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1 Introduction

Computational semantics in general, and especially for contemporary grammar
theories of NL, is an active research area. Largely, incorporating computational
semantics into formal syntax, and in particular, in computational grammar sys-
tems for natural language processing, is one of the foremost lines of research on
natural and artificial languages. Moschovakis [11] introduced the logical calculus
Lλ
ar of acyclic recursion for mathematical modelling of the concepts of meaning

of natural language. This paper relies on familiarity with the syntax and seman-
tics of the formal language Lλ

ar. For an extended introduction to the type theory
Lλ
ar, see the original work of Moschovakis [11]. An introduction to the language

Lλ
ar of acyclic recursion is given also in Loukanova [10].
While, currently, HPSG framework is a distinctive representative of Constraint-

Based Lexicalized Grammar (CBLG), this paper takes a general perspective on
an emerging constraint-based approach to computational grammar. For demon-
stration purpose, we shall use CBLG as introduced by Sag et al. [15], which
is closest to, but is not necessarily HPSG. Originally, HPSG was developed by
Pollard and Sag, in [12] and [13], based on the original ideas of Situation Theory
and Situation Semantics, see Barwise and Perry [1] and Devlin [6], [7]. By its
constraint and lexicalized approach to grammar of NL, where a head component
drives propagation of grammatical information, [13] became and remains a clas-
sic introduction to HPSG. The CBLG introduced by Sag et al. in [15] inherits
some of the major ideas in [13], and, similarly, is primarily about the prospects of
formalizing linguistic concepts by constraints into generalized grammar, which
bland syntax and lexicon. Semantic representations are used only occasionally,
in a rudimentary form, as minimally needed for some syntactic constructions
that are tightly related to semantics, and to demonstrate the ideas of taking
semantics into formal grammar. The feature-value descriptions that are used for
embedding semantic content within syntactic constructions, retain the original
situation semantics presentation.

Typically, logic type-theories with λ-calculi languages have not been con-
sidered as native to HPSG for semantic representation. This is not always the
case, as Sailer [17] demonstrated with a version of Gallin’s typed logic TY 2

(Gallin [9]). Lλ
ar properly extends the language and theory of TY 2 in a way that

offers more expressiveness, not only from the point of mathematical modeling of
algorithms, but also for semantics of natural language. This paper takes the task
to show that Lλ

ar can be used for representation of semantics of natural language,
in a compositional syntax-semantics mode with formal grammar. The formal



grammar is conceived as defined by a CBLG type-hierarchical system, which
interweaves various linguistic layers, e.g., lexicon, grammar rules and linguistic
principals. The target is generalized, computational grammar that amalgamates
syntax and semantics.

Lexicon The lexicon is a subsystem of the formal grammar, which consists of
feature-value descriptions of basic lexical items and lexical rules. The lexical rules
license (well-formed) feature-value structures of newly “generated” lexemes up
to fully inflected words.

Grammar Rules In contrast to classic rewriting grammars, the grammar rules
of CBLG are expressed as constraints, which define linguistic co-occurrence re-
quirements, according to linguistic types. Rewriting grammars for NL (e.g., clas-
sic context-free grammars or even more advanced phrase structure grammars)
define well-formed phrases according to their syntactic categories with generative
phrase structure rules. The rules classify each syntactic category, e.g., the cate-
gories of sentences (S), noun phrases (NP), verb phrases (VP), adjective phrases
(AP), etc., by specifying detailed co-occurrence information about the combina-
tions between syntactic categories. The grammar rules of CBLG are defined as
very general constraints, typically expressed by using feature-value descriptions,
which provide linguistic classification across syntactic phrasal categories.

Principles Grammar principles and other constraints that define well-formed
feature-value structures of phrases are also expressed by using a language of
feature-value descriptions.

CBLG Type System The lexicon, grammar rules and principles are all inte-
grated into a general grammar system by using a type hierarchy. The constraints
of the CBLG type hierarchy introduce a cross-layer for semantic representations
in the feature-value structures of all lexical items, words and phrases.

This paper defines semantic representations of natural language expressions
by including the logic types of the formal language Lλ

ar of acyclic recursion
as a type sub-system of the CBLG type hierarchy. The CBLG type system
declares that feature structures of the natural language expressions require a
“semantic” feature, sem, the value of which is a feature-value pair that encodes
a Lλ

ar term. Thus, a feature-value description of a natural language expression
can represent1 not only its syntactic structure and co-occurrence requirements,
but also a rendering into a Lλ

ar term that represents its semantics. The render
operation is defined compositionally via the rules and constraints of CBLG. The
paper will represent semantics of various lexical items, phrasal constructs and
some of the major syntactic rules, by using a version of CBLG, as introduced
by Sag et al. [15]. In particular, a lexical approach to grammar is demonstrated
by incorporating semantic representations with two rules that can be used for

1 Some versions of HPSG include the phonological or orthographical form of the ex-
pressions in their feature structures.



saturation of the syntactic co-occurrence requirements of lexical items belonging
to various parts of speech classes: verbs, nouns, adjectives, adverbs, prepositions.
These rules cover the saturation of syntactic and semantic arguments in various
syntactic constructs such as NPs, VPs, PPs, AdjPs, AdvPs, sentences.

