Taking Scope with Continuations and Dependent Types

Justyna Grudzińska

University of Warsaw

LACompLing2018 Stockholm University June 28-31, 2018 Dependencies are ubiquitously used and interpreted by natural language speakers.

- Plural unbound anaphora
- Donkey sentences
- Inverse linking constructions
- Possessive weak definites
- Long-distance indefinites
- Spray-load constructions

Unbound anaphora refers to instances where anaphoric pronouns occur outside the syntactic scopes of their quantifier antecedents

(1) Every man loves a woman. They (each) kiss them.

- The way to understand the second (anaphoric) sentence is that every man kisses the women he loves rather than those loved by someone else.
- The first sentence must introduce a dependency between each of the men and the women they love that can be elaborated upon in further discourse.

Inverse linking constructions refer to complex DPs which contain a quantified NP (QP), as in (2)

- (2) a representative of every country
 - ILC in (2) can be understood to mean that there is a potentially different representative for each country

 ✓ every country > a representative
 - The relational noun *representative* introduces a dependency between each of the countries and the representatives of that country.

Semantics with DTs

Outline

- Semantic system with dependent types
 - Main features
 - Dependent types
 - Type-theoretic notion of context
 - Quantification over fibers
 - Common nouns (sortal and relational), QPs and predicates
- Applications scopal phenomena
 - Inverse linking
 - Spray-load constructions
- Integrating dependent type semantics into a continuation-passing framework.

- The idea of having just one universe in first order models originated with Frege and is widely adopted in mathematics (as it fits well the mathematical/logical practice).
- But we can have more than just one type of elements (as is common practice in programming languages).
- The variables of our system are always typed: x : X, y : Y,...
- Types are interpreted as sets: $||X||, ||Y||, \ldots$

- Types can depend on the variables of other types: if x is a variable of the type X, we can have type Y(x) depending on the variable x.
- The fact that Y is a type depending on X can be modeled as a function $\pi: \|Y\| \to \|X\|$

$$\begin{array}{c} \|Y\| \\ \downarrow \pi \\ \|X\| \end{array}$$

so that each type Y(x) is interpreted as the fiber ||Y||(a) of π over $a \in ||X||$ (the inverse image of $\{a\}$ under π).

When we decide to have many (dependent) types, we need contexts to keep track of the typing of variables

 $\Gamma = x : X, y : Y(x), z : Z(x, y), u : U, \ldots$

... and we consider formulas/expressions only in contexts.

Context is a partially ordered set of type declarations of the (individual) variables such that the declaration of a variable x of type X precedes the declaration of a variable y of type Y(x).

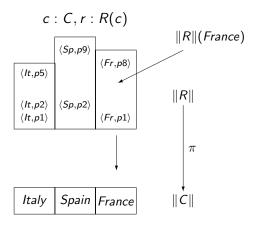
Montague-Style Semantics

- Sortal nouns (e.g. man) are interpreted as one-place relations (expressions of type (e, t)).
- Relational nouns (e.g. *representative*) are interpreted as two-place relations (expressions of type (e, (e, t))).

Dependent type analysis

- Sortal nouns (e.g. man) are interpreted as types.
- Relational nouns (e.g. *representative*) are interpreted as dependent types.

If c is a variable of the type of countries C, there is a type R(c) of the representatives of that country.



If we interpret type C as the set ||C|| of countries, then we can interpret R as the set of pairs:

 $||R|| = \{\langle a, p \rangle : p \text{ is the person from the country } a\}$

equipped with the projection $\pi: ||R|| \to ||C||$.

The particular sets ||R||(a) of the representatives of the country *a* can be recovered as the fibers of this projection (the inverse images of $\{a\}$ under π):

$$\|R\|(a) = \{r \in \|R\| : \pi(r) = a\}.$$

The interpretation of the structure:

c: C, r: R(c)

gives us access to the sets (fibers) ||R||(a) of the representatives of the particular country *a* only.

