Formal Semantics in Modern Type Theories (and Event Semantics in MTT-Framework)

Zhaohui Luo Royal Holloway University of London

This talk

- I. Formal semantics in Modern Type Theories: overview
 - MTT-semantics is both model-theoretic and proof-theoretic
 - ♦ HoTT-logic for MTT-semantics in Martin-Löf's TT
 - paper in Proc. of LACompLing18

II. Event semantics in MTT-framework

- (Neo-)Davidsonian event semantics and problems
- Event semantics in MTT-framework
 - Events in MTT-semantics
 - Event structure with dependent types

I. Overview of MTT-semantics

- Natural Language Semantics study of meaning (communicate = convey meaning)
- Various kinds of theories of meaning
 - Meaning is reference ("referential theory")
 - Word meanings are things (abstract/concrete) in the world.
 - ❖ c.f., Plato, ...
 - Meaning is concept ("internalist theory")
 - Word meanings are ideas in the mind.
 - c.f., Aristotle, ..., Chomsky.
 - Meaning is use ("use theory")
 - Word meanings are understood by their uses.
 - c.f., Wittgenstein, ..., Dummett.

Type-Theoretical Semantics

- Montague Semantics
 - R. Montague (1930–1971)
 - Dominating in linguistic semantics since 1970s
 - Set-theoretic, using simple type theory as intermediate
 - * Types ("single-sorted"): e, t, e→t, ...
- * MTT-semantics: formal semantics in modern type theories
 - Examples of MTTs:
 - Martin-Löf's TT: predicative; non-standard FOL
 - PCIC (Coq) & UTT (Luo 1994): impredicative; HOL
 - Ranta (1994): formal semantics in Martin-Löf's type theory
 - Recent development on MTT-semantics
 - → full-scale alternative to Montague semantics

Recent development on rich typing in NL semantics

- Asher, Bekki, Cooper, Grudzińska, Retoré, ...
 - ❖ S. Chatzikyriakidis and Z. Luo (eds.) Modern Perspectives in Type Theoretical Sem. Springer, 2017. (Collection on rich typing & ...)
- MTT-semantics is one of these developments.
 - Z. Luo. Formal Semantics in Modern Type Theories with Coercive Subtyping. Linguistics and Philosophy, 35(6). 2012.
 - S. Chatzikyriakidis and Z. Luo. Formal Semantics in Modern Type Theories. Wiley/ISTE. (Monograph on MTT-semantics, to appear)

Advantages of MTT-semantics, including

 Both model-theoretic & proof-theoretic – offering a new perspective not available before (explicated later today)

MTT-semantics: basic categories

Category Semantic Type		
S	Prop (the type of all propositions)	
CNs (book, man,)	types (each common noun is interpreted as a type)	
IV	A→Prop (A is the "meaningful domain" of a verb)	
Adj	A→Prop (A is the "meaningful domain" of an adjective)	
Adv	$\Pi A:CN.(A \rightarrow Prop) \rightarrow (A \rightarrow Prop)$ (polymorphic on CNs)	

In MTT-semantics, CNs are types rather than predicates:

- "man" is interpreted as a type Man: Type.
- \diamond Man could be a structured type (say, Σ (Human, male))
- A man talked.

- Rich type structure ("many-sorted", but types have structures):
 - * Existing types in MTTs: Table, $\sum x:Man.handsome(x), ...$
 - Newly introduced types to MTTs: Phy•Info (representing copredication)
 - Type-theoretic representations for various linguistic features
 (Adj/Adv modifications, coordination, copredication, coercions, events, ...)
- Selectional restrictions: meaninglessness v.s. falsity (#) Tables talk.
 - ♦ Montague: $\forall x:e.table(x) \supset talk(x)$ (well-typed, false in the intended model)
 - ⋄ MTT-sem: \forall x:Table.talk(x) (ill-typed as talk:Human→Prop; meaningless)

Note:

- Well-typedness corresponds to meaningfulness (c.f., [Asher11] and others)
- Typing in MTTs is decidable, while truth/falsity of a formula is not.

