
Predication with Sentential Subject in GF

Hans Leiß
leiss@cis.uni-muenchen.de

Retired from:
Ludwig-Maximilians-Universität München

Centrum für Informations- und Sprachverarbeitung

LACompLing 2018
Stockholm, August 28–31, 2018

1 / 44

Background

• A. Ranta’s “Predication Grammar” in GF (Proc. EACL 2014)
• reuses most of the syntactic constructions of GF’s resource

grammar library (RGL) with non-dependent categories, but
implements predication and complementation rules differently

• categories V ,VP are abstract types depending on arguments;
the implementation types of V ,VP are record types

• categories V ,VP ,A,AP distinguish between sentential and
nominal object arguments only

Goal

• Refine the predication grammar by also distinguishing between
sentential and nominal subject arguments

2 / 44

Contents

• Grammatical Framework’s (GF) Resource Grammars (RG)

• A. Ranta’s experimental “Predication Grammar”

• Extension by sentential/interrogative/infinitive subjects

• Complexity/Examples

3 / 44

Grammars in GF’s Resource Grammar Library (RGL)

Abstract Grammar: declarations of

• syntactic categories as (non-dependent) abstract types

• syntactic constructions as typed function symbols

〈SGram.gf 〉≡
abstract SGram = {

cat S ; NP ; V2 ; VP ; -- syntactic categories

fun Pred : NP -> VP -> S ; -- syntax rules

Compl: V2 -> NP -> VP ;

John, Mary : NP ; -- lexicon (words)

like : V2 ;

}

Function type = context-free rule: NP -> VP -> S = S -> NP VP

4 / 44

Concrete Grammar: implementations of

• syntactic categories by record types
• syntactic constructions by functions between records

〈SGramGer.gf 〉≡
concrete SGramGer of SGram = {

lincat S = { s : Str } ; NP = { s : Str ; a : Agr } ;

VP = { s : Agr => Str } ;

V2 = { s : Agr => Str ; s2 : Str } ;

lin Pred np vp = { s = np.s ++ vp.s ! np.a } ;

Compl v2 np =

{ s = \\a => v2.s ! a ++ np.s ++ v2.s2 } ;

like = { s = table Agr { Sg => "hat" ;

Pl => "haben" } ;

s2 = "lieb" } ;

John = { s = "Johann" ; a = Sg } ;

Mary = { s = "Maria" ; a = Sg } ;

param Agr = Sg | Pl ; -- parameter type

} 5 / 44

SGram> p "Johann hat Maria lieb" | vt -view=eog -format=eps

Pred : S

John : NP Compl : VP

like : V2 Mary : NP

S

NP VP

Johann

V2 NP

hat liebMaria

abstract tree parse tree

6 / 44

GF’s resource grammars have different categories of verbs:

• V2: binary verbs with nominal object (read,like,know)

• VS: binary verbs with sentential object (fear,know,hope)

• VQ: binary verbs with interrogative object (know,wonder)

• VV: binary verbs with infinitival object (can,want,must)

• V3: ternary verbs with nominal objects (give,sell)

• V2S: ternary verb with nominal and sentential object (answer)

• V2Q: ternary verb with nominal and interrogative object (ask)

• V2V: ternary verb with nominal and infinitival object (beg)

There are complementation rules for non-nominal objects, like

• ComplVS : VS -> S -> VP (say that she runs)

• ComplVQ : VQ -> QS -> VP (wonder who runs)

• ComplVV : VV -> VP -> VP (want to run)

7 / 44

Complementation by NP and for ternary verb uses auxiliary categories

VP ≃ NP → S ≃ unary predicate (sentence missing subject)
VPSlash ≃ NP → VP ≃ binary predicate (VP missing nom.object)

Complementation by nominal object ComplV2 = ComplSlash:

SlashV2a : V2 -> VPSlash ; -- love (it)

ComplSlash : VPSlash -> NP -> VP ; -- love it

Complementation for ternary verbs:

Slash2V3 : V3 -> NP -> VPSlash ; -- give it (to her)

Slash3V3 : V3 -> NP -> VPSlash ; -- give (it) to her

SlashV2V : V2V -> VP -> VPSlash ; -- beg (her) to go

SlashV2S : V2S -> S -> VPSlash ; -- answer (to him) that

SlashV2Q : V2Q -> QS -> VPSlash ; -- ask (him) who came

8 / 44

In summary: grammars of GF’s resource grammar library have

• binary and ternary verbs distinguishing objects of nominal,
sentential, interrogative and infinitival kind

• no such distinction for the subject argument of verbs.