Some Notations and Agreements. In general, through this paper, we follow
closely Moschovakis [11] in notations, terminology, and style of presentation of
all matters related to the formal language Lλ

ar. In particular, we use “≡” for the
orthographical identity relation between the syntactic objects of Lλ

ar, i.e., terms
and types. The equation symbol “=” is used as the identity predicate symbol in
the language Lλ

ar, and as denotational equality between terms. The symbol “:≡”
is a meta-symbol (i.e., not among the symbols of Lλ

ar) that is used in definitions
of objects, i.e., for strict syntactic identity “by definition”. The symbol “:=” is
the assignment symbol in the recursion terms. It is also used in the definition of
the updates of the variable function, which assigns values to free variables.

We shall diverge from Moschovakis [11], by using a variant of the class
of languages Lλ

ar, with respect to the order of currying in the λ-terms. In
Moschovakis [11], the currying order for types, functions and function symbols,
of two and more arguments, follows the tradition, which is used in λ-calculi for
mathematics and computer science, i.e.: τ1 × τ2 → τ ≡ (τ1 → (τ2 → τ)), where
τ1, τ2, τ ∈ Types , and, A(B1, B2) ≡ [A(B1)](B2) : τ , where A, B1 and B2 are
terms such that A : (τ1 → (τ2 → τ)), B1 : τ1 and B2 : τ2. This implies that
the function symbol like, which represents the corresponding relation, applies
at first to the rendering of the verbal subject and then to the rendering of the
verbal complement:

John likes Mary. (1a)

render
−−−→ like(john)(mary) ≡ like(john ,mary) (1b)

According to English syntax, the transitive verbs combine at first with their
complements to form a VP, and then, with their subject to form a sentence. This
combination order can be achieved in the corresponding semantic rendering too,
by using λ-abstraction and rendering the transitive verbs, similar to “like”, by
appropriate λ-terms, instead by constants:

likes
render
−−−→ λyλxlike(x)(y) (2a)

John likes Mary.
render
−−−→ (2b)

[λyλxlike(x)(y)](mary)(john) ≡ [λyλxlike(x, y)](mary)(john) (2c)

≡ [λyλxlike(x, y)](mary , john) (2d)

Now, β-reduction of Lλ
ar is in restricted version, and does not imply the refer-

ential synonymy: [λyλxlike(x)(y)](mary )(john) ≈ like(john)(mary). Such syn-
onymy is not justified also by our intuitions about the correspondence between
English syntax and semantics. I.e.,

[λyλxlike(x)(y)](mary )(john) 6≈ like(john)(mary)



which is justified formally and intuitively.
From this point of this paper, unless otherwise stated, we use currying order

that complies with the typical order of saturating syntactic arguments in lin-
guistic theories of NL: the verbal head combines at first with its complements,
in order to form a phrase with all complements saturated, before saturating its
specifier argument. This is motivated at least by the syntax of English language
across syntactic categories: S, VP, NP, AP, PP, etc. The subject argument of
a verb is its linguistic specifier feature. By such currying order, the semantic
representation of the lexicon is more simple and natural.

τ1 × τ2 → τ ≡ (τ2 → (τ1 → τ)), where τ1, τ2, τ ∈ Types (3a)

A(B1, B2) ≡ [A(B2)](B1) : τ (3b)

where A : (τ2 → (τ1 → τ)), B1 : τ1, B2 : τ2 (3c)

While changing the order of currying is not absolutely necessary, because a
desirable order of the arguments can be achieved by using λ-abstraction, the
lexical items for transitive verbs are more simply rendered by setting the order
of the arguments as in (3a)–(3b). Thus,

likes
render
−−−→ like (4a)

John likes Mary.
render
−−−→ (4b)

like(mary)(john) ≡ like(john ,mary) (4c)

2 Semantics within Major CBLG Rules

2.1 Recursion Terms in Feature-value Representation

We introduce features for representing logic types, terms and their parts. The
value of the feature l-type is a logic type. The values of the features t-head
and where are, respectively, a term and an acyclic system of assignments2

{p1 := A1, . . . , pn := An} (n ≥ 0) in the formal language of Lλ
ar.

Constraints associated with the grammar types of a CBLG restrict the values
of these features so that a feature structure of the form




l-type τ

term

[
t-head A0

where {p1 := A1, . . . , pn := An}

]



(5)

is well-defined iff A0 is an Lλ
ar term of type τ and the set of assignments {p1 :=

A1, . . . , pn := An}, n ≥ 0, represented by the value of the feature where, is an

2 See, Moschovakis [11] for the notion of acyclicity. Intuitively, a system of assignments
is acyclic if it does not allow assignments that lead to “loops”: p :≡ . . . A(p), i.e., it
closes-off.



acyclic system of assignments in Lλ
ar. The above feature structure represents the

Lλ
ar term A0 where {p1 := A1, . . . , pn := An}, which, in general, is not necessarily

in canonical form. And vice versa, any term A : τ of Lλ
ar can be represented by

such feature structure. In this paper, the formulations of the rules are such that
the mother’s semantic representation corresponds to a Lλ

ar term in a canonical
form, given that the Lλ

ar terms corresponding to the daughters nodes are in
canonical forms.