Modelling Adjective Modification: Case Study [Chatzikyriakidis & Luo: FG13, JoLLI17]

Classical classification	example	Characterisation of Adj(N)	MTT-semantics
intersective	handsome man	N & Adj	\sum x:Man.handsome(x)
subsective	large mouse	N (Adj depends on N)	large : ∏A:CN. A→Prop large(mouse) : Mouse→Prop
privative	fake gun	$\neg N$	$G = G_R + G_F$ with $G_R \leq_{in1} G$, $G_F \leq_{inr} G$
non-committal	alleged criminal	nothing implied	∃h:Human. H _{h,A} ()

 $[\]star$ H_{h,A}(...) expresses, eg, "h alleges ...", for various non-committal adjectives A; it uses the Leibniz equality =_{Prop}. [Luo 2018] (*)

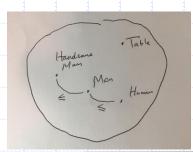
cf, work on hyperintensionality (Cresswell, Lappin, Pollard, ...)

Note on Subtyping in MTT-semantics

Simple example

A human talks. Paul is a handsome man.

Does Paul talk?


Semantically, can we type talk(p)?

(talk : Human \rightarrow Prop & p : Σ (Man,handsome))

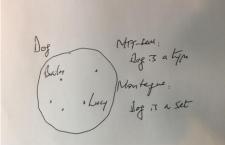
Yes, because p : $\Sigma(Man,handsome) \leq Man \leq Human$.

Subtyping is crucial for MTT-semantics

- Coercive subtyping [Luo 1999, Luo, Soloviev & Xue 2012] is adequate for MTTs and we use it in MTT-semantics.
- Note: Traditional subsumptive subtyping is inadequate for MTTs (eg, canonicity fails with subsumption.)

MTT-semantics is both model/proof-theoretic

- Model-theoretic semantics (traditional)
 - Meaning as denotation (Tarski, ...)
 - \diamond Montague: NL \rightarrow (simple TT) \rightarrow set theory
- Proof-theoretic semantics
 - Meaning as inferential use (proof/consequence)
 - Gentzen, Prawitz, Martin-Löf (meaning theory)
- MTT-semantics
 - ❖ Both model-theoretic and proof-theoretic in what sense?
 - Z. Luo. Formal Semantics in Modern Type Theories: Is It Modeltheoretic, Proof-theoretic, or Both? Invited talk at LACL14.
 - What does this imply?



MTT-semantics is model-theoretic

- NL → MTT (representational/model-theoretic)
- MTT as meaning-carrying language
 - types representing collections
 - signatures (eg ,subtyping [Lungu 2018]) representing situations
 - Cf, set theory in Montague semantics

MTT-semantics is proof-theoretic

- MTTs have proof-theoretic meaning theories
 - Judgements can be understood by means of their inferential roles.
 - Use theory of meaning (Wittgenstein, Dummett, Brandom)
 - Proof-theoretic semantics (Gentzen, Prawitz, Martin-Löf, ...)
- Proof technology: reasoning based on MTT-semantics on computers (eg, [Chatzikyriakidis & Luo (JoLLI14)])

Importance for MTT-semantics

- Model-theoretic powerful semantic tools
 - Much richer typing mechanisms for formal semantics
 - Powerful contextual mechanism to model situations
- Proof-theoretic practical reasoning on computers
 - Existing proof technology: proof assistants (Coq, Agda, Lego, ...)
 - Applications to NL reasoning
- Leading to both of
 - Wide-range modelling as in model-theoretic semantics
 - Effective inference based on proof-theoretic semantics

Remark: new perspective & new possibility not available before!

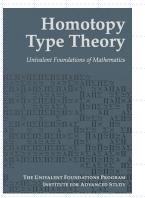
Advanced features in MTT-semantics: examples

