Frame-Semantic Composition at the
Syntax-Semantics Interface

Rainer Osswald
Heinrich-Heine-Universitat Diisseldorf

(joint work with Laura Kallmeyer)

Workshop on Logic and Algorithms in Computational Linguistics 2017
(LACompLing2017)

Stockholm, August 16-19, 2017

Department of Mathematics, Stockholm University

e ©
4_//({ et \
Fadd 60
HEINRICH HEINE
UNIVERSITAT DUSSELDORF CRC 991

Introduction

A simple example

(1) Adam ate an apple.

eating

/\ e|ACTOR x

s
NPUX vP_e [heme y

P

v Npl=/]

o

Qe

>

A=ndN A
/\

A IWaHL
X ¥OLdV |
Sunwa

[o=1

N

A (xepgdN
S

MEPY, wepy, IWvN n
7 uosiad
?n:n_z

‘9)dde ue aye wepy (1)

ojdwexs ajduwis y

uo13dNpoIU|

Introduction

A simple example

(1) Adam ate an apple. S eating

/\ e|ACTOR x

Npli=x] VPi_e] THEME y

2 u
] NP[I=u] v Npl=y]

person
u
NAME ‘Adam’

Introduction

A simple example

(1) Adam ate an apple. S eating

/\ e|ACTOR x

NPUX vP_e [heme y

[N Y=V ‘

v [apple]

xzu - :
NP[1_u] v Npl=Y] o NPp1_y]
NAME ‘Adam’]

[person
u
‘Adam’ ‘ate’ ‘an apple’

Introduction

A simple example

(1) Adam ate an apple. S eating

/\ e|Actor x

NPU=D vPLe [THEmE y

N Cy=Ev ‘

v [apple]

xX2u \
NP[1-u) v Npl=/] - NP[1_y]
NAME ‘Adam’] ‘

[person
u
‘Adam’ ‘ate’ ‘an apple’

S eating
/\ |: person :|
e|AcTorR x

NP[1_x VP(Ize] NAME ‘Adam’

‘ /\ THEME y [apple]

‘Adam’ V NP[_y]

‘ate’ ‘an apple’

Introduction

A simple example

(1) Adam ate an apple. S eating

/\ e|ACTOR x

Npli=x] VPi_e] THEME y

N Cy=Ev ‘

v [apple]

xX=u N
NP[|=u] \V NP[|=Y] s NP“:V]
NAME ‘Adam’] ‘

[person
u
‘Adam’ ‘ate’ ‘an apple’

S eating

/\ person
e|AcTor x

NP[1_x VP(Ize] NAME ‘Adam’

‘ /\ THEME y[apple] person_ NaME

‘Adam’ \‘/ NP[1-y] ACTOR — ‘Adam
‘ate’ ‘an apple’ cating (&)
THEME

@) apple

Introduction

A model of the syntax-semantics interface

m Semantic composition (» unification) is triggered by syntactic composition
(~ substitution and adjunction).

m Semantic representations are linked to entire elementary trees.
(A further decomposition is possible in the “metagrammar”.)

m Interface features relate nodes in the syntactic tree to components in the
semantic representation.

Introduction

A model of the syntax-semantics interface

m Semantic composition (» unification) is triggered by syntactic composition
(~ substitution and adjunction).

m Semantic representations are linked to entire elementary trees.
(A further decomposition is possible in the “metagrammar”.)

m Interface features relate nodes in the syntactic tree to components in the
semantic representation.

Main components of the framework [Kallmeyer/Osswald 2013]

Lexicalized Tree Adjoining Grammars (LTAG)
[Joshi/Schabes 1997; Abeille/Rambow 2000]

Decompositional Frame Semantics
[Kallmeyer/Osswald 2013; Osswald/Van Valin 2014]
Metagrammatical specification and decomposition
[Crabbé/Duchier 2005; Crabbé et al. 2013, Lichte/Petitjean 2015]

Decompositional Frame Semantics

Frames as a way to represent rich lexical and constructional content.

m Semantic frames are commonly depicted as graphs with labeled
nodes and edges, where nodes correspond to entities (individuals,
events, ...) and edges to functional (or non-functional) relations
between these entities.