9 / 44

In summary: grammars of GF’s resource grammar library have

• binary and ternary verbs distinguishing objects of nominal,
sentential, interrogative and infinitival kind

• no such distinction for the subject argument of verbs.

But of course, such a distinction (for verbs/adjectives) is necessary:

• sentential subject: That this is the case, surprised us

• interrogative subject: What caused this is obvious

• infinitival subject: To go swimming may help you

Passive constructions give predicates with non-nominal subject:

• That the earth is flat was commonly believed

• How long the earth exists was not known

• To do your homework was often recommended to you

9 / 44

A. Ranta’s “Predication Grammar”

GF admits to declare syntactic categories as dependent types.

A. Ranta (EACL 2014) uses this to reimplement predication and
complementation rules in terms of dependent categories in order to

• obtain schematic rules abstracting over complement frames

• fix anteriority, tense and polarity of predicates earlier than RGs

RGL: VP.s : VFin Tense Ant Pol VAgr => Str

Pred: VP.s : VFin VAgr => Str

Sources: gf/lib/src/experimental/Pred.gf

10 / 44

Abstract Predication Grammar

• Verb category depending on types of arguments

cat Arg ; -- argument type lists (HPSG subcat list)

PrV Arg ; -- dependent verb category

• Construction of argument type lists:

fun aNone, aS, aV, aQ : Arg ; -- basic lists

aNP : Arg -> Arg ; -- list extension

RG verb categories correspond to dependent verb categories as

V ≃ PrV aNone V3 ≃ PrV (aNP (aNP aNone))
V2 ≃ PrV (aNP aNone) V2S ≃ PrV (aNP aS)
VS ≃ PrV aS V2V ≃ PrV (aNP aV)

11 / 44

• Predicates, sentences, questions depending on arguments:

cat PrVP Arg ; -- finite incomplete predicate

PrVPI Arg ; -- infinite incomplete predicate

PrCl Arg ; -- clause (incomplete sentence)

PrQCl Arg ; -- interr.clause (incomplete question)

(PrVP a) = predicates missing (object) arguments of type a:ARG:

PrVP aNone ≃ VP, PrVP (aNP aS) ≃ NP → S → VP

PrVP (aNP aNone) ≃ VPSlash, PrVP (aNP aQ) ≃ NP → QS → VP

Verbs of any type (PrV a) are predicates of that type (PrVP a):

fun UseV : (a:Arg) -> Ant -> Tense -> Pol

-> PrV a -> PrVP a ;

PassUseV : (a:Arg) -> Ant -> Tense -> Pol

-> PrV (aNP a) -> PrVP a ;

12 / 44

Complementation rules now combine a (binary) predicate with a
possibly incomplete object to a likewise incomplete predicate:

ComplV2 : (a:Arg) -> PrVP (aNP a) -> NP -> PrVP a ;

ComplVS : (a:Arg) -> PrVP aS -> PrCl a -> PrVP a ;

ComplVV : (a:Arg) -> PrVP aV -> PrVPI a -> PrVP a ;

ComplVQ : (a:Arg) -> PrVP aQ -> PrQCl a -> PrVP a ;

Similarly for ternary predicates combined with second complement:

SlashV3 : (a:Arg) -> PrVP (aNP (aNP a)) -> NP

-> PrVP (aNP a) ;

SlashV2S : (a:Arg) -> PrVP (aNP aS) -> PrCl a

-> PrVP (aNP a) ;

SlashV2V : (a:Arg) -> PrVP (aNP aV) -> PrVPI a

-> PrVP (aNP a) ;

SlashV2Q : (a:Arg) -> PrVP (aNP aA) -> PrQCl a

-> PrVP (aNP a) ;

13 / 44

Concrete Predication Grammars

The concrete grammars PredEng.gf, PredChi.gf, etc. mostly
share implementation types of syntactic categories.
Implementation type of category (C a) is independent of a:Arg.