In the Lλ
ar language and its calculus, recursion terms are essential and have

sequences of assignments in the scope of the recursion operator, represented by
the constant where. In the recursive terms, i.e. the where-terms, the acyclic
systems of assignments are sequences, where the order of the assignments is ir-
relevant because the congruence relation between terms is closed over reordering
(which is formalized by permutation) of the assignments. Thus, the sequences
of assignments in the where-terms are interpreted as sets. In HPSG frame-
works, lists, defined similarly to the list data structure objects in programming
languages, are typically used in values of features. The operations append , con-
catenation and union are different, and are defined over different objects, i.e.,
lists, sequences and sets, respectively. This nuisance can be avoided by a formal
constraint-based grammar, in which the value of the feature where is either a
set or a sequence of assignments, and imposing closure under permutation over
the order of the assignments, similarly to the permutation closure of the relation
of congruence between terms in Lλ

ar. To comply with the tradition of HPSG, we
could formulate the rules and the lexicon by stating that the value of the feature
where is a list of assignments, which is interpreted as a set by imposing indif-
ference with respect to permutation of the list elements. Because such details
are subject of the formal foundations of constraint-based grammar, which is not
in the topic of this paper, to simplify the exposition, we assume that the values
of the feature where is a set of assignments.

The typical CBLG grammar rules define co-occurrence restrictions, which
correspond to syntactic combinations. The syntactical combination of a CBLG
grammar rule and the logical types that are values of the features l-type in the
daughter’s feature structures determine which of the Lλ

ar syntactic constructions
need to be used. For example, a VP can be such that it requires a subject NP.
The HSR combines the VP with an appropriate NP to form a sentence. In case
when, the term associated with the VP is C : ẽ → t̃, and the term associated
with the subject NP is D : ẽ, the term A associated with the mother S node
is A ≡ C(D) : t̃. This means that A ≈ cf(A) ≡ cf(C(D)) : t̃. The reduction
calculus of Lλ

ar provides effective procedure for reducing A to its canonical form
cf(A) (modulo congruence): A ⇒ cf(A). However, given the canonical forms
cf(C) and cf(D) the canonical form cf(C(D)) can be determined directly from
the parts of cf(C) and cf(D), and the definition of the canonical forms of the
terms of Lλ

ar (Moschovakis [11]).

In this paper, we assume that the lexicon (lexical entries and lexical rules)
are formulated to handle feature-value representations of Lλ

ar terms in canonical
forms. This means that each lexical entry, of grammar type lexeme or word,



has a feature structure which, by the values in the feature-value pairs [t-head
A0] and [where {p1 := A1, . . . , pn := An}] (n ≥ 0), represents a Lλ

ar term A

in canonical form: i.e., the term A ≡ A0 where {p1 := A1, . . . , pn := An} is in
canonical form. We are targeting a grammar where all grammar rules are de-
fined by distributing the parts of canonical forms among the features t-head and
where, in all daughter and mother feature structures. The term A associated
with the mother is computed from the terms associated with the daughters by
respecting the logical types given as values of the feature l-type, which, when
matching, should determine the syntactic combination of the terms. Exceptions
may require alternative rules, as demonstrated in this paper.. The values of the
features t-head and where of the mother node are determined from the corre-
sponding values of these features in the daughters’ feature structures, by using
the syntactical definition of the Lλ

ar terms and the definition of the canonical
form cf(A) of each term A of Lλ

ar (Moschovakis [11]). This provides a proof by
induction that the well-formed tree structures licenced by the considered rules
represent properly typed terms of Lλ

ar in canonical forms.

2.2 Head Specifier Rule

The Head Specifier Rule (HSR) defines rendering into application terms3 of
Lλ
ar, for the typical simple cases of saturation of the specifier, when the daugh-

ter feature structures do not introduce type incompatibility or semantic under-
specification (which can arise, for example, in expressions with multiple occur-
rences of quantifiers):




phrase

syn

[
val

[
spr 〈 〉

]]

sem




l-type T

term

[
t-head A0

where U

]






−→ 1


sem




l-type T1

term

[
t-head A1,0

where U1

]




 H




syn



val
[
spr 〈 1 〉

comps 〈 〉

]



sem




l-type T2

term

[
t-head A2,0

where U2

]






where:

Ti ≡ (σ → τ) and Tj ≡ σ, for i, j ∈ {1, 2} and i 6= j, T ≡ τ and (6)

A0 where U ≡ cf
(
[Ai,0 where Ui]([Aj,0 where Uj ])

)
.

There are two sub-cases for the term [A0 where U ] in4 (6) that are determined
by the case (CF2) of the definition of the canonical forms of the terms of Lλ

ar

(3.13, Moschovakis [11]):

If Aj,0 is immediate, then A0 ≡ Ai,0(Aj,0) and U ≡ Ui ≡ U1 ∪ U2; (7a)

otherwise, A0 ≡ Ai,0(q0) and U ≡ {q0 := Aj,0} ∪ U1 ∪ U2. (7b)

3 We use extra brackets and sizes of parentheses for easier comprehension of terms.
4 The additional sub-index 0 in Ai,0 and Aj,0 is unnecessary in these formulations,
but allows easier re-formulations of the rules with constructs inside U1 and U2.



The values of features t-head andwhere of the left hand side of the hcr rule
are the parts of a canonical form, which is determined by: the types T1 and T2;
the values of the features t-head andwhere in the daughters’ feature structures
on the right hand side; and the definition of the canonical form cf(A) of each
term A (see the definition in 3.13, Moschovakis [11]). To avoid binding and free
variable clashes, we also assume that, in each application of the grammar rules,
the representations of the Lλ

ar terms are such that all bound location variables
are distinct and distinct from all the free locations (variables and constant), by
making appropriate renaming substitutions, if needed.