To form the type of all representatives, we need to use Σ type constructor; $\Sigma_{c:C}R(c)$ is to be interpreted as the disjoint sum of fibers over elements in ||C||:

$$\|\Sigma_{c:C}R(c)\| = \prod_{a\in \|C\|}\pi^{-1}(a).$$

Polymorphic interpretation of quantifiers and predicates

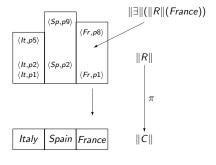
- Quantifiers and predicates are interpreted over various types (given in the context, e.g., *Country*, *Man*, ...), and not over the universe of all entities.
- A QP like *some country* is interpreted over the type *Country*, i.e. *some country* denotes the set of all non-empty subsets of the set of countries

$$\|\exists\|(\|Country\|) = \{X \subseteq \|Country\|: X \neq \emptyset\}.$$

Quantification over fibers

We can quantify over the fiber of the representatives of France, as in *some representative of France*:

$$\|\exists\|(\|R\|(France)) = \{X \subseteq \|R\|(France): X \neq \emptyset\}.$$



Dependencies given in the context determine the relative scoping of quantifiers.

$$\Gamma = x : X, y : Y(x), z : Z(x, y), u : U, \ldots$$

$$\begin{array}{l} \checkmark \quad Q_{1 \ \textbf{x}: X} > Q_{2 \ y: Y(\textbf{x})} \\ \sharp \quad Q_{2 \ y: Y(\textbf{x})} > Q_{1 \ \textbf{x}: X} \end{array}$$

A global restriction on variables is that each occurrence of an indexing variable be preceded by a binding occurrence of that variable - free undeclared variables are illegal.

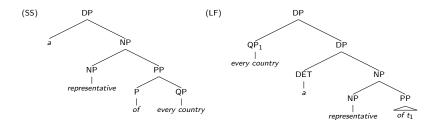
(2) a representative of every country

- ILC in (2) can be understood to mean that there is a potentially different representative for each country

 ✓ every country > a representative (inverse reading)
- ILC in (2) can be also understood to mean that there is some one person who represents all the countries

 ✓ a representative > every country (surface reading)

Standard LF-Movement Analysis



17 / 46

An alternative non-movement analysis of inverse readings

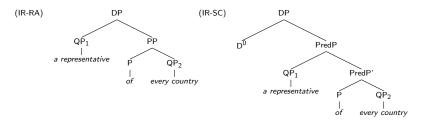
- Relational nouns (relational uses of sortal nouns) are modeled as dependent types.
- Here, representative (as in a representative of every country) is modeled as the dependent type c : C, r : R(c). By quantifying over c : C, r : R(c), we get the inverse ordering of quantifiers:

$$\forall_{c:C} \exists_{r:R(c)}$$
.

$$\ddagger \exists_{r:R(c)} \forall_{c:C}$$

- The interpretation where ∃ outscopes ∀ is not available because the indexing variable c (in R(c)) is outside the scope of the binding occurrence of that variable.
- By making the type of representatives dependent on (the variables of) the type of countries, our analysis forces the inversely linked reading without positing any extra scope mechanisms.

Dependent Type Analysis Inverse reading

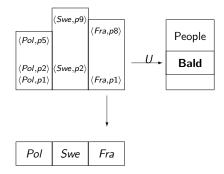


- The head nominal *representative* is modeled as the dependent type c : C, r : R(c); the preposition *of* signals that *country* is a type on which *representative* depends; *country* is modeled as the type *C*.
- The complex DP a representative of every country is interpreted as the complex quantifier living on the set of all representatives

$$\begin{aligned} \|\forall_{c:C} \exists_{r:R(c)}\| &= \{ X \subseteq \|\Sigma_{c:C} R(c)\| : \\ \{ a \in \|C\| : \{ b \in \|R\|(a) : b \in X \} \in \|\exists\|(\|R\|(a))\} \in \|\forall\|(\|C\|) \}. \end{aligned}$$

(3) A representative of every country is bald.

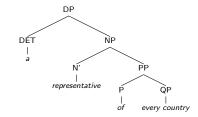
 $\|\forall_{c:C}\exists_{r:R(c)}Bald(r)\| = 1 \text{ iff } U^{-1}(\|Bald\|) \in \|\forall_{c:C}\exists_{r:R(c)}\|$



Intuition: a person counts as a representative only in virtue of standing in a particular relationship with some country.