ACTOR man

®
. house
locomotion

@— —on ®

MOVER
MANNER/ IN-REGION
o PATH of
ENDP part-o
©) > O > O

walking

path region region

Decompositional Frame Semantics

Frames as a way to represent rich lexical and constructional content.

m Semantic frames are commonly depicted as graphs with labeled
nodes and edges, where nodes correspond to entities (individuals,
events, ...) and edges to functional (or non-functional) relations
between these entities.

ACTOR man

locomotion@o h(égse

MOVER
MANNER/ IN-REGION
o PATH f
ENDP part-o
> O > O

walking o
path region region

m Frames in this sense can be formalized as generalized feature
structures with types, relations and node labels.

Decompositional Frame Semantics

Example Lexical decomposition templates

(2) [[x ACT] CAUSE [BECOME [y BROKEN]]]

[Rappaport Hovav/Levin 1998]

o

Decompositional Frame Semantics

Example Lexical decomposition templates

(2) [[x ACT] CAUSE [BECOME [y BROKEN]]]

causation
{)
CAUSE EFFECT
. < change-of-state
[0 11775 7K EERR R IYe)
ACTOR FINAL
O broken-stage
@ lPATIENT

®

Description in attribute-value logic

[Rappaport Hovav/Levin 1998]

causation

activity
CAUSE
EFFECTOR X
change-of-state
EFFECT broke-stage
FINAL
PATIENT y

CAUSE < EFFECT

causation A CAUSE:activity A CAUSE ACTOR = X A CAUSE PATIENT = y

A EFFECT (change-of-state A FINAL: broken-stage)
A CAUSE < EFFECT

Decompositional Frame Semantics

Example Lexical decomposition templates

(2) [[x ACT] CAUSE [BECOME [y BROKEN]]]

causation
{)
CAUSE EFFECT
. < change-of-state
[0 11775 7K EERR R IYe)
ACTOR FINAL
O broken-stage
@ lPATIENT

®

Description in attribute-value logic

[Rappaport Hovav/Levin 1998]

causation

activity
CAUSE
EFFECTOR X
change-of-state
EFFECT broke-stage
FINAL
PATIENT y

CAUSE < EFFECT

causation A CAUSE:activity A CAUSE ACTOR = X A CAUSE PATIENT = y

A EFFECT (change-of-state A FINAL: broken-stage)

A CAUSE < EFFECT

Translation into first-order logic

Aede'3e” Is(causation(e) A cause(e,e’) A eFFecT(e,€’) A € <e’ A
activity(e') A AcTOR(€',x) A change-of-state(e'") A
FINAL(€’,s) A broken-stage(s) A PATIENT(s,y))

Decompositional Frame Semantics

Basic assumptions

m Attributes (features, functional roles/relations) play a central role
in the organization of semantic and conceptual knowledge and
representation. [Barsalou 1992; Petersen 2007; Lobner 2014]

m Semantic components (participants, subevents) can be (recursively)
addressed by attributes.

~r inherently structured representations (models);
composition by unification (under constraints)

m Semantic processing may be seen as the incremental construction
of minimal (frame) models based on the input, the context,
and background knowledge (lexicon, ...).

Decompositional Frame Semantics

Example

(3) Anna ran to the station.

running \ bounded-motion

AGENT [1 x
e loc-stage
FINAL | THEME [1]
LOC y

Attribute-value logic

e- (running A bounded-motion A ACTOR £ x A

running

bounded-motion AGENT

@—0®
FINALlAE

(0]
loc-stage %‘ @

FINAL: [oc-stage A FINAL THEME = ACTOR A FINAL LOC = y)

Translation into first-order logic

running(e) A bounded-motion(e) A ACTOR(e, x) A

Is(FINAL(e, s) A loc-stage(s) A THEME(s, x) A LOC(s,y))

Constraints

running = activity (short for Ve(running(e) — activity(e))),

loc-stage = THEME:T ALOC:T,

Frame semantics: formalization

Vocabulary / Signature

Attr attributes (= dyadic functional relation symbols)
Rel (proper) relation symbols

Type type symbols (= monadic predicates)

Nname node names(nominals”) } Nlabel

Nvar node variables

Primitive attribute-value descriptions (pAVDesc)

t|p:t|p=q|lp....pa]ir | p=k
(t € Type, reRel, p,q, pi € Attr*, k € Nlabel)

Semantics
P
p:t e—»ot [Pf] P.qQl: Pr© p [
[P, Q]:r o/;f Q2
p Q o r(01,2))
e
3 a Pk o ® [P &01]