2.3 An Example for a Definite Description

A graph that represents the feature-value description of the syntax of the sen-
tence (8), by including semantic representation, is given in Figure 1, as a tree-like
structure.

The dog barks. (8)

Technically, co-labeled feature-structure descriptions, e.g., those co-labeled
by 1 (or 2 , etc.), designate unique, single feature-structures. In graphical rep-
resentations of phrasal analyses, the nodes are labeled by feature-structures.
Thus, co-labeled feature-structure descriptions are feature-structures labeling
single nodes in labeled graphs that actually are not trees. As a tradition, and
for practical reasons of depicting the analyses, the labeled graphs are visualized
as trees, by splitting nodes and co-labeling them with the extra box-labels n .

2.4 An Example for a NP Quantifier in Subject Position

A graph that represents the feature-value description of the syntax of the sen-
tence (9), by including semantic representation, is given in Figure 2, as a tree-like
structure.

Every dog barks. (9)

A reduction to a canonical form, like that in (10) modulo congruence, i.e., up to
renaming of bound locations and reordering of the assignments, can be effectively
found by the rules of the reduction calculus of Lλ

ar.

every(dog)(bark) ⇒cf every(d)(b) where {b := bark , d := dog}; (10)

On the other hand, the term in canonical form cf
(
every(dog)(bark)

)
can be

derived step-by-step in the two applications of the HSR with the case (7b), i.e.,
by (CF2) of the definition of canonical forms.

cf(every) :≡ every where {} (11a)

cf(dog) :≡ dog where {}; (11b)

cf(bark) :≡ bark where {}; (11c)



Fig. 1. A Definite Description
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Fig. 2. NP Quantifier in Subject Position
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cf
(
every(dog)

)
:≡ every(d) where {d := dog} (12)

(by (CF2), (11a) and (11b));

cf
(
every(dog)(bark)

)
:≡ every(d)(b) where {d := dog , b := bark} (13)

(by (CF2), (11c) and (12)).

3 Head Complement Rule: Version 1

As in the above statement of the HSR, in the basic cases, with no type in-
compatibility or under-specification (which can arise for multiple occurrences
of quantifiers), the Head Complement Rule (HCR) determines rendering into
application terms of Lλ

ar:




phrase

syn

[
val

[
comps a

]]

sem




l-type T

term

[
t-head A0

where U

]






−→ H




syn


val



comps




first 1

rest a

[
list

]











sem




l-type T2

term

[
t-head A2,0

where U2

]






1


sem




l-type T1

term

[
t-head A1,0

where U1

]






(14)
where the types T , T1, T2 and the terms A0, A1,0, A2,0 and U are defined as in
(6) with its both sub-cases, (7a) and (7b).

Note that this version of the HCR saturates the list of the complements
one at a time. This means that the grammar type phrase should not introduce
a constraint [comps 〈〉]. Intuitively, any feature structure, that marks a node
of a parse tree associated with the grammar rules, and is not of type word,
is of type phrase. I.e., a feature structure is of type phrase, when it has been
“output” by some grammar rule, such as HSR or HCR, and may have partly
or entirely saturated comps list. Such version of the HCR introduces “semi-
phrases” that are not distinguished from proper phrases, for which [comps 〈〉]. In
all cases of complete or partial saturation of the complement list, the statement
of the semantic representation remains the same. Something more, the semantic
representation in the statement associated with the HCR rule is the resembles
that of HSR, (6), with its both sub-cases. In both rules, HCR and HSR, so far,
the semantic representation is functional application dictated by respecting the
logic types of the terms associated with the daughter’s feature structures. Both
rules HSR and HCR, as formulates above refer to (6). However, HCR, with the
above definition (Version 1) covers only some cases of complement saturation.
Thus, there is a need for further analyses, as exemplified in the following section.

Transitive Verbs with Proper Names in Subject and Complement Positions A
feature-value description of the syntax of the sentence (15), that includes se-
mantic representations of the syntactic components, is given in Figure 3, as a
tree-like structure.



Kim hugged Maja. (15)

4 Head Complement Rule: Version 2

4.1 Transitive Verbs with Quantifier NP in Complement Position

In this subsection, we consider the special case of sentences where the head VP
is headed by a transitive verb with a NP quantifier in its complement position.
We have rendered typical transitive extensional verbs, like “read, hug, kiss” into
Lλ
ar constants of type (ẽ → (ẽ → t̃)). On the other hand, NP quantifiers are

rendered into terms of type (̃e → t̃) → t̃. If the head of a VP is a transitive
extensional verb and its complement position is occupied by a NP quantifier,
then there is type mismatch between the semantic representations of the head
verb and its complement, and, the HCR rule can not be used with the statement
in (6) and its sub-cases (associated with the HCR: Version 1). For such cases of
the HCR, we define its semantic representations as follows (here we repeat the
HCR for clarity):




phrase

syn

[
val

[
comps a

]]

sem




l-type T

term

[
t-head A0

where U

]






−→ H




syn


val



comps




first 1 x

rest a

[
list

]











sem




l-type T2

term

[
t-head A2,0

where U2

]






1



sem




l-type T1

term

[
t-head A1,0

where U1

]

index x







(16)
where T2 ≡ (ẽ → (σ̃ → t̃)), T1 ≡ ((̃e → t̃) → t̃), and either of the following
cases5:

T ≡ (σ̃ → t̃) and (17a)

A0 where U ≡ λyA′

1,0(p(y)) where {p := λy λxA′

2,0(x)(y)} ∪ U ′

1 ∪ U ′

2,

T ≡ (q̃ → t̃), where q̃ ≡ ((̃e → t̃) → t̃) (17b)