Dependent Type Analysis Surface reading

(SR)

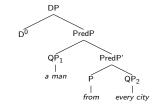


- The relational noun representative is now interpreted standardly as the predicate defined on ||P(erson)|| × ||C(ountry)||.
- The complex NP representative of every country is then interpreted as the type/set of individuals who represent all the countries {p: {c: ⟨p, c⟩ ∈ ||Represent||} ∈ ||∀||(||C||)}, and the DET a quantifies existentially over this set, yielding the surface ordering of quantifiers.

Problem: inverse scope readings are also available for ILCs involving sortal nouns, as in *a man from every city*.

Our solution is that a sortal noun like *man* can undergo a 'sortal-to-relational' shift, resulting in the (IR)-structure:

(IR-SC)



The relational use of the sortal noun *man* can be coerced by the presence of the locative preposition *from* - such prepositions specify the local position or origin of an entity and since entities do not occur at more than one place simultaneously, the dependency c: C, m: M(c) is likely to be a preferred interpretation for *man from* (for any city, there is a set (fiber) of the men from that city).

Preposition puzzle: Why inverse readings are blocked with certain prepositions (e.g. *with*)?

(4) someone with every known skeleton key

- ILC in (4) can only be a statement about one person who happens to have every known skeleton key.
 - \checkmark someone > every known skeleton key
 - \sharp every known skeleton key > someone

Solution: inverse readings are unavailable for ILCs with prepositions which induce dependencies corresponding to the surface ordering of the QPs.

- a representative of (from) every country: The 'dependent component' (representative) comes before the component on which it is dependent (country) - the dependency introduced, c : C, r : R(c), forces the inversely linked interpretation.
- a man with every key:

The potentially 'dependent component' (key) comes after the component on which it is dependent (man) - the dependency introduced, m: M, k: K(m), corresponds to the surface ordering of the QPs.

$$\ddagger \quad \forall_{k:K(m)} \exists_{m:M}$$

- By our global restriction on variables, the reading where ∀ outscopes ∃ is not available because the indexing variable m (in K(m)) is outside the scope of the binding occurrence of that variable.
- Thus, under the analysis proposed, the inverse interpretation is unavailable to the QP in the object position of *with*.

Difficulty: examples like a problem with every account

- with comes with a number of meanings, including:
 - 'having or possessing (something)',
 - 'accompanied by; accompanying',
- If the relation expressed is one of possession, as in our previous example, then the thing possessed depends on the possessor (as described above).
- If, however, the relation is that of accompanying, then the accompanying entity (problem) depends on the entity to be accompanied (account). Thus the dependency introduced is a : A, p : P(a), forcing the inverse ordering of the QPs (in line with intuitions reported by native speakers).

- (5) Maud draped a sheet over every chair
 - Sentence (5) can be understood to mean that there is a potentially different sheet for every chair
 ✓ every chair > a sheet (inverse reading)
 - Sentence (5) can be also understood to mean that there is one sheet draped over all the chairs
 ✓ a sheet > every chair (surface reading)

BUT

(6) Mary draped a chair with every sheet.

Sentence (6) exhibits frozen scope, i.e. only surface reading is possible

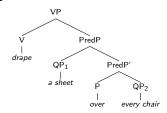
 \checkmark a chair > every sheet (surface reading)

The inverse reading is disallowed in (6) # *every sheet* > *a chair* (inverse reading)

Experimental work by Yining Nie, Structure vs competition: evidence from frozen scope in spray-load constructions, 2018.

Dependent Type Analysis

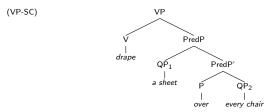
Inverse reading



- The relational use of the sortal noun *sheet* is coerced by the presence of the locative preposition *over*, and the head nominal *sheet* is modeled accordingly as the dependent type c : C, s : S(c).
- The predicate phrase a sheet over every chair is interpreted as the polyadic quantifier living on ||Σ_{c:C}S(c)|| (an element of ||Σ_{c:C}S(c)|| is a pair (a, b) such that a ∈ ||C|| and b ∈ ||S||(a)):

$$\|\forall_{c:C} \exists_{s:S(c)}\| = \{R \subseteq \|\Sigma_{c:C}S(c)\| : \\ \{a \in \|C\| : \{b \in \|S\|(a) : (a,b) \in R\} \in \|\exists\|(\|S\|(a))\} \in \|\forall\|(\|C\|)\}.$$