Verb categories (PrV a) are implemented by the record type

lincat

PrV = {

s : VForm => Str ; -- verb paradigm

p : Str ; -- verb particle

c1 : ComplCase ; -- prep+case for 1st compl.

c2 : ComplCase ; -- prep+case for 2nd compl.

isSubjectControl : Bool ; -- subj.of embedded infinitive

vtype : VType ; -- auxiliary, reflexive etc.

vvtype : VVType ; -- pure|zu-infinitive compl.

} ;

oper

ComplCase : Type ; -- language specific, e.g. preposition
14 / 44

Verb phrases have parts of the verb paradigm and the verb’s objects:

PrVP = {

v : VAgr => Str * Str * Str ; -- would,have,slept

inf : VVType => Str ; -- ((to) sleep | sleeping)

imp : ImpType => Str ;

c1 : ComplCase ;

c2 : ComplCase ;

part : Str ; -- verb part.: (look) up

adj : Agr => Str ; -- predicative adjective

obj1 : (Agr => Str) * Agr ; -- agr for object control

obj2 : (Agr => Str) * Bool ; -- subject control = True

vvtype : VVType ; -- type of infinitive compl.

adv : Str ; -- adverbial

adV : Str ; -- negation adverb

ext : Str ; -- right-extracted parts

} ;

15 / 44

Clauses have less (but more informed) fields, plus a subject:

PrCl = {

v : Str * Str * Str ;

adj,obj1,obj2 : Str ;

adv : Str ;

adV : Str ;

ext : Str ;

subj : Str ; -- subject

} ;

PrQCl = PrCl ** {

foc : Str ; -- focus: *who* does she love

focType : FocusType ; -- if foc is filled, inplace:

-- who loves *who* } ;

Notice: word order of clauses is not completely fixed

16 / 44

Implementation functions of syntactic constructions fill these slots
with suitable combinations of slots of argument records.

For example, UseV selects active verb forms depending on given
values a:Ant, t:Tense, p:Pol to fill slots of the PrVP type:

UseV x a t p v = {

v = \\agr => tenseV t a p active agr v ;

inf = \\vt => tenseInfV a p active v vt ;

imp = \\it => imperativeV p it v ;

c1 = v.c1 ; c2 = v.c2 ;

part = v.p ;

obj1 = <case isRefl v of {True => \\a => reflPron a ;

_ => _ => []},

defaultAgr> ;

obj2 = <noObj, v.isSubjectControl> ;

vvtype = v.vvtype ;

adV = negAdV p ;

adv, ext = [] } ;

17 / 44

The dependent categories and grammar rules for predication make
a partial grammar

Pred = Cat[Ant,NP,..] + (Pr-categories and constructions)

It has to be completed by

• constructions of the RGL independent of predication:
UseN : N -> CN,
DetCN : Det -> CN -> NP, etc.

• lifting the verb categories of the RGL to Pr-categories of Pred:
LiftV : V -> PrV aNone,
LiftV2S : V2S -> PrV (aNP aS), etc.

The extended grammar

Lift = Pred + RGLBase + (Lift* : Cat -> dep.Pr-cats)

can be equipped with the example lexicon of the RGL:

Test = Lift + Lexicon + Structural

18 / 44

Generation and parsing with dependent categories

One can generate abstract trees of given category, for example

Complete clause:

Test> generate_random -tr -cat="PrCl aNone" | linearize

PredVP aNone (DetNP many_Det)

(AgentPassUseV aNone AAnter TFut PPos

(LiftV2 understand_V2) something_NP)

many will have been understood by something

Incomplete clause:

Test> generate_random -tr -cat="PrCl aS" | linearize

PredVP aS (UsePN john_PN) (UseV aS ASimul TFut PNeg

(LiftVS say_VS))

John will not say

19 / 44

Dependent types are not fully integrated into the parser of GF, but
checked by post-processing. This slows down parsing.