(q̃ is the type of unary quantifiers) and

A0 where U ≡ λY A′

1,0(p(Y )) where {p := λY λx[Y (q(Y )(x))],

q := λY λx(λy[A′

2,0(x)(y)])}

∪ U ′

1 ∪ U ′

2,

where x and the variables in the sequence y are fresh pure variables; p and q are
fresh location variables; A′

1,0, A
′

2,0, U
′

1 and U ′

2 are obtained by the replacements

5 We assume here that the terms λx[A2,0(x)(y)] and λx[Y (λy[A2,0(x)(y)])] are proper,
i.e., not immediate. Technically, the special cases with immediate terms should be
considered too, but would expand the definition, which is needless in this paper.



Fig. 3. A Transitive Verb with Proper Names as its Subject and Complement
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specified in (CF3): i.e., each assignment r := R, is replaced by r′ := λY λxR′,
where r′ is a fresh location and the term R′ is the result of the substitution

R′ ≡ R{r :≡ r′(Y )(x) : for all locations r in the system of assignments}.

Note that the co-indexing of the value of the first complement [first 1 x]
of the head daughter binds, via λ-abstraction indexing, the correct argument
role in the quantifier application. The intuitions that are behind this statement
are the reduction rules that are needed to reduce to canonical forms the term
in the quantifier application. Instead of the above rule, we could have used the
following one:

T ≡ (σ̃ → t̃) and (18a)

A0 where U ≡ cf
(
λy

[
A1,0

(
λx[A2,0(x)(y)]

)
where U1 ∪ U2

])
,

T ≡ (q̃ → t̃), where q̃ ≡ ((̃e → t̃) → t̃) (18b)

(q̃ is the type of unary quantifiers) and

A0 where U ≡ cf
(
λY

[
A1,0

(
λx[Y (λy[A2,0(x)(y)])]

)
where U1 ∪ U2

])
,

so that in either case A1,0 applies to λx-indexed term over

the index value of the quantifier A1,0 : 1 (index) ≡ x.

Assuming that the daughters are in canonical forms guarantees direct “deriva-
tion” of the canonical form of the Lλ

ar term represented in the mother feature
structure.

Formally (e.g., in a proof of a statement that grammar rules provide canonical
representations), the reduction rules that are predominantly in use are: (recap),
(head), the compositionality rules, and the corresponding cases of the definition
of the canonical forms, see Moschovakis [11], in particular, λ-case (CF3) of that
definition. Note that indexing of the correct arguments is maintained by reducing
to canonical forms via the λ-rule, respectively, the λ-case (CF3) in the definition
of the canonical terms.

The type T2 ≡ (ẽ → (σ̃ → t̃)) in the HCR Version 2, is the type of the
head daughter, in the feature-structure descriptions in the rule. The subtypes ẽ
and σ̃ are the types of the arguments that need to be saturated to get to the
semantic type of a full sentence, t̃. When the head structure is a lexical head,
which is a transitive verb, i.e. of syntactic type word, with HEAD information
for the part of speech of appropriate transitive verbs, the leftmost subtype ẽ in
T2 corresponds to the type of the direct complement, i.e., the first complement
of the verbal head. The variable x in (17a) occupies the semantic argument slot
for that first complement. More generally, in each application of the HCR, x
is for the complement that is to be saturated by the current application of the
HCR.

The subtype σ̃ is a sequence of types that consists of the types of the terms
rendering the complements after the first one, or after the one saturated by



the current application of the HCR, followed by the type of the rendering of the
subject, which is the rightmost in σ̃. The sequence y in (17a) consists of variables
that occupy the semantic argument slots for the complements after the one that
is saturated by the current application of the HCR, with the subject slot at the
rightmost end. In this paper we consider verbs with at most one complement, but
the rule is formulated from the perspective of more general usages. Note that the
HCR applies to other parts of speech, not only verbs, that require complements,
e.g., prepositions, relational common nouns, adjectives, etc.

The sentence (19) is a representative for analyses of simple transitive verbs
with one complement that is a quantifier NP.

Kim hugged some dog. (19)

The graph (tree-like) representation of the feature-value description of (19),
including semantic representations of the components, is given in Figure 4. In
Figure 4, the variable sequence y ≡ y corresponds to the grammatical subject
that is saturated by HSR, and the type σ̃ ≡ ẽ.

If we apply the quantifier term represented by the node (n4)np to the term
represented by the head verb in the node (n3)n, which has been λ-indexed with
the variable that is the value of the index, i.e., xd ≡ 2 (index), the term is:

λy
[[
some(d) where {d := dog}

](
λxd hug(xd)(y) where {}

)]
(20a)

⇒ λy
[
some(d)

(
λxd hug(xd)(y)

)
where {d := dog}

]
(20b)

⇒ λy
[
some(d)

(
h
)
where {d := dog , h := λxd hug(xd)(y)}

]
(20c)

⇒cf λy some(d′(y))
(
h′(y)

)
(20d)

where {d′ := λydog , h′ := λyλxd hug(xd)(y)}

by (λ-rule)

≡c λyk some
(
d(yk)

)(
h(yk)

)
(20e)

where {d := λykdog , h := λykλxd hug(xd)(yk)}

by renaming replacement (i.e., congruence)

6≈ λy some(d)
(
h(y)