Surface reading



The predicate phrase a sheet of every chair is interpreted standardly as the polyadic quantifier living on $||S|| \times ||C||$

$$\|\exists_{s:S}\forall_{c:C}\| = \{R \subseteq \|S\| \times \|C\|:$$

 $\{a \in \|C\| : \{b \in \|S\| : (a, b) \in R\} \in \|\forall\|(\|C\|)\} \in \|\exists\|(\|S\|)\}.$

Frozen scope puzzle: Why inverse readings are blocked with certain prepositions (e.g. *with*)?

(6) Mary draped a chair with every sheet.

Here, with comes with a meaning:

- indicating the instrument used to perform an action.
- indicating the material used for a purpose.

Inverse readings are only possible for constructions with (locative) prepositions that induce dependencies corresponding to the inverse ordering of the QPs.

(a) Mary gave a book to every student. (∃ > ∀, ∀ > ∃)
BUT
(b) Mary gave a student every book. (∃ > ∀, ♯∀ > ∃)

Interim conclusion

• In DP-internal small clauses and VP small clauses inverse readings are facilitated by dependencies.

(7) A representative of every country missed a meeting. $\checkmark \forall_{c:C} \exists_{r:R(c)} \exists_{m:M} \text{ (surface reading)}$ $\checkmark \exists_{m:M} \forall_{c:C} \exists_{r:R(c)} \text{ (inverse reading)}$ Interleaved interpretations are not possible for (7) (Larson's generalization, 1985).

Continuation semantics allows for the in situ analysis of (7).

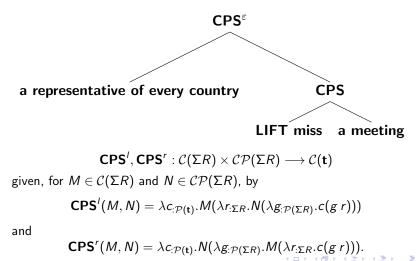
Integrating dependent type semantics into a continuation-passing framework

(7) A representative of every country missed a meeting.

- Predicate miss is defined on ||P(erson)|| × ||M(eeting)||.
 By taking the inverse image of this set under function U, U⁻¹(||P|| × ||M||), we get the predicate miss defined on the product of representatives and meetings ||ΣR|| × ||M||.
- In order to combine with QPs a predicate gets lifted ('continuized'), i.e., *miss* of type P(ΣR × M) will be lifted to an expression of type CP(ΣR × M).
- The two readings for (7) are then derived, using either (left or right) of the two **CPS** transforms.

Integrating dependent type semantics into a continuation-passing framework

(7) A representative of every country missed a meeting.



(7) A representative of every country missed a meeting.

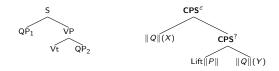
- One empirical constraint on a theory of inverse linking is the so-called Larson's generalization (1985): QPs external to ILCs cannot take scope between the embedded and containing QPs.
- a meeting cannot take scope in between every country and a representative the two interleaved interpretations are not possible for (7).
- Under our analysis, the inseparability of the two nested QPs falls out immediately.

$$CPS(ev) : C(X) \times C(X \longrightarrow Y) \longrightarrow C(Y).$$

unit (return): lifts elements of X to C-computations.
$$\eta_X : X \to C(X)$$
$$x \mapsto ev_x$$
$$ev_x : (x \longrightarrow t) \longrightarrow t$$
$$f \mapsto f(x)$$

For $M \in C(X)$ and $R \in C(X \longrightarrow Y)$, $CPS^{I}(argument-first) : M, R \mapsto \lambda c : \mathcal{P}(Y).M(\lambda x.R(\lambda f : X \longrightarrow Y.c(fx)))$ $CPS^{r}(function-first) : M, R \mapsto \lambda c : \mathcal{P}(Y).R(\lambda f : X \longrightarrow Y.M(\lambda x.c(fx)))$

 $(\mathcal{P}(X) = X \to \mathbf{t} \text{ and } \mathcal{C}(X) = \mathcal{PP}(X))$



$$\mathbf{CPS}':\mathcal{C}(Y)\times\mathcal{CP}(X\times Y)\longrightarrow\mathcal{CP}(X).$$

We use **CPS** to combine Q_2 in C(Y) (that interprets the QP₂) with a lift of a binary relation R^2 in $C\mathcal{P}(X \times Y)$ (that interprets the transitive verb) - we get a 'continuized' unary relation R^1 in $C\mathcal{P}(X)$.