Test> parse -cat=PrS "John hopes that the bird flies"

UseCl (PredVP aNone (UsePN john_PN)

(ComplVS aNone (UseV aS ... (LiftVS hope_VS))

(PredVP aNone (DetCN .. (UseN bird_N))

(UseV aNone ... (LiftV fly_V)))))

Test> parse -cat=PrS "John hopes the bird"

The parsing is successful but the type checking failed:

Couldn’t match expected type PrCl (aNP ?1)

against inferred type PrCl aS

In the expression:

PredVP aS (UsePN john_PN)

(UseV aS ASimul TPres PPos (LiftVS hope_VS)) 20 / 44

• The advantage of using dependent categories for predication is
that syntactic constructions can be written at a higher level,
abstracting from irrelevant parts of complement frames

• the disadvantage is that the GF-parser does not check the
dependent arguments at parse time, but by post-processing
constraint solving

To combine the advantages of dependent categories and parsing
with non-dependent categories,

• translate the schematic rules using categories C (a:Arg) to
instances with non-dependent categories C_a

See gf/lib/src/experimental/NDPred.gf, NDTestEng.gf

21 / 44

Extension by Sentential Subjects
Both the existing RGL and the Predication grammar

• have no verbs with sentential/interrogative/infinitival subject

• have PassV2 : V2 -> VP, but cannot passivize verbs of type
VS, VQ, VV, V2S, V2Q, V2V.

To add sentential subjects, we have to

A introduce new categories of verbs, adjectives, predicates

B extend the lexicon by suitable new verbs and adjectives

C introduce new constructions (VP,Cl with sent.subject)

In order not to delay checking of the subject’s type to the
post-processing, we do not add a further subject-Arg as in

PrV aS a, PrVP aS a,

but use new categories (PrSV a), (PrSVP a) etc.
22 / 44

Abstract grammar SPred

A1 New (non-dep.) lexical categories with sentential subject:

cat

-- bin.verb with sentential subject and NP,S,Q object:

SV2 ; -- that S, surprises/enjoys/disappoints NP

SVS ; -- that S1 causes/proves/implies that S2

SVQ ; -- that S explains (why|when|where S2)

SVV ; -- that S must/seems/is able ((to) VP)

-- unary adjective with S subject

SA ; -- that S is plausible/unlikely

-- binary adjective with S subject and NP object

SA2 ; -- that S is good for NP

-- 0-ary verbs (expletive subject)

V0 ; -- it rains

23 / 44

A2 Dependent categories for verbs/predicates with sent.subject

cat

PrSV Arg ; -- (that S) surprises (NP)

PrSVP Arg ; -- (that S) surprises us

PrSVPI Arg ; -- (that S) (must|seems|is able)

(to) surprise her

PrSAP Arg ; -- (that S) is plausible

We don’t need a category of clauses with sentential subject:
i.e. can use PrCl for clauses with S, Q, V subject.

24 / 44

A1’ Lexical categories with interrog./infinitival subject

-- QV Arg ; -- omit, no verbs v:QV exist

QA Arg ; -- (why S) (is) uncertain | unknown

-- bin.verb with infinitival subject and NP object:

VPV2 ; -- to VP pleases NP

-- adjective with infinitival subject:

VPA ; -- to VP is healthy | difficult

A2’ Categories for predicates with interrog./infinit. subject

PrQA Arg ; -- why S, is uncertain (to me)

PrQVP Arg ; -- why S, was unknown | explained to me

PrVVP Arg ; -- to VP is healthy | was suggested to me

25 / 44

Remark: To form predicative sentences with sentential subjects like

• that S is just a belief,

• why S is the question,

• to VP was our hope

we also need nouns with S, Q, V object, related to verbs VS,VQ,VV.