Copredication

- Linguistic phenomenon studied by many (Pustejovsky, Asher, Cooper, Retoré, ...)
- Dot-types in MTTs: formal proposal [Luo 2009] (*), implementation [Xue & Luo 2012] and copredication with quantification [Chatzikyriakidis & Luo 2018]
- Linguistic feature difficult, if not impossible, to find satisfactory treatment in a CNs-as-predicates framework. (For a mereological one, see [Gotham16].)
- Anaphora analysis/resolution via Σ-types
 - [Sundholm 1986, Ranta 1994] in Martin-Löf's type theory
- Linguistic coercions via coercive subtyping [Asher & Luo 2012]
- Several recent developments
 - (today) Event semantics in MTT-framework [Luo & Soloviev (WoLLIC17)]
 - Propositional forms of judgemental interpretations [Xue et al (NLCS18)]
 - CNs as setoids [Chatzikyriakidis & Luo (J paper for Oslo meeting 2018)]
 - (today) HoTT-logic for MTT-sem in Martin-Löf's TT (current proceedings)

MTT-semantics in Martin-Löf's TT with H-logic

- Martin-Löf's type theory for formal semantics
 - Sundholm, Ranta & many others (all use PaT logic)
- PaT logic: propositions as types (Curry-Howard)
 - ❖ P is true if, and only if, p : P for some p.
 - But Martin-Löf goes one step further: types = propositions!
 - ❖ This is where a problem arises [Luo (LACL 2012)].
- Proof irrelevance (*)
 - * Example: a handsome man is (m,p): Σx :Man.handsome(x)
 - ❖ Two handsome men are the same iff they are the same man proof irrelevance (any two proofs of the same proposition are the same.)
 - But in MLTT with PaT logic, this would mean every type collapses!
 Obviously, that would be absurd.
- So, MLTT with PaT logic is actually <u>inadequate</u> for MTT-sem, which has been mainly developed in UTT so far.


MLTT_h: Extension of MLTT with H-logic

- ❖ H-logic (in Homotopy Type Theory; HoTT book)
 - * A proposition is a type with at most one object.
 - * isProp(A) = $\prod x,y:A.(x=y)$.
 - Logical operators (examples):
 - ❖ $P \supset Q = P \rightarrow Q$ and $\forall x:A.P = \prod x:A.P$
 - ❖ $P \lor Q = |P + Q|$ and $\exists x : A.P = |\Sigma x : A.P|$

where |A| is propositional truncation, a proper extension.

- Proof irrelevance is "built-in" in h-logic (by definition).
- Claim: MLTT_h is adequate for MTT-semantics.
- Details in the short paper of LACompLing18 proceedings.

II. Events in MTT-Semantic Framework

- Davidson's event semantics [1967]
- Original motivation: adverbial modifications (*)
 (1) John buttered the toast.
 - (2) John buttered the toast with the knife in the kitchen.

 Does (2) imply (1)? (Cumbersome in MG with meaning postulates.)
- Events make it natural without meaning postulates. In neo-Davidsonian notation with thematic roles (1980s):
 - (1') ∃e:Event. butter(e)

& agent(e)=john & patient(e)=toast

(2') ∃e:Event. butter(e) & with(e,knife) & at(e,kitchen)

& agent(e)=john & patient(e)=toast

Obviously, $(2') \Rightarrow (1')$

Problems in Event-semantics + Montague

- ❖ For example, "event quantification problem" (EQP)
- Incompatibility between event semantics and MG.
- (1) Nobody talked.

Intended neo-Davidsonian event semantics is (2):

(2) $\neg \exists x : \mathbf{e}$. human(x) & $\exists v : \mathsf{Event}$. talk(v) & agent(v,x)

But the incorrect semantics (3) is also possible – it is well-typed:

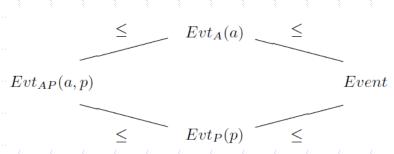
(3) $\exists v$: Event. $\neg \exists x$:**e**. human(x) & talk(v) & agent(v,x)

which moves the event quantifier "∃v:Event" in (2) to the left.

Some proposed solutions to EQP

- Many different proposals
 - Purpose: to force scope of event quantifier to be lower.
 - Only mention two of them here.
- Champollion's quantificational event sem. [2010, 2015]
 - \Rightarrow talk : (Event \rightarrow t) \rightarrow t with talk(E) = ∃e:Event. e∈E & talk(e)
 - ❖ Trick: taking a <u>set</u> E of events as argument, but **talk**(e) ...
 - Debatable: intuitive meanings, compositionality & complexity
- Winter-Zwarts [2011] & de Groote [2014]
 - Use Abstract Categorial Grammar (see, eg, [de Groote 01])
 - ACG structure prevents incorrect interpretation.
- Our proposal: dependent event types (solution to EQP & ...)