)
where {d := dog , h := λyλxd hug(xd)(y)} (20f)

The term in (20f) is in a canonical form, but it is not referentially synonymous
(by the reduction calculus) to any of the other terms (20a)-(20e). In particular,
(20f) is not referentially synonymous to the term in (20e). The term (20e) labels
the node (n2)vp, as the result of the application of the rules HCR (for licencing
(n2)vp) and HSR (for licencing (n4)np) and the semantic renderings associated
with them: (17a) and (6), respectively. If the complement list had more elements
to be saturated, next λ-indexing and quantifier binding can be done with another
use of HCR. Note that the term λykdog : (̃e → (̃e → t̃)) may seem strange at
first glance, but it has a technical role, from a computational perspective. It is
resulted by the λ-rule of the reduction calculus. The λ-abstraction is over the
variable yk, which does not occur in the scope of the abstraction, i.e. in the



Fig. 4. Proper Name as Subject and NP Quantifier as Complement
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sub-term dog : (̃e → t̃). Thus, the sub-term d(yk) of the head part in (20e), does
not represent that yk has the property of being a dog.

In this example, the values of the features l-type, t-head and where in
the node (n2)vp are according to (17a) determined by the l-type values of
the daughter’s terms. Note that the term [λyk(some

(
d(yk)

)
(h(yk)))](k) that is

the value of the feature t-head, in the feature structure of the node (n0) S, is
explicit and irreducible. It can be considered, intuitively as stating that k has
the property of having a d entity to which it does h. The location d provides a
property of entities; the location h provides an “action” of entities to entities.
From mathematical point, these terms provide algorithmic steps of computing
the denotation of [λyk(some

(
d(yk)

)
(h(yk)))](k) after the basic components are

computed and “stored” in locations k, d and h. In the above cases of the rules,
the render relation is defined as compositional syntax-semantics relation.

In this paper, the actual value of σ̃, in the HCR, is simple and appropriate
for simple transitive verbs, having just one complement, and the semantics of
which is “extensional”. E.g., the above formulations of the semantic representa-
tions do not cover lexical items, such as intensional verbs, that have semantics
with attitudes. The semantic representation of verbs with more arguments, e.g.,
ditransitive ones, will use a sequence of variables y with more than one elements.
Note that x is for the complement that is being saturated by this rule; y is a
sequence of variables, where the first one (which may be the only one) stands for
the next to be saturated. Other possibilities for σ̃ are subject of further work.

4.2 Transitive Verbs with Quantifier NPs in Subject and
Complement Positions

In the following example, (21), the subject and complement positions of the sen-
tence are filled by NP quantifiers that cause two different readings with different
“scoping” of the quantifiers.

Figure 5 gives the tree-like graph representation of the feature-value syn-
tactic description of (21), that includes semantic representations of the compo-
nents, and produces the de-dicto reading of the sentence, in accordance with the
constraint-based rules that are used. The values of the features l-type, t-head
and where, i.e., the parts of the Lλ

ar term associated with the node (n2)vp
are determined in the same way as the parts of the corresponding node (n2)vp
in the analysis of the previous sentence (19), i.e., by using the HCR with the
rendering rule (17a). The parts of the Lλ

ar term represented by the node (n0)s
are determined by the rendering rule (6), in particular, by its case (7b).

The Lλ
ar term (22) is associated with the (n0)s node of the graph in Figure 5.

Both, the term (22) and the graph analysis represent the de-dicto reading of the
sentence (21).

∀∃ Rendering (de-dicto Reading)

Every cat hugged some dog.
render
−−−→ A (21)



Fig. 5. Quantifier NPs as Subject and Complement: de-dicto
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where A is the term

A ≡ every(c)(s) where {s := λyk(some
(
d(yk)

)
(h(yk))), (22)

c := cat ,

d := λykdog ,

h := λykλxdhug(xd)(yk)}

Figure 6 is the tree-like graph of the feature-value description of (23), which
includes feature-value semantic representation of the de-re reading, in accordance
with the constraint-based rules that are used. The Lλ

ar term associated with the
(n0)s node of the graph in Figure 6, which represents the de-re reading of the
sentence, is given in (24).

∃∀ Rendering (de-re Reading)

Every cat hugged some dog.
render
−−−→ A (23)

where A is the term

A ≡ λE(some(d(E))(e(E)))(a) where (24)

{a := every(c),

e := λEλxd E(h(E)(xd)),

c := cat ,

d := λEdog ,

h := λEλxdλykhug(xd)(yk)}

Now, given that hug is a constant of Lλ
ar, the following terms are referentially

(i.e., algorithmically) synonymous, but they can not be reduced to each other:

hug ≈ λxdλykhug(xd)(yk) (25)

The referential synonymy (25) follows by the Referential Synonymy Theorem
(see Moschovakis [11]), because the terms on both sides of the equivalence (25)
are explicit, irreducible, and have the same denotations for all variable assign-
ments. Furthermore, by the rules of the calculus of referential synonymy for Lλ

ar

(see p. 30, Moschovakis [11]), it follows that

λEhug ≈ λEλxdλykhug(xd)(yk) (26)

and that the term A in (24), which renders the de-re reading of the sentence
(23), is referentially (i.e., algorithmically) synonymous with the following term:

A ≈ λE some(d(E))(e(E))(a) where {a := every(c), (27)

e := λEλxd E(h(E)(xd)),

c := cat ,

d := λEdog ,

h := λE hug}



Fig. 6. Quantifier NPs as Subject and Complement: de-re
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Sub-terms like some
(
d(y)