cat

NS ; -- belief|fact|claim (that S)

NQ ; -- question (why|when|where S)

NV ; -- hope|wish|fear (to VP)

fun

belief_NS : NS ;

question_NQ : NQ ;

hope_NV : NV ;

In contrast: TestEng has PredVP (a belief)NP is (that she sleeps)VP

26 / 44

B Lexicon: verbs and adjectives with sentential subject

fun

surprise_SV2 : SV2 ;

cause_SVS : SVS ;

explain_SVQ : SVQ ;

plausible_SA : SA ;

unlikely_SA : SA ;

good_SA2 : SA2 ;

rain_V0 : V0 ; -- for 0-ary predication

explain_V2S : V2S ; -- for passive: V2S -> SV2

explain_V2Q : V2Q ; -- V2Q -> QV2

27 / 44

We lift these independent lexical categories to dependent ones:

fun

Lift0V : V0 -> Pr0V ;

LiftSV2 : SV2 -> PrSV (aNP aNone) ;

LiftSVS : SVS -> PrSV aS ;

LiftSVQ : SVQ -> PrSV aQ ;

LiftSVV : SVV -> PrSV aV ;

LiftSA : SA -> PrSAP aNone ;

LiftSA2 : SA2 -> PrSAP (aNP aNone) ;

LiftV2Q : V2Q -> PrV (aNP aQ) ; -- from Lift* for Pred

LiftV2S : V2S -> PrV (aNP aS) ;

28 / 44

New constructions with sentential subject

C1 Predicates with sent.subject (PrSVP a) can be built

(i) from a verb of category SV2, SVS, SVQ ≃ PrSV aNone|aS|aQ

fun

UseSV : (a : Arg) -> Ant -> Tense -> Pol ->

PrSV a -> PrSVP a ;

(ii) by passivizing a verb of category VS, V2S ≃ PrV aS|aNp aS:

PassUseVS : Ant -> Tense -> Pol ->

PrV aS -> PrSVP aNone ;

PassUseV2S : Ant -> Tense -> Pol ->

PrV (aNP aS) -> PrSVP (aNP aNone)

and likewise AgentPassUseVS and AgentPassUseVS2 for
passives with an additional agent-NP.

29 / 44

(iii) by complementation of binary predicates with a suitable object:

ComplSV2 : (a : Arg)

-> PrSVP (aNP a) -> NP -> PrSVP a ;

ComplSVS : (a : Arg)

-> PrSVP aS -> PrCl a -> PrSVP a ;

ComplSVQ : (a : Arg)

-> PrSVP aQ -> PrQCl a -> PrSVP a ;

ComplSVV : (a : Arg)

-> PrSVP aV -> PrSVPI a -> PrSVP a ;

(iv) by complementation of ternary predicates with suitable object:

-- SlashSV2: (whom) that S surprises _

-- (whom) it surprises _ that S

-- SlashSV3: (whom) that S was explained to _ by me

-- (whom) it was explained to _ by me that S

30 / 44

(iv) from an adjective phrase with sentential subject:

UseSAP : (a : Arg) -> Ant -> Tense -> Pol

-> PrSAP a -> PrSVP a ;

C2 Clause formation by predication with predicates PrSVP a

PredSVP : (a : Arg) -> Place

-> PrCl aNone -> PrSVP a -> PrCl a ;

Subject sentences can be positioned either in place or moved:
• that a bird flies is plausible
• it is plausible that a bird flies

The difference is marked by empty dummy constituents

fun InPlace, Moved : Place ;

31 / 44

C1’ Analogous constructions are (partly) possible and implemented
for predication with interrogative subjects:

-- UseQV is not needed: there are no verbs v : PrQV a

UseQAP : (a : Arg) -> Ant -> Tense -> Pol

-> PrQAP a -> PrQVP a ;

PassUseVQ : Ant -> Tense -> Pol

-> PrV aQ -> PrQVP aNone ;

ComplQV2 : (a : Arg)

-> PrQVP (aNP a) -> NP -> PrQVP a ;

C2’ with corresponding predication rule:

PredQVP : (a : Arg) -> Place

-> PrQCl aNone -> PrQVP a -> PrCl a ;

Likewise for predicates and predication with infinitival subject.