Dependent event types [Luo & Soloviev (WoLLIC17)]


- DETs: refining event structure by (dependent) typing
- Applications include
 - A solution to EQP
 - Selection restrictions in MTT-event semantics
- ❖ Refined types of events: Event → Evt(...)
 - Event types dependent on thematic roles agents/patients
 - For a:Agent and p:Patient, consider DETs

Event,
$$Evt_A(a)$$
, $Evt_P(p)$, $Evt_{AP}(a,p)$

Subtyping between DETs:

a:A A≤B

a : B

DET-solution to EQP

(1) Nobody talked.

Neo-Davidsonian in Montague's setting (repeated):

- (2) $\neg \exists x : \mathbf{e}$. human(x) & $\exists v : \mathsf{Event}$. talk(v) & agent(v,x)
- (3) $\exists v$: Event. $\neg \exists x$: **e**. human(x) & talk(v) & agent(v,x)

The incorrect (3) is well-typed.

Dependent event types in Montague's setting:

- (4) $\neg \exists x : \mathbf{e}$. human(x) & $\exists v : \mathsf{Evt}_{\mathsf{A}}(x)$. talk(v)
- (#) $\exists v: Evt_A(x)$. $\neg \exists x: \mathbf{e}$. human(x) & talk(v)

where (#) is ill-typed since the first "x" is outside scope of "∃x:e".

Selectional restrictions

- ❖ Recall:
 - (#) Tables talk.
 - ❖ Montague: $\forall x : \mathbf{e}. \text{talk}(x) \text{well-typed but false, as talk} : \mathbf{e} \rightarrow \mathbf{t}$
 - ❖ MTT-sem: \forall x:Table.talk(x) ill-typed as talk : Human→Prop
- What happens with events?
 - Neo-Davidsonian: talk : Event→t or talk : Event→Prop
 - ♦ Montague: $\forall x : \mathbf{e} \exists v : \text{Event. talk}(v) \& \text{agent}(v) = x \text{ (well-typed)}$
 - * MTT-sem: $\forall x$:Table $\exists v$:Evt_A(x). talk(v) (Also well-typed (!) because Table \leq Agent)

So?

- Three ways to enforce selectional restriction with events:
 - 1. Refined typing for verb phrases (like talk)
 - 2. Refining the typing of thematic roles (like agent)
 - 3. Refining event types (next slide)
- ❖ Approach 1 & 2: Instead of the neo-Davidsonian typing talk: Event→t, or agent: Event→e, we consider
 - ♦ talk_h: Human→Event→Prop (Davidson's original proposal) or
 - * talk_d: Π h:Human. Evt_A(h) \rightarrow Prop (dependent typing) or
 - agent_h: Event→Human (with codomain being Human)
 - ❖ Tables talk. (Ill-typed table x is not a human.)
 - $(\#) \forall x: Table \exists v: Event. talk_n(x,v) \& agent(v)=x$ (ill-typed)
 - $(\#) \forall x: Table \exists v: Event. talk(v) & agent_h(v) = x (ill-typed)$
 - $(\#) \forall x: Table \exists v: Evt_A(x). talk_d(x,v)$ (ill-typed)

Approach 3: refined DETs

- Let T ≤ Agent. (example for subtypes of Agent)
 - \bullet Evt_A[T] : T \rightarrow Type
 - \star Evt_A[T](a) = Evt_A(c(a)), for any a : T.

Examples

- ♦ Men talk. (OK because Man≤Human)
- $\star \forall x:Man \exists v:Evt_{A}[Human](x). talk(v)$
- ❖ Tables talk. (Evt_A[Human](x) ill-typed as x is not a human.)
- \star (#) \forall x:Table \exists v:Evt_A[Human](x). talk(v)
- ⇒ John picked up and mastered the book. (b:Book≤ Phy•Info)
- ⇒ ∃v:Evt_{AP}[Human,Phy•Info](j,b). pick-up(v) & master(v)

Underlying formal systems

- Systems extended with dependent event types
 - ⋄ C_e Church's simple type theory + DETs (with subsumptive subtyping)
 - UTT[E] the modern type theory UTT + DETs (with coercive subtyping as specified in E)
- Theorem.
 - ❖ C_e (like UTT[E]) have nice meta-theoretic properties including, e.g., normalisation and logical consistency.
 - ❖ Proof. Faithfully embedding C_e and UTT[E].