Frame semantics: formalization

Primitive attribute-value formulas (pAVForm)

kepit | k-p=l-q| (ki pi,....ko-pn)ir
(t € Type, reRel, p,q, pi € Attr*, k, [, k; € Nlabel)

Semantics
k-p:t ®—> ot k[p t] (k-p,1-Q):r ®—P>? k[]
@_»ir I[Q]
k-p2l-Q ®\PA k[P] Q r@E)
% | [aD]

O a

Frame semantics: formalization

Primitive attribute-value formulas (pAVForm)

kepit | k-p=l-q| (ki pi,....ko-pn)ir
(t € Type, reRel, p,q, pi € Attr*, k, [, k; € Nlabel)

Semantics
P P
k-P:t @®—>ot k[P t] (k-P,l-Q):r ®_’° k[P]
ir
ot |
.p2]. 7,12
k-p=l-Q ®\PAO k[P] r(0,12))
l{a
Formal definitions (fairly standard)
Set/universe of “nodes” %
Interpretation function I+ Attr > [V =~ V], Type — p(V),

Rel - U, p(V"), Nname — V
(Partial) variable assignment g:Nvar =V

Frame semantics: formalization

Formal definitions (cont’d)

Abbreviation: I4(k) = v for k € Nlabel iff I(k) = v if k€ Nname and
8g(k) = v if k e Nvar (g(k) defined)

Satisfaction of descriptions

(V,L,g),vEt iff vel(t)

(V,1,g),vEp:t iff I(p)(v)Et

(V.l.g),vEp=gq iff /(p)(v) =1(q)(v)

(V,1,g),vE[p1,---,pa]:r iff (I(p1)(v),....1(pa)(v))€I(r)

(V,1,g),vEp=k iff I(p)(v) = Ig(k) (ke Nlabel)
Satisfaction of formulas

(V,1e) ke pit 1) ((K)) € 11

(V.ig) =k plg i 1(p) (g (K) = 1(q) (1)

(V.1,8) & (ki-pr,ekn-p)ir iff (I(p1)(Ig(kn)), - - lg(pa) (I(kn))) € I(r)

Satisfaction of Boolean combinations as usual.

Frame semantics: formalization

Frame F over (Attr, Type, Rel, Nname, Nvar):

F=(V,I, g), with V finite, such that every node v € V is reachable
from some labeled node w € V via an attribute path, i.e.,

(i) w = Ig(k) for some k € Nlabel and
(i) v=1(p)(w) for some p € Attr*.

Example
ACTOR man

® h
locomotion ouse
Y ®

MOVER
MANNER/ IN-REGION
PATH
o o —_FNDP part-of

walking 0 T >0

path region region

Frame semantics: formalization

Subsumption

F] = (V1, I1,g1) subsumes F2 = <V27 12,g2> (F1 c Fz) iff there is a
(necessarily unique) morphism h: F; - F,, i.e,, a function
h:V; - V, such that

(i) L(f)(h(v)) = h(L(f)(v)), if L(f)(v) is defined, f € Attr, v € V;,
(ii) h(h(t)) € L(t), for t e Type
(iii) h(h(r)) < K(r), for r e Rel

(iv) h(1i(n)) = L(n), for n€ Nname

(v) h(gi(x)) = g(x), for x € Nvar, if g;(x) is defined

Frame semantics: formalization

Subsumption

F] = (V1, I1,g1) subsumes F2 = <V27 12,g2> (F1 c Fz) iff there is a
(necessarily unique) morphism h: F; - F,, i.e,, a function
h:V; - V, such that

() L(F)(h(v)) = h(L(f)(v)), if L(f)(v) is defined, f € Attr, v € V;,
(ii) h(h(t)) € L(t), for t e Type
(iii) h(h(r)) < K(r), for r e Rel

(iv) h(1i(n)) = L(n), for n€ Nname

(v) h(gi(x)) = g(x), for x € Nvar, if g;(x) is defined

Unification
Least upper bound F; u F, of F; and F, w.r.t. subsumption.

Frame semantics: formalization

Subsumption

F] = (V1, I1,g1) subsumes F2 = <V27 12,g2> (F1 c Fz) iff there is a
(necessarily unique) morphism h: F; - F,, i.e,, a function
h:V; - V, such that

() L(F)(h(v)) = h(L(f)(v)), if L(f)(v) is defined, f € Attr, v € V;,
(ii) h(h(t)) € L(t), for t e Type
(iii) h(h(r)) < K(r), for r e Rel

(iv) h(1i(n)) = L(n), for n€ Nname

(v) h(gi(x)) = g(x), for x € Nvar, if g;(x) is defined

Unification
Least upper bound F; u F, of F; and F, w.r.t. subsumption.

