

Ne(s(m)) = Ni(s(m))
Ni(s ())
[Nt(s(= -<>JaNa E = Sb
[Nt(s m))L.[(03aNa\Sb] = Sb *
[Nt(s(m))).[0(0FaNa\Sb)| = sb ot Nt(s(m)) = Ni(s(m))
ONt(s(m)),0(()3aNa\Sb) = Sb [Ni(s(m))] = [ONt(s(m))] - = sf
o(()3aNa\Sb) = (Nt(s(m))\Sb INt(s(m))].] ONt(s(m)\SF] = sF
[Nt (s (m)] [(ONm) SO SB)] (0 3ans) » &1 '+
[Nt(s(m))], 1,0(()FaNa\Sb) = SfI((()Nt(s(m))\Sf)/(()Nt(s(m))\Sb)) [sf] = st
[Ne(s(m)L] (SFT((ON(s(m))\81)/(ONE(s(m))\Sb))): 8t [o(¢)FaNa\Sb) = S " t
[Nt(s(m))),[Va((SF1((ONa\S1)/(ONa\Sb)))iS1) | o(FaNa\sb) = Sf

[Nr \VQVa ((Sg'((<>Na\S¢)/(<>Na\Sb)))iSy)\ o(()3aNa\Sb) = Sf "
[Nt(s] \-»/gv.a ((Sg'(((Na\Sf)/(()Na\Sb)))'Sg) \ o(()JaNa\Sb) = ER
1, -Vgx!a((SgT((()Na\Sf)/(()Na\Sb)))ng) 0(()3aNa\Sb) = SfINK(s(m)) = of
)| = CNs(m) 5 [‘(SfTNr(s(m)))iSfD.lVgVa((Sg’((()Na\Sf)/(()Na\Sb)))ng).D(()EaNa\Sb) = Sf i
[oCNs(m)] = CNs(m) ﬂVf((SfTNt(s(m)))iSf)l]A-nga((SgT((ONa\Sf)/(()Na\Sb)))ng),D(()BaNa\Sb) = SI/L

[V((SFINt(s(m)))!5f)/ CNs(m) | oCNs(m)]. m¥gVa((Sg'((Na\Sf)/(()Na\Sb)))!Sg). O(()FaNa\Sb) = Sf
[\Vg(vf((S”Nt(S(g)))iSf)/CNs(g)) \ADCNs(m)L-nge((Sg‘((<>Na\Sf)/(<>Na\Sb)))ng)vD(<>ﬂaNa\Sb) = Sf
Tmva(V1((STTNI(s(g))) S1) CNs(@) | oCNs(m)]. mvgva((Sg' (ONavST)/ (ONa\8b))) Sg). o(¢daNa\Sb) = SF

YC|[("man C) — —("walk C)]

Ne(s(m)) = Ni(s(m))
Ni(s ())
[Nt(s(= -<>JaNa E = Sb
[Nt(s m))L.[(03aNa\Sb] = Sb *
[Nt(s(m))).[0(0FaNa\Sb)| = sb ot Nt(s(m)) = Ni(s(m))
ONt(s(m)),0(()3aNa\Sb) = Sb [Ni(s(m))] = [ONt(s(m))] - = sf
o(()3aNa\Sb) = (Nt(s(m))\Sb INt(s(m))].] ONt(s(m)\SF] = sF

[Nt(s(m))L.[(ON(s(m))\S)/(ONt(s(m))\Sb)] B()TaNa\Sb) = Sf "

[1], (ONt(s(m))\SF)/(ONt(s(m))\Sb), o(()FaNa\Sb) = SfINt(s(m)) = Sf
= CNs(m) [(S/1Nt(s(m)))S] (ONt(s(m))\S1)/(ONE(s(m))\Sb). O(()3aNa\Sb) = Sf
[5ONsm)] = ONsm) [/A((SINt(s(m))):5) [l (ONK(s(m)\S1)/(ONt(s(m))\Sb), B(()FaNa\Sb) = Sf

ﬂW((SfTNt(s(m)))S!)/CNs(m)‘,DCNs(m)]‘(()Nr(s(m))\Sl)/(()Nr(s(m))\Sb),D(()]aNa\Sb) = Sf It
[Vg(/#((S1Nt(s(9)))!S7)/ CNs(g)) [BCNs(m)L, (ONK(s(m))\SF)/(ONe(s(m))\Sb), 0(()FaNa\Sb) = Sf
[=a(71((STTNI(>(9))) 151/ ONs(g) | SONs(m, (ON((m))\S1)/(ONI(s(m))\S5), 0 JaNa\Sb) = S

[mvg(Yf((SFNt(s(g)))*Sf)/CNs(g)). OCNs(m)]. 1,0(()IaNa\Sb) = SFI((()Nt(s(m))\Sf)/(()Nt(s(m))\Sb)) = Sf
[-Vg(w((SfTNt(s(g)))le)/CNs(g)),DCNs(m)],‘(S!T((()Nt(s(m))\SI)/(()Nt(s(m))\sb) ¢SfLu<<>3aNa\5b) = sf "

[IVQ(W((S/TNI(S(g)))LSf)/CNS(Q))VDCNS(m)]v\Va((SIT((ONa\Sf)/(<>Na\Sb)))lsl) \-D(()BaNa\Sb) = Sf

[m/(41((SITNI(s(9)))"S1)/CNs{(g)). 0CNs(m)].| #g¥a((Sg"(ONa\SN)/(ONa\$b))):Sg) | a(0FaNa\Sb) = Sf
[mvg(V/((S/Nt(s(9)))! 1)/ CNs(g)). OCNs(m)], | m¥g¥a((Sg((()Na\Sf)/(()Na\Sb)))!Sg) | o(¢) FaNa\Sb) = s

VL

=YG[(*man G) — (‘walk G)]

Conclusions

» We have implemented a substantial fragment of categorial
logic in CatLog3, a type logical parser/theorem-prover
comprising 6000 lines of Prolog code.

» CatLog3 uses focalisation to deal with spurious ambiguity, and
count-invariance for the full categorial fragment to improve
efficiency.

» CatLog3 passes the Montague test which, to our knowledge,
no other system has passed.

THANK YOU!