(***)

Related (and some future) work on DETs

- Original idea
 - Came from my treatment of an example in (Asher & Luo 12)
 - Evt(h) to represent collection of events conducted by h : Human.
 - Further prompted by de Groote's talk at LENLS14 (on EQP etc.)
- Other applications of DETs
 - For example, problem with negation in event semantics
 - ❖ Krifka's solution [1989]: a mereological negation system
 - Champollion's solution [2015] (as mentioned above)
 - DETs solution: details to be worked out.
- DEPs dependent on other parameters
 - Dependency on other thematic roles, say time/location/...: Reasonable? Useful?
 - Dependency on other kinds of parameters than thematic roles?

References (1)

- N. Asher. A type driven theory of predication with complex types. Fundamenta Informaticae 84(2). 2008.
- N. Asher. Lexical Meaning in Context: A Web of Words. Cambridge University Press. 2011.
- N. Asher and Z. Luo. Formalisation of coercions in lexical semantics. Sinn und Bedeutung 17, Paris. 2012.
- L. Champollion. The interaction of compositional semantics and event semantics. Linguistics and Philosophy, 38. 2015.
- S. Chatzikyriakidis. Adverbs in a Modern Type Theory. LACL 2014, LNCS 8535. 2014.
- S. Chatzikyriakidis and Z. Luo. Adjectives in a Modern Type-Theoretical Setting. The 18th Conf. on Formal Grammar, Dusseldorf. LNCS 8036. 2013.
- S. Chatzikyriakidis and Z. Luo. Natural Language Reasoning Using Proof-assistant Technology: Rich Typing and Beyond. EACL Workshop on Type Theory and Natural Language Semantics (TTNLS), Goteborg, 2014.
- S. Chatzikyriakidis and Z. Luo. Natural Language Inference in Coq. Journal of Logic, Language and Information, 23(4). 2014.
- S. Chatzikyriakidis and Z. Luo. Proof Assistants for Natural Language Semantics. Logical Aspects of Computational Linguistics 2016 (LACL 2016), Nancy. 2016.
- S. Chatzikyriakidis and Z. Luo (eds.). Modern Perspectives in Type Theoretical Semantics. Studies in Linguistics and Philosophy, Springer. 2017.

References (2)

- S. Chatzikyriakidis and Z. Luo. On the Interpretation of Common Nouns: Types v.s. Predicates. In S. Chatzikyriakidis and Z. Luo (eds.), Modern Perspectives in Type Theoretical Semantics. Springer. 2017.
- S. Chatzikyriakidis and Z. Luo. Adjectival and Adverbial Modification: The View from Modern Type Theories. Journal of Logic, Language and Information 26(1), 2017.
- S. Chatzikyriakidis and Z. Luo. Identity Criteria of Common Nouns and Dot-Types for Copredication. Manuscript of J paper for the Oslo meeting, 2018.
- S. Chatzikyriakidis and Z. Luo. Formal Semantics in Modern Type Theories. ISTE/Wiley Science Publishing Ltd. (to appear)
- ❖ A. Church. A formulation of the simple theory of types. J. Symbolic Logic, 5(1). 1940.
- The Coq Development Team. The Coq Proof Assistant Reference Manual (Version 8.3). INRIA, 2010.
- H. Curry and R. Feys. Combinatory Logic, Vol 1. North Holland, 1958.
- D. Davidson. The logical form of action sentences. In N. Resher (ed.) The logic of Decision and Action. Univ of Pittsburgh Press. 1967.
- P. de Groote. Towards abstract categorial grammars. In Proceedings of the 39th annual meeting of the Association for Computational Linguistics (ACL). 2001.
- P. de Groote and Y. Winter. A type-logical account of quantification in event semantics. Logic and Engineering of Natural Language Semantics 11, 2014.