)(
h(y)

)
, every

(
d(y)

)(
h(y)

)
, and, correspondingly,

λy some
(
d(y)

)(
h(y)

)
and λy every

(
d(y)

)(
h(y)

)
, as in (22), (24), and (27), re-

spect the general patterns Q
(
d(y)

)(
h(y)

)
and λy Q

(
d(y)

)(
h(y)

)
, for any two-

argument quantifier term Q. These terms represent the pattern of the general
cases of higher order relations that are two-argument quantifiers Q, where it is
possible for both arguments of Q to depend on a common object denoted by the
variable y. Typically, in natural languages (i.e., those spoken by humans), ren-
derings λy Q

(
d(y)

)(
h(y)

)
(a) of sentences with quantified NPs, as in the terms

above, one of the arguments of Q does not depend essentially on the common
variable y. E.g., in λE some(d(E))(e(E)), the argument d(E) does not depend
strictly on E, because d is bound by d := λE dog , where dog is a constant.

The following replacement property is valid for referential synonymy, but it
is not sufficient to simplify the terms above, in a way that may be desirable, for
example, by reducing λ-abstractions like dλE dog , λE hug, etc.

Statement 1 (Simple η-Replacement for Referential Synonymy). For
any pure variables v : σ and x : σ, any recursion variable (location) d : σ → τ ,
and any explicit, irreducible term D : τ that does not have any (free) occurrences
of the variables v and d:

λxd(x) where {d := λvD} ≈ d where {d := λvD} (28)

Proof. Since d : σ → τ is a variable:

den(λxd(x)) = den(d) (29)

Indeed, by the definition 1.4. [11] of the denotational semantics of Lλ
ar, for any

variable assignment g, den(λx(d(x)))(g) = h, where h is the function such that,
for every a ∈ Tσ:

h(a) = den(d(x))(g{x := a}) (by 1.4.D3 [11]) (30a)

= [den(d)(g{x := a})](den(x)(g{x := a})) (by 1.4.D2 [11]) (30b)

= [den(d)(g)](a) (by 1.4.D1 [11]) (30c)

Therefore, h = den(d)(g) = den(λx(d(x)))(g), for every assignment g.
The referential synonymy (28) follows by the Referential Synonymy Theorem

(see Moschovakis [11]), since the parts of the terms on both sides of (28) have
the same denotations.

In fact, the terms on both sides of (28) denote the constant function x 7→
den(D)(g), for any (fixed) assignment function g:

den(λxd(x) where {d := λvD})(g) = (31a)

den(d where {d := λvD})(g) = (31b)

den(d)(g{d := den(λvD)(g)}) = den(λvD)(g) = h, (31c)

where h(a) = den(D)(g{v := a}) = den(D)(g), for every individual a of type σ,
since the term D : τ does not have any free occurrences of the variable v : σ.



The Simple η-Replacement (28) is not (directly) applicable to the terms that
render the analyses of the above NL sentences. To achieve further simplifications
that are intuitively desirable, we add the following rule to the set of reduction
rules of the calculus of referential synonymy in Lλ

ar (see p. 30, Moschovakis [11]).
Note that this rule does not preserve the referential synonymy.

η-Reduction Rule (η-Red). Let

A0 where {d := λvD, p1 := A1, . . . , pn := An}

be a term in canonical form, where v : σ is a pure variable and d : σ → τ is a
recursion variable (location), such that

1. the explicit, irreducible term D : τ does not have any (free) occurrences of
the variables v and d,

2. all the occurrences of d in A0, . . . , An are occurrences of the term d(x), which
are in the scope of λx (modulo appropriate renaming of x),

Then, for any fresh recursion variable d′ : τ :

A0 where {d := λvD, p1 := A1, . . . , pn := An} (32a)

⇒ηA0{d(x) :≡ d′} where {d′ := D, p1 := A1{d(x) :≡ d′}, . . . , (32b)

pn := An{d(x) :≡ d′}}

where, for each i ∈ {0, . . . , n}, Ai{d(x) :≡ d′} is the result of the replacement of
all occurrences of d(x) in Ai with d′.

In general, according to the Referential Synonymy Theorem, the above η-
Reduction rule does not preserve referential synonymy. Indeed, the correspond-
ing term parts, in the assignments d := λvD and d′ := D, are not denotation-
ally equal: den(D) 6= den(λvD). Nevertheless, it provides further simplification
of canonical terms that are otherwise irreducible. Such simplifications accord
with intuitions for preserving all essential computational steps of an algorithm,
while simplifying it, by reducing unnecessary computations: vacuous abstrac-
tion d := λvD, and then application d(x), in case v does not occur in D. Such
η-replacement is clearly useful in natural language processing, in particular for
reducing complexity of parsing algorithms take care of semantic representations.

The natural isomorphism defined by Moschovakis [11]) is the strictest equiva-
lence relation between recursors, i.e., the referential synonymy “≈” is the strictest
equivalence between terms representing algorithms for computing denotations.
The set of the reduction rules of the referential synonymy, together with appro-
priately defined η-Reduction rules (e.g., like the above), induces another equiva-
lence relation between recrsors and, correspondingly equivalence “≈η” between
terms. Such equivalence between recursors would be just a little bit less stronger
than the strongest intensional synonymy between recursors, but still far more
stronger than denotational equivalence. Work on such developments is not in the
subject of this paper. Here we have introduced ⇒η to demonstrate the possibil-
ity for replacement properties that simplify semantic representations of natural
language expressions so that:



1. The subterms that represent semantic components of larger natural language
expressions do not use unnecessary abstractions and application operations.