Theorem (Frame unification) [Hegner 1994]

The worst case time-complexity of frame unification is almost linear
in the number of nodes.

Frame semantics: formalization

Frames as minimal models of attribute-value formulas

(i) Every frame is the minimal model (w.r.t. subsumption) of a finite
conjunction of primitive attribute-value formulas.

o

Frame semantics: formalization

Frames as minimal models of attribute-value formulas

(i) Every frame is the minimal model (w.r.t. subsumption) of a finite
conjunction of primitive attribute-value formulas.

(if) Every finite conjunction of primitive attribute-value formulas has
a minimal frame model.

Frame semantics: formalization

Frames as minimal models of attribute-value formulas

(i) Every frame is the minimal model (w.r.t. subsumption) of a finite
conjunction of primitive attribute-value formulas.

(if) Every finite conjunction of primitive attribute-value formulas has
a minimal frame model.

Example ACTOR man

locomotion /—* house

©)

@ —en
MANNER/ IN-REGION
O PATH " f
ENDP part-o
O » O

walking o >
path region region

e (locomotion A MANNER: walking A ACTOR £ x A
MOVER = ACTOR A PATH: (path A ENDP:region)) A
(e-PATH ENDP, z-IN-REGION) : part-of A x-man

Frame semantics: formalization

Attribute-value constraints
General format: V¢, ¢ € AVDesc
Notation: ¢ = 1) for V(¢ - ¢)
Horn constraints: ¢; A ... A @, = 1 (¢; € pAVDesc, 1) € pAVDesc U {1})

Examples
activity = event
causation A activity = 1
AGENT : T = AGENT = ACTOR
activity = ACTOR: T
activity A motion = ACTOR = MOVER

Frame semantics: formalization

Attribute-value constraints
General format: V¢, ¢ € AVDesc
Notation: ¢ = 1) for V(¢ - ¢)
Horn constraints: ¢; A ... A @, = 1 (¢; € pAVDesc, 1) € pAVDesc U {1})

Examples
activity = event
causation A activity = 1
AGENT : T = AGENT = ACTOR
activity = ACTOR: T
activity A motion = ACTOR = MOVER

Theorem (Frame unification under Horn constraints) [Hegner 1994]

The worst case time-complexity of frame unification under a finite set of
labeled Horn constraints is almost linear in the number of nodes.

(Labeled Horn constraint: ky-¢1 A ... A kn- ¢ — [-))

Frame semantics: formalization

Further examples

book = info-carrier

[Babonnaud et al. 2016]

o

Frame semantics: formalization

Further examples

book

book = info-carrier ® ~

[Babonnaud et al. 2016]

book, info-carrier
[

o

Frame semantics: formalization

Further examples

book

book = info-carrier ® ~

[Babonnaud et al. 2016]

book, info-carrier
[

info-carrier = phys-obj A CONTENT : information

Frame semantics: formalization

Further examples [Babonnaud et al. 2016]

book book, info-carrier

book = info-carrier
f e ~ []

info-carrier = phys-obj A CONTENT : information

info-carrier info-carrier, phys-obj information

] ~r [J (e}
CONTENT

Frame semantics: formalization

Further examples [Babonnaud et al. 2016]

book book, info-carrier

book = info-carrier
f e ~ []

info-carrier = phys-obj A CONTENT : information

info-carrier info-carrier, phys-obj information

] ~r [J (e}
CONTENT

reading = PERC-COMP: perception A MENT-COMP : comprehension
A [PERC-COMP, MENT-COMP] : ordered-overlap

Frame semantics: formalization

Further examples [Babonnaud et al. 2016]

book book, info-carrier

book = info-carrier
f e ~ []

info-carrier = phys-obj A CONTENT : information

info-carrier info-carrier, phys-obj information

] ~r [J (e}
CONTENT

reading = PERC-COMP: perception A MENT-COMP : comprehension
A [PERC-COMP, MENT-COMP] : ordered-overlap

perception
PERC-COMP_,, O
%, ordered-
; % overla
reading reading P
[} ~ [} 1

(@] .
MENT-COMP comprehension

Lexicalized Tree Adjoining Grammars (LTAG)