32 / 44

Concrete grammar SPredEng

For English, the implementation of the concrete grammar was easy:

• the predication grammar PredEng provides constructions for
predicates with nominal subject, and these can be reused:

lin

UseSV = UseV ;

PassUseVS = PassUseV aNone ;

PassUseV2S = PassUseV aNone ; -- (!) V2S -> SVP

ComplSV2 = ComplV2 ; ComplSVQ = ComplVQ ; ...

UseSAP = UseAP ;

This works since lincat V,VP don’t care about the subject.

• exception: in the predication rule PredSVP, the subject may
occupy its standard place or be moved to the right.

33 / 44

• exception: in the predication rule PredSVP, the subject may
occupy its standard place or be moved to the right.

PredSVP _ p s vp =

let subj = that_Compl ++ p.s ++ declSubordCl s ;

agr = defaultAgr ; vagr = defaultVAgr

in

case p.moved of {

False => predVP subj agr vagr vp ;

True => predVP "it" agr vagr (vp ** {ext = subj})

} ;

where predVP fills the fields of the resulting PrCl-record:

predVP : Str -> Agr -> VAgr -> PrVP -> PrCl =

\s,agr,vagr,vp ->

{ subj = s ; ... ; ext = vp.ext } ;

34 / 44

Concrete grammar SPredGer

Since SPred is an extension of Pred by new categories and
constructions, we first need a concrete grammar PredGer.

This is facilitated by a functor

PredFunctor : PredInterface -> Pred

which provides a partial concrete Pred-grammar in terms of types
and operations declared (or even implemented) in PredInterface.

So we get PredGer by applying the functor

concrete PredGer of Pred =

PredFunctor - [PredVP, ...] -- omit what to override

with (PredInterface = PredInstanceGer)

in { lin PredVP np vp = ... } -- implement missing parts

to an implementation PredInstanceGer of PredInterface.

35 / 44

PredInterface contains declarations of parameter types and
defaults that may need a language-specific implementation, like

Gender : PType ;

Agr : PType ; -- full agreement, inherent in NP

NPCase : PType ; -- full case of NP

subjCase : NPCase ;

ComplCase : Type ; -- e.g. preposition

but also language-independent implementations of categories, like

NounPhrase : Type = {s : NPCase => Str ; a : Agr} ;

PrV : Type = {

s : VForm => Str ;

c1 : ComplCase ; c2 : ComplCase ;

... } ;

36 / 44

For German, the main changes we had to make were

• add a field for the perfect-auxiliary to PrV

• add a field c0:ComplCase in PrVP for non-nom. subjects

• replace AAgr and Agr by a simpler ObjAgr in PrVP

• use ComplCase = Prep in PrV and PrVP

The last two items were needed for complexity reasons:

i) the GF-compiler instantiates the parameters in a record type
by all possible values; only 8 = |ObjAgr| of the 18 = |AAgr| =
|Agr| = |Gender * Number * Person| values are needed

ii) prepositional complements of verbs/adjectives are common,
but: we must simplify RGL’s category

Preposition = {s : Str ; c : PCase ; isPrep : Bool} ;

to Prep by excluding 6 glued versions Det+Prep like AnDat

from PCase.