2. The reductions preserve all the algorithmic steps in the compositional syn-
tax-semantics interface, for the parses provided by grammar rules

3. The reductions maintain canonical forms.

Example 1. By η-Reduction, the term (22), repeated below as (33a), simplifies to
the term (33b). The explicit, irreducible term dog in the assignment d := λykdog ,
in (33a), does not have any free occurrences of the pure variable yk. We apply
the η-Reduction for d(yk).

A ≡ every(c)(s) where {s := λyk(some
(
d(yk)

)
(h(yk))), (33a)

c := cat , d := λykdog ,

h := λykλxdhug(xd)(yk)}

⇒η every(c)(s) where {s := λyk(some
(
d
)
(h(yk))), (33b)

c := cat , d := dog ,

h := λykλxdhug(xd)(yk)}

Example 2. In the term (24) repeated below as (34a), the explicit, irreducible
terms dog and λxdλykhug(xd)(yk) do not have any free occurrences of the pure
variable E, in the assignments d := λEdog and h := λEλxdλykhug(xd)(yk),
respectively. (34b) is obtained by two applications of η-Reduction for d(E) and
h(E), respectively. Furthermore, λxdλykhug(xd)(yk) ≈ hug , thus (34c) follows
from (34b), by the rule for the compositionality of recursion, in the the calculus
of referential synonymy for Lλ

ar:

A ≡ λE(some(d(E))(e(E)))(a) where (34a)

{a := every(c),

e := λEλxd E(h(E)(xd)),

c := cat , d := λEdog ,

h := λEλxdλykhug(xd)(yk)}

⇒η λE(some(d)(e(E)))(a) where (34b)

{a := every(c),

e := λEλxd E(h(xd)),

c := cat , d := dog ,

h := λxdλykhug(xd)(yk)}

≈ λE(some(d)(e(E)))(a) where (34c)

{a := every(c),

e := λEλxd E(h(xd)),

c := cat , d := dog ,

h := hug



Statement 2 (CBLG Compositionality Statement.). The values of the
features t-head andwhere, in the feature-value pairs [t-head A0] and [where
{p1 := A1, . . . , pn := An}] (n ≥ 0), that are associated with the sem feature,
in the well-formed graph (tree-like) structures of the CBLG analyses, represent
Lλ
ar terms in canonical form: A where {p1 := A1, . . . , pn := An}.

Proof. Sketch of a proof, for a fully specified grammar: by structural induction
over well formed tree structures. We assume that the grammar has rules like
the ones stated in this paper, and that all lexical and grammar rules, principles,
and constraints are formulated so that they preserve semantic representations in
canonical forms. We also assume that the lexicon provides word feature struc-
tures with semantic representations that are Lλ

ar terms in canonical forms. The
proof of this statement is by structural induction that uses the reduction rules
and the definition of the canonical terms of Lλ

ar. Adding η-replacement, at ap-
propriate stages, in rules, principles, or parses, the canonical forms of semantic
representations would be maintained.

5 Comparisons and Conclusions

The languages of recursion and their theories, e.g., Lλ
ar, provide new, elegant

mathematical formalization of major concepts of algorithms and language mean-
ing. They introduce computational treatment of concepts that have been in the
scope of cross-disciplinary research effort for years, including Frege’s notions of
sense and denotation, and relations between them. Intuitively, the meaning of a
language expression has two components: (1) a denotation, which can vary de-
pending on particular states (worlds, situations), and (2) a referential intension,
which is the algorithm for computing the denotation in a given context. The ref-
erential intension of a term A is represented by its canonical form cf(A), which
codifies all the basic facts and the way they are combined for computing the de-
notation of A. Thus, reducing terms to canonical forms is important. A formal
grammar of NL, that renders NL parsings directly to canonical terms, which
represent their semantics, provides not only computational syntax-semantics in-
terface, but also efficiency.

In addition to the algorithmic aspect, the theory of Lλ
ar provides faithful

semantic representation of NL language expressions. The calculus of Lλ
ar is a

proper extension of Gallin’s typed logic TY 2 (Gallin [9]), and thus, of various
λ-calculi, in particular, those that are embedded (interpreted) in TY 2, e.g.,
Montague’s Intensional Logic (IL). There are natural language sentences that
can be rendered into Lλ

ar terms representing them semantically more adequately,
without any equivalent terms in Montague’s IL.

There have been various approaches to semantic underspecification by using
λ-calculi languages. A classic representative is the technique of Cooper’s semantic
storage (see [4]), which was developed into many variants. There have been other
approaches, too, in particular, Muskens [14], which was followed more recently
by Bos [2], Copestake et al. [5], Egg [8], Richter and Sailer [16], and others.



Bunt [3] gives a comprehensive overview of the field. A distinctive feature of
the language and calculus of Lλ

ar is that it provides representation of language
underspecification inherently, at its object level, that is also in the spirit of
modeling meanings by algorithms, i.e., as abstract mathematical objects, which
have syntactical representatives by terms in canonical forms. An introduction to
how this can be done is given in Loukanova [10]. A comprehensive retrospective
on this subject is for further work, in particular, for development of new approach
to CBLG that takes type-theoretic grammar approach in full consideration.
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