Tree-rewriting system
m Finite set of (lexicalized) elementary trees.

m Two operations: substitution (replacing a leaf with a new tree)
and adjunction (replacing an internal node with a new tree).
- S S
NP \\\ /\ /\
N NP VP NP VP
S
‘ /\

‘Adam’ ::j——’ /
vp VNP ~ ‘Adam’ Adv VP
A
/\ ,’l ‘ \\\ ‘ ‘ ’ /\
Adv vpr /S ate o Np always \" N‘P
Y\,/
‘ate’ ‘an apple’

Lexicalized Tree Adjoining Grammars (LTAG)

Two key properties of the LTAG formalism
m Extended domain of locality

The full argument projection of a lexical item can be represented
by a single elementary tree.

Elementary trees can have a complex constituent structure.
m Factoring recursion from the domain of dependencies

Constructions related to iteration and recursion are modeled by
adjunction.

Through adjunction, the local dependencies encoded by elementary
trees can become long-distance dependencies in the derived trees.

Lexicalized Tree Adjoining Grammars (LTAG)

Two key properties of the LTAG formalism
m Extended domain of locality

The full argument projection of a lexical item can be represented
by a single elementary tree.

Elementary trees can have a complex constituent structure.
m Factoring recursion from the domain of dependencies

Constructions related to iteration and recursion are modeled by
adjunction.

Through adjunction, the local dependencies encoded by elementary
trees can become long-distance dependencies in the derived trees.

Slogan: “Complicate locally, simplify globally” [Bangalore/Joshi 2010]

Lexicalized Tree Adjoining Grammars (LTAG)

“Simplify globally”
m The composition of elementary trees can be expressed by two

general operations: substitution and adjunction.

(Since basically all linguistic constraints are specified over the local
domains represented by elementary trees.)

“Complicate locally”

m Elementary trees can have complex semantic representations
which are not necessarily derived compositionally (in the syntax)
from smaller parts of the trees.

In particular, there is no need to reproduce the internal structure
of an elementary syntactic tree within its associated semantic
representation. [Kallmeyer/Joshi 2003]

Lexicalized Tree Adjoining Grammars (LTAG)

Tree families

Unanchored elementary trees are organized in tree families, which
capture variations in the (syntactic) subcategorization frames.

Example unanchored family for transitive verbs

S

S T

S T NP S

S > NP VP 1

NP S _—1 NP VP

NP VP _—1 Vo PP |
NP VP e Vo PP
Vo NP | N P NP
e Vo NP I P NP
by [

S
N\
/\

Lexicalized Tree Adjoining Grammars (LTAG)

Tree families

Unanchored elementary trees are organized in tree families, which
capture variations in the (syntactic) subcategorization frames.

Example unanchored family for transitive verbs

S
S S
S T NP S N\
S T NP VP —— 1 NP S
NP S 1 NP VP —\
NP VP 1 Vo PP | N NP VP
NP VP e Vo PP T
Vo NP | N P NP _— Vo NP
e Vo NP I P NP |
by [€
by

Metagrammar

Modular characterization of elementary trees by a system of
tree descriptions.

Lexicalized Tree Adjoining Grammars (LTAG)

Decomposition/factorization in the metagrammar

Class CanSubj
S

/ \
NP < VP
Vo

Class DirObj
VP

Vo <* NP

Class ExtrSubj
S

v
NP[WH=yes] <*\S
/7 \
NP < VP
e Vo
Class ByObj
VP[VOICE:passive]

Vo <*\PP
N\
||9 < NP
by

Class Subj
CanSubj v ExtSubj

Class ActV
VP[VOIC E=active]

|
Vo

Class PassV
VP[VOIC E=passive]

Vo

20/32

Lexicalized Tree Adjoining Grammars (LTAG)

Decomposition/factorization in the metagrammar

‘ metagrammar classes |

compilation

unanchored tree families lexical entries
WI select}io/
LTAG
Advantage

The metagrammar allows one to express and implement lexical
and constructional generalizations.

LTAG and frames

Example

(4) John walked into the house.