37 / 44

The implementation category of (PrVP a) then is

PrVP = {

v : VAgr => Str * Str * Str ; -- würde,geschlafen,haben

inf : VVType => Str ; -- (zu) schlafen

imp : ImpType => Str ;

c0 : Prep ; -- subject case in passive of prepV2’s

c1 : ComplCase ; -- = Prep (in Eng: = Str)

c2 : ComplCase ;

part : Str ;

adj : AAgr => Str ;

obj1 : (ObjAgr => Str) * ObjAgr ; -- agr for control

obj2 : (ObjAgr => Str) * Bool ;

vvtype : VVType ;

adv : Str ;

adV : Str ;

ext : Str ;

} ;

38 / 44

Without these reductions of Agr and Preposition, it was
impossible to compile the grammar using the PredFunctor

-- these need 7,5G memory or kill gf, without them 2,7G

-- ComplVA 15116544 (46656,1) Eng: 60 (60,1)

-- ComplVN 15116544 (46656,1) 0,4G memory

-- SlashV2A 15116544 (46656,1) Fin: 7375872 (37632,1)

-- SlashV2N 15116544 (46656,1) 5,6G memory

Their types are the most complex types of the Pred-functions: they
have two argument types PrVP and PrAP/PrCN, each with two
ComplCase slots and two ObjAgr => Str slots:

ComplVA/V2A : (a : Arg) -> PrVP aA/(aNP aA)

-> PrAP a -> PrVP a/(aNP aA) ;

SlashV2A/V2N : (a : Arg) -> PrVP (aNP aA/aN)

-> PrAP/PrCN a -> PrVP (aNP a) ;

39 / 44

The syntactic constructions like

UseV : (a : Arg) -> ... -> PrV a -> PrVP a ;

are implemented in PredFunctor using auxiliary functions like
tenseV that fill the field v : VAgr => Str * Str * Str of PrVP
by selecting from the verb paradigm s : VForm => Str in PrV

Such auxiliary functions had to provided for German.

To allow for (non-nominative) subjects, as in

wir helfen euch2,Pl ,Dat 7→ euch2,Pl ,Dat wird3,Sg geholfen
wir denken an euch 7→ an euch wird3,Sg gedacht

an override of PassUseV : ... -> PrV (aNP a) -> PrVP a

was needed to put the value in c1:ComplCase of the argument
verb into into the c0:Prep field of the resulting PrVP.

So far for PredGer.

40 / 44

The new constructions of SPred with sentential subject can then
be implemented mainly as for English, using those of PredGer:

lin

UseSV = UseV ;

ComplSV2 = ComplV2 ; ComplSVQ = ComplVQ ; ...

UseSAP = UseAP ;

An exception is PassUseV2S, which has to fill the subject-field
c0:Prep

PassUseV2S a t p v = {

v = \\agr => tenseV t a p passive agr v ;

c0 = case <v.c2.isPrep, v.c2.c> of { -- subj <- obj2

<False, R.Acc> => subjPrep ; -- i.e. nominative

_ => v.c2 } ;

...

} ;

41 / 44

Conclusion

• We have implemented an extension SPred of Pred to handle
predication with sentential (and interrogative, infinitival)
subjects for languages Eng and Ger

• Missing parts are relative clauses, clause coordination

• Much of Pred can be reused in SPred, the filtering of
unwanted combinations depends on the abstract types only

• A complexity issue arises for PredGer from instantiating
parameters to all possible values in the implementation records
of PrV, PrVP

• Parsing is too slow

42 / 44

Lessons learned:

- naming convention of the RGL (for categories/constructions)
relies on few verb classes, not suited to indicate subject types

- better integration of dependent categories in the parser would
permit to

1. combine different passive rules
PassV2 : V2 -> VP, PassVS : VS -> SVP etc. by
abstracting over the subject and object types:
PassV : V x (y a) -> VP y a

2. combine different VP-modifiers
NP must VV VP, S must VSV SVPI etc. by abstracting over
the subject type
must VV : VPI x y -> VP x y

43 / 44

Demo-Howto

1. parse examples:

> i -v STestEng.gf

STest> p -cat=Utt "it surprised John that it rained"

2. STest> parse and visualize analysis trees (typed terms):

> i -v STestEng.gf

STest> p -cat=Utt "it surprised him that it rained"

| wf | rf -tree -lines | vt

| ? dot -Tps -otrees.tmp.ps | gv trees.tmp.ps

Likewise for parse trees with vp instead of vt

3. Testfiles:
• examplesEng.txt
• schemata.out generated via
shell> make -fMakefileS example-schemata

44 / 44