Continuations

- An element of CP(X) can be thought of as a lifted relation.
- But since C(X) = P(P(X)), we have that CP(X) = PC(X), and hence an element of CP(X) can be also seen as a (unary) relation on quantifiers: a quantifier Q₁ on X, i.e. Q₁ in C(X), is in relation R¹ iff it can be put as the second quantifier so that the sentence/reading Q₂Q₁R² is true.

$$\mathbf{CPS}': \mathcal{C}(Y) \times \mathcal{CP}(X \times Y) \longrightarrow \mathcal{CP}(X).$$

For $N \in \mathcal{C}(Y)$ and $R \in \mathcal{CP}(X \times Y)$,

$$N, R \mapsto \lambda c : C(X).N(\lambda y.c(\lambda x.r'(x,y))).$$

$$CPS' : C(Y) \times C\mathcal{P}(X \times Y) \longrightarrow C\mathcal{P}(X).$$

For $N \in C(Y)$ and $R \in C\mathcal{P}(X \times Y)$,
 $N, R \mapsto \lambda c : C(X).N(\lambda y.R(\lambda p : P(X \times Y).c(\lambda x.p(x,y)))).$
If $R = ev_{r'}, r' \in P(X \times Y)$,
then $\lambda c : C(X).N(\lambda y.c(\lambda x.r'(x,y))).$

42 / 46

∃ ► < ∃ ►</p>

- Having R^1 and the interpretation Q_1 of the first QP in the sentence, we can still get both readings of the sentence, $Q_2Q_1R^2$ and $Q_1Q_2R^2$, by applying right and left **CPS**'es respectively.
- **CPS**^r checks whether Q_1 is in R^1 . For $M \in C(X)$ and $G = \lambda c : C(X).N(\lambda y.c(\lambda x.r'(x,y)))$, **CPS**^r $(M, G) : C(X) \times CP(X) \longrightarrow C(t)$ $N(\lambda y.M(\lambda x.r'(x,y)))$
- CPS¹ deduces from R¹, carrying the information about all quantifiers Q that can be placed in the second position, whether Q₁ can be placed in the first position and yet have the sentence/reading Q₁Q₂R² true. M(λx.N(λy.r'(x,y)))

For
$$M \in \mathcal{C}(X)$$
 and $G = \lambda c : \mathcal{C}(X).N(\lambda y.c(\lambda x.r'(x,y)))$,
 $CPS'(M,G) : \mathcal{C}(X) \times \mathcal{CP}(X) \longrightarrow \mathcal{C}(t)$

$$\{x \in X : \{y \in Y : \{x' \in X : P(x', y)\} \in ev_x\} \in N\}$$
$$\{x \in X : \{y \in Y : P(x, y)\} \in N\} \in M$$

э

For $M \in \mathcal{C}(X)$ and $G = \lambda c : \mathcal{C}(X) \cdot N(\lambda y \cdot c(\lambda x \cdot r'(x, y)))$, $CPS'(M, G) : C(X) \times CP(X) \longrightarrow C(t)$ $\lambda c' : \mathcal{P}(t).M(\lambda x.G(\lambda r : \mathcal{P}(x).c'(rx)))$ $M(\lambda x.\lambda c: \mathcal{C}(X).N(\lambda y.\underline{c}(\lambda x.r'(x,y)))(\lambda r: \mathcal{P}(x).(rx)))$ $M(\lambda x.N(\lambda y.(\lambda r : \mathcal{P}(x).(rx))(\lambda x'.r'(x', y))))$ $M(\lambda x.N(\lambda y.(\lambda x'.r'(x',y))x))$ $M(\lambda x.N(\lambda y.r'(x,y)))$

Thank You for Your Attention!