NP[[:];’] —;\\\\\

‘John’

,| person
'1; 3 9
NAME ‘John

e’ path
PATH
ENDP

2 [lN—REGlON]
part-of([L,2)

S bounded-locomotion
/\
Npli=2] VPle—] ACTOR T
- - MOVER
e
[1=2,E=¢] GOAL z
VPle=) PP A PATH path

| /! MANNER walking

yIE=e]
\ ;
‘walked” .~
P - A»NP“:Z!/]
PP[]:z’,E:e’] s
Det N
P NPpli==] ‘the’ ‘house’

‘ *_-

. house
‘into’ 2" .
IN-REGION region

N

LTAG and frames

Example (cont’d)
(5) a.

John walked into the house.

b. Mary kicked the ball into the room.

Metagrammar classes (syntax and semantics)

Class n0Vpp(dir)

Class n0Vnipp(dir)

identities: Cq.e = Csy.e

Class C1 =noV

export: e

Class C'y =DirPrepObj

export: e, z

Implementation

identities: Ci.e=¢e, Cy.2 =2, Cr.e =€’
[causation
Class C1 =n0Vn1
oot e AcTOR x [
export: e
P THEME y [2)
activity
- €[cause |acTor
Class C'y =DirPrepObj THEME
export: e, z
P ’ ,| MOVER
EFFECT €
GOAL 2z
- -

XMG metagrammar compiler extended with semantic frame specifications

[Lichte/Petitjean 2015]

N

Frame semantics: extensions

Obvious issue

What about sentence level semantics, quantification, intensionality,
and all these things?

Frame semantics: extensions

Obvious issue

What about sentence level semantics, quantification, intensionality,
and all these things?

Possible approaches

Keep frames as basic semantic representations and evaluate
quantification over the domain of frames. [~ Muskens 2013]

Use an attribute-value language with quantifiers (e.g. Hybrid Logic),
and build formulas instead of models.

[e.g., Kallmeyer/Osswald/Pogodalla 2016]

Try to retain the idea of minimal model building and consider
frame types as proper entities of the model/universe.

Frame semantics: extensions

Hybrid Logic + underspecification (“hole semantics”)
(6) Every dog barked.

S
/\ Iy : A(barking
A{AGENT)@
NP[[:Z, MiINs=[]] NP[IZE]’ Mins = 1] VP ())
N e . ‘
Det NPE‘E= —————— > NPl _ 1) \%
‘every’ N ‘barked’
V(125 0), |

B <* [, [< ‘dog’ Iy : dog

o

Frame semantics: extensions

Hybrid Logic + underspecification (“hole semantics”)
(6) Every dog barked.

S
/\ Iy : A(barking
A(AGENT)[@
NP[[:.%, MiINs=[]] NP[IZE]’ Mins = 1] VP ())
PN e P ‘
Det NPE‘E= —————— » NP -1, \%
‘every’ N ‘barked’
V(lom), |
BB ‘dog’ Iy : dog

~ V(Ix.B >), L : dog, L, : A(barking A (AGENT)x), [B] <«* b, [6] <* [

Frame semantics: extensions

Hybrid Logic + underspecification (“hole semantics”)
(6) Every dog barked.

S
/\ Iy : A(barking
A(AGENT)[4]
NP[[:_@, -] NP[|=E], MINS = [1] VP ())
Det NP[o ------ » NPe_ 1) v
‘every’ N ‘barked’
V(lz.® - @), ‘
E<* @6 < ‘dog’ Iy : dog

~ V(Ix.B >), L : dog, L, : A(barking A (AGENT)x), [B] <«* b, [6] <* [
~ V(| x.dog — A(barking A (AGENT)x))

Frame semantics: extensions

Hybrid Logic + underspecification (“hole semantics”)

(7) Peter knocked at the door for ten minutes.

S
NP[I:] VP[E = 1o, ToP=[3]] VP
,N\\/? L N /\
NPp-i) /\[.=m] .
| v.oooppld VP e PP
‘Peter’ ‘ N ‘
‘knocked’ \ ‘for ten minutes’
@; person N
Aname)Peter 1 = 30, PPi-) l4 :{ e.nonbounded
Lz : knocking A(DURATION) ten-minutes
A{AGENT)Z]

‘at the door’ AV ((segment-of Je — [1),

A{PATIENT)[,
{) @; door <y

B <* 12

Frame semantics: extensions

Hybrid Logic + underspecification (“hole semantics”)

(7) Peter knocked at the door for ten minutes.