References (3)

- M. Dummett. The Logical Basis of Metaphysics Harvard University Press, 1991.
- M. Dummett. The Seas of Language. OUP, 1993.
- HoTT. Homotopy Type Theory: Univalent foundations of mathematics. Tech. rep., Institute for Advanced Study. 2013.
- W. Howard. The formulae-as-types notion of construction. In To HB Curry: Essays on Combinatory Logic (1980). 1969.
- R. Kahle and P. Schroeder-Heister (eds.). Proof-Theoretic Semantics. Synthese, 2005.
- M. Krifka. Nominal reference, temporal constitution and quantification in event semantics. In R. Bartsch, J. van Benthem and P. van Emde Boas (eds.) Semantics and contextual expression. 1989.
- G. Lungu. Subtyping in Signatures. PhD thesis, Royal Holloway, Univ. of London. 2018.
- G. Lungu and Z. Luo. On subtyping in type theories with canonical objects. TYPES16 postproceedings. 2018. (in press)
- Z. Luo. Coercive subtyping in type theory. CSL'96, LNCS 1258. 1996.
- ❖ Z. Luo. Coercive subtyping. J. of Logic and Computation, 9(1). 1999.
- Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. OUP, 1994.
- Z. Luo. Type-theoretical semantics with coercive subtyping. SALT20. 2010.

References (4)

- Z. Luo. Contextual analysis of word meanings in type-theoretical semantics. Logical Aspects of Computational Linguistics (LACL'2011). LNAI 6736, 2011.
- Z. Luo. Common nouns as types. LACL'12, LNCS 7351. 2012.
- Z. Luo. Formal Semantics in Modern Type Theories with Coercive Subtyping. Linguistics and Philosophy, 35(6). 2012.
- Z. Luo. Formal Semantics in Modern Type Theories: Is It Model-theoretic, Proof-theoretic, or Both? Invited talk at Logical Aspects of Computational Linguistics 2014 (LACL 2014), Toulouse. LNCS 8535. 2014.
- Z. Luo. MTT-semantics in Martin-Löf's type theory with HoTT's Logic. Proc. of LACompLing18. Stockholm, 2018.
- Z. Luo. MTT-Semantics Is Model-Theoretic As Well As Proof-Theoretic. 2018.
- Z. Luo and S. Soloviev. Dependent event types. Proc of the 24th Workshop on Logic, Language, Information and Computation (WoLLIC'17), LNCS 10388. London, 2017.
- Z. Luo, S. Soloviev and T. Xue. Coercive subtyping: theory and implementation. Information and Computation 223. 2012.
- P. Martin-Löf. On the Meanings of the Logical Constants and the Justifications of the Logical Laws. Nordic Journal of Philosophical Logic, 1(1). 1996.
- P. Martin-Löf. Intuitionistic Type Theory. 1984.

References (5)

- R. Montague. Formal philosophy. Yale Univ Press, 1974. (Collection edited by R. Thomason)
- T. Parsons. Events in the Semantics of English. MIT. 1990.
- B. Partee. Compositionality and coercion in semantics: the semantics of adjective meaning. In *Cognitive Foundations of Interpretation*, Netherlands Academy of Arts and Sciences. 2007.
- P. Pontner and B. Partee (eds). Formal Semantics: The Essential Readings. Blackwell. 2002.
- J. Pustejovsky. The Generative Lexicon. MIT. 1995.
- C. Retoré et al. Towards a Type-Theoretical Account of Lexical Semantics. JoLLI 19(2). 2010.
- J. Pustejovsky. The Generative Lexicon. MIT. 1995.
- A. Ranta. *Type-Theoretical Grammar*. Oxford University Press. 1994.
- G. Sundholm. Proof theory and meaning. In D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol III. 1986.
- Y. Winter and J. Zwarts. Event semantics and abstract categorial grammar. Proc. of Mathematics of Language 12, LNCS 6878, 2011.
- T. Xue and Z. Luo. Dot-types and their implementation. LACL'12, LNCS 7351. 2012.
- T. Xue, Z. Luo and S. Chatzikyriakidis. Propositional Forms of Judgemental Interpretations. Proc. of NLCS18. Oxford, 2018.