S
NPEEL VP, rorm VP
f\\l’A R /\
NPp-i) /\[.=m] .
‘ \% PP - VP[E=IE,T0P=] PP
‘Peter’ ‘ \\\ ‘
‘knocked’ \ ‘for ten minutes’
@; person N
A(NAME) Peter 1y : 35, . PP-j1 l4 :} e.nonbounded
lo : knocking .
A(DURATION) ten-minutes
AMAcenT) ‘at the door’ AV ((segment-of Je — [1),
A(PATIENT)[, o]
a1y @; door 4

~ 3(} e.nonbounded A (DURATION) ten-minutes
A Y ((segment-of e — knocking A (AGENT)i A (PATIENT))))
A Q;(person A (NAME) Peter) A Q;door

Frame semantics: extensions

Frame types (sketch/work in progress)

Frame semantics: extensions

Frame types (sketch/work in progress)

m Types as elements of the universe/model

event concrete @
A A
subtype i subtype

run anim ~
A A

inst : i inst
AG i AG i
run Q————» O anim O—— 0

|event|, | run|, etc.: type names (nominals)

Frame semantics: extensions

Frame types (sketch/work in progress)

m Types as elements of the universe/model

event concrete @
A A
subtype i subtype
run anim ~
4 4
inst i inst
AG i AG :
run Q ——— - O anim O—— 0
|event|, | run|, etc.: type names (nominals)
. A
m Types as values of attributes inst |
! CTYPE.
Example: collections of elements of type T > ((apple)
A e
c-cTYPE=2 T A x member ¢ — xinst T member | e inst

Frame semantics: extensions

Frame types (sketch/work in progress)

m Complex frame types -

Introduce frame types like |P: ¢ || subtype

Frame types can have (canonical) IAG|

attributes, e.g., |P:¢|-||P

n inst |[P:t| < n-P inst |¢]

CAG : anim D
AG
1 IAG]
"subt e
-

mst

AG
o

Frame semantics: extensions

Frame types (sketch/work in progress)

m Complex frame types -

Introduce frame types like |P: ¢ || subtype

Frame types can have (canonical) IAG|

attributes, e.g., |P:¢|-||P

n inst |[P:t| < n-P inst |¢]

m Dependent frame types

ninst [P2x| < n-P2x

(|P = x| frame type “dependent” on x)

CAG : anim D
AG
1 IAG]
"subt e
-

mst

@

AG
o

|AG-|
\ ®

Frame semantics: extensions

Frame types (sketch/work in progress) -

m Example: event progression
P prog subtype

e-PROG =2 T A e’ segment e — e’ inst T | inst

PROG
activity Wa[kmg "

MOVER £ x
ACTOR X
¢ Iki
PROG [W“ ing] ACTOR /|MOVER I
MOVER X

Frame semantics: extensions

Frame types (sketch/work in progress) -

m Example: event progression

e-PROG = T A e’ segment e — e instT

activity
ACTOR X
e .
walking
PROG
MOVER X

PROG

[progression
m Example: scalar change ENTITY x
[incremental-change |

Elesser(, @)

subtype

lnst

PROG Wa[king A
MOVER £ x

ACTOR /|MOVER; I

ENTITY X
stage

INITIAL [ENTITY X
LENGTH
stage

FINAL [ENTITY X
LENGTH [1]

Further ongoing work

Formalization of Role and Reference Grammar

Role and Reference Grammar (RRG): [see, e.g., Van Valin 2005]

A non-transformational grammatical theory, inspired by typological
concerns, which makes use of syntactic templates and lexical
decomposition structures, among others.

SENTENCE

core 1
= Lop cLAUSE
core R ek Tae e pros™ oane «— penHeRy
PRED PV N
RP NucL | RP NU‘CL PP
‘ ereo preo
I v e v w
Syntactic . .
X +—> Syntactic representation
inventory Y P
i
I3
8
g Linking Constructional
3 algorithm schemas
3
Z l MoRPHOLOGY —
¢ SYNTAX Juncture: nuclear
Lexicon > Semantic representation Nexus: cosubordination
Construction: gone
IS
ap et e
[do’(x,2)] CAUSE [INGR shattered’(y)] Nuer Nuet,
| |

o e Linking: default
(iF INT (1ns PRES (xsp PERF PROG (do’(Kim, [ery’ (Kim)])))) SeuTcn s | CAUSE [SEM)
PRAGMATICS unspecified

30

32

Further ongoing work

Formalization of Role and Reference Grammar

Role and Reference Grammar (RRG): [see, e.g., Van Valin 2005]

A non-transformational grammatical theory, inspired by typological
concerns, which makes use of syntactic templates and lexical
decomposition structures, among others.

Aspects of the formalization

m Modified tree operations because of flat syntactic structures:
Wrapping substitution and sister adjunction.
[Osswald/Kallmeyer, to appear]

m Decompositional semantic frames instead of semantic templates.

m Argument linking rules as constraints in the metagrammar.
[Kallmeyer/Lichte/Osswald/Petitjean 2016]

30/32

Thank you very much
for your attention!

References

Babonnaud, W., Kallmeyer, L., and Osswald, R. (2016). Polysemy and coercion - a frame-based approach using LTAG and Hybrid Logic.
In Amblard, M. et al., eds., Logical Aspects of Computational Linguistics, 9th International Conference, 18-33. Springer.

Bangalore, S. and Joshi, A. K. (2010). Introduction. In Bangalore, S. and Joshi, A. K., eds., Supertagging: Using Complex Lexical
Descriptions in Natural Language Processing, 1-31. MIT Press.

Barsalou, L. W. (1992). Frames, concepts, and conceptual fields. In Lehrer, A. and Kittay, E. F., eds., Frames, Fields, and Contrasts, 21-74.
Lawrence Erlbaum.

Crabbé, B. and Duchier, D. (2005). Metagrammar redux. In Christiansen, H. et al., eds., Constraint Solving and Language Processing,
32-47. Springer.

Crabbé, B., Duchier, D., Gardent, C., Le Roux, J., and Parmentier, Y. (2013). XMG: eXtensible MetaGrammar. Computational Linguistics,
39(3):591-629.

Hegner, S. J. (1994). Properties of Horn clauses in feature-structure logic. In Rupp, C. J. et al., eds., Constraints, Language and
Computation, 111-147. Academic Press.

Joshi, A. K. and Schabes, Y. (1997). Tree-adjoining grammars. In Rozenberg, G. and Salomaa, A., eds., Handbook of Formal Languages.
Vol. 3: Beyond Words, 69-123. Springer.

Kallmeyer, L., Lichte, T., Osswald, R., and Petitjean, S. (2016a). Argument linking in LTAG: A constraint-based implementation with
XMG. In Proceedings of the 12th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+12), 48-57.

Kallmeyer, L. and Osswald, R. (2012). A frame-based semantics of the dative alternation in Lexicalized Tree Adjoining Grammars. In
Pifon, C., ed., Empirical Issues in Syntax and Semantics 9, 167-184.

Kallmeyer, L. and Osswald, R. (2013). Syntax-driven semantic frame composition in Lexicalized Tree Adjoining Grammars. Journal of
Language Modelling, 1(2):267-330.

Kallmeyer, L., Osswald, R., and Pogodalla, S. (2016). For-adverbials and aspectual interpretation: An LTAG analysis using Hybrid Logic
and Frame Semantics. In Pinon, C., ed., Empirical Issues in Syntax and Semantics 11.

Lobner, S. (2014). Evidence for frames from human language. In Gamerschlag, T. et al., eds., Frames and Concept Types, 23-67. Springer.

Muskens, R. (2013). Data semantics and linguistic semantics. In Aloni, M. et al., eds., The dynamic, inquisitive, and visionary life of ¢,
?¢, and o ¢. A festschrift for Jeroen Groenendijk, Martin Stokhof, and Frank Veltman, 175-183.

Osswald, R. (1999). Semantics for attribute-value theories. In Dekker, P., ed., Proceedings of the Twelfth Amsterdam Colloquium,
199-204, Amsterdam. ILLC.

Osswald, R. and Kallmeyer, L. (to appear). Towards a formalization of Role and Reference Grammar. In Kailuweit, R. et al., eds.,
Applying and Expanding Role and Reference Grammar.

Osswald, R. and Van Valin, Jr., R. D. (2014). FrameNet, frame structure, and the syntax-semantics interface. In Gamerschlag, T. et al.,
eds., Frames and Concept Types, 125-156. Springer.

Petersen, W. (2007). Representation of concepts as frames. In Skilters,). et al., eds., The Baltic International Yearbook of Cognition, Logic
and Communication, volume 2, 151-170. University of Latvia.

Van Valin, Jr., R. D. (2005). Exploring the Syntax-Semantics Interface. Cambridge University Press. 3

b8}

	Introduction

