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Motivation

Abstract Meaning Representation (AMR) (Banarescu et al., 2013)

I semantic treebank
I de-languagized (still biased towards English)
I used for semantic parsing (Artzi, Lee, and Zettlemoyer, 2015) and generation (Flanigan

et al., 2016)
I limitations: (universal) quantification, negation

I recent developments:
AMRs were transformed as FOL formulas (Bos, 2016)
AMRs were transformed as HOL formulas modeling event semantics (Stabler, 2018)
problems of quantification, negation were overcome . . .

Tree Adjoining Grammars (TAGs) (Joshi, Levy, and Takahashi, 1975)
I more expressive than context-free grammars (CFGs)
I (arguably) capable of modeling syntax of natural languages
I polynomial parsing algorithms (like CFGs)
I used for generation

Abstract Categorial Grammars (ACGs) (De Groote, 2001)
I type-logical grammatical framework
I encodes grammatical formalisms, including TAG
I ACG encoding of TAG enjoys polynomial parsing and generation algorithms
I embodies Curry’s tecto/pheno level distinctions
I inspired by Montague’s translation from syntax to semantics (HOL formulas)
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AMR

Based on frames
Uniquely rooted directed acyclic graph (DAG) with labeled edges and nodes

I graph nodes encode entities and events (neo-Davidsonian)
I edges represent relations among entities, events, etc.

Capable of expressing various phenomena (e.g. coreference)

Problem with expressing universal quantification in DAG (maybe Hilbert’s ε-terms?)
Stabler (2018): AAMR

I transform AMR DAG into tree
I use tree transducers to obtain HOL formulas with events

I drawback: coreference is lost

Example

A boy wants to go / All boys want to / The boy wants to go / . . .
- all have same AMR semantics:

(w/want01 : arg0(b/boy)

: arg1(g/go01 : arg0 b))
– AMR in PENMAN notation

∃w∃g∃b (instance(w ,want01) ∧ instance(g ,w)∧
instance(b, boy) ∧ arg0(w , b) ∧ arg1(w , g) ∧ arg0(g , b))

– AMR in FOL notation

most(boy.pl, λb∃w(walk01.pres(w)∧ : arg0(w , b))) – Stabler’s HOL encoding
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Tree-Adjoining Grammar (TAG) (Joshi, Levy, and Takahashi, 1975)

Elementary trees –

Operations on trees –

Generated structures –
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Tree-Adjoining Grammar (TAG) (Joshi, Levy, and Takahashi, 1975)

Elementary trees –
I Initial trees: domain of locality
I Auxiliary trees: recursion

Operations on trees – substitution and adjunction

Generated structures – derived trees. Their by-products : derivation trees

Example

NP

Fred

VP

Adv

loudly

VP∗

S

NP ↓ VP

V

laughs

S

NP

Fred

VP

Adv

loudly

VP

V

laughs

αlaughs

βloudly αFred

2 1
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Abstract Categorial Grammar (ACG)
(De Groote, 2001)

Main Features

ACGs are a grammatical framework

An ACG G generates two languages :
I The abstract language A(G)
I The object language O(G)

Abstract language : Admissible structures (parse structures, derivations)

Object language : An interpretation of the abstract language

Basic properties

Modularity Both languages are of the same nature – sets of linear λ-terms :
ACGs can be composed

Parsing 2nd order ACGs are reversible (Salvati, 2005; Kanazawa, 2007)
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ACG definition

Definition (ACG)

An abstract categorial grammar (ACG) G is a quadruple 〈Σ1,Σ2,L, s〉, where

1 Σ1 and Σ2 are higher-order linear signatures, called the abstract vocabulary and the
object vocabulary, respectively;

2 L : Σ1 −→ Σ2 is a lexicon; L(λx .M) = λx .L(M) and L(M N) = L(M) L(N)

3 s is a type of the abstract vocabulary (either atomic or built upon the atomic types in
Σ1), called the distinguished type of the grammar.

The abstract language: A(G) = {M ∈ Λ(Σ1) | `Σ1 M : s is derivable}
The object language: O(G) = {N ∈ Λ(Σ2) | ∃M ∈ A (G ) : N = L(M)}

Modularity: ACGs can be composed as lexicons are functions.

7



ACG definition

Definition (ACG)

An abstract categorial grammar (ACG) G is a quadruple 〈Σ1,Σ2,L, s〉, where

1 Σ1 and Σ2 are higher-order linear signatures, called the abstract vocabulary and the
object vocabulary, respectively;

2 L : Σ1 −→ Σ2 is a lexicon; L(λx .M) = λx .L(M) and L(M N) = L(M) L(N)

3 s is a type of the abstract vocabulary (either atomic or built upon the atomic types in
Σ1), called the distinguished type of the grammar.

The abstract language: A(G) = {M ∈ Λ(Σ1) | `Σ1 M : s is derivable}

The object language: O(G) = {N ∈ Λ(Σ2) | ∃M ∈ A (G ) : N = L(M)}

Modularity: ACGs can be composed as lexicons are functions.

7



ACG definition

Definition (ACG)

An abstract categorial grammar (ACG) G is a quadruple 〈Σ1,Σ2,L, s〉, where

1 Σ1 and Σ2 are higher-order linear signatures, called the abstract vocabulary and the
object vocabulary, respectively;

2 L : Σ1 −→ Σ2 is a lexicon; L(λx .M) = λx .L(M) and L(M N) = L(M) L(N)

3 s is a type of the abstract vocabulary (either atomic or built upon the atomic types in
Σ1), called the distinguished type of the grammar.

The abstract language: A(G) = {M ∈ Λ(Σ1) | `Σ1 M : s is derivable}
The object language: O(G) = {N ∈ Λ(Σ2) | ∃M ∈ A (G ) : N = L(M)}

Modularity: ACGs can be composed as lexicons are functions.

7



ACG definition

Definition (ACG)

An abstract categorial grammar (ACG) G is a quadruple 〈Σ1,Σ2,L, s〉, where

1 Σ1 and Σ2 are higher-order linear signatures, called the abstract vocabulary and the
object vocabulary, respectively;

2 L : Σ1 −→ Σ2 is a lexicon; L(λx .M) = λx .L(M) and L(M N) = L(M) L(N)

3 s is a type of the abstract vocabulary (either atomic or built upon the atomic types in
Σ1), called the distinguished type of the grammar.

The abstract language: A(G) = {M ∈ Λ(Σ1) | `Σ1 M : s is derivable}
The object language: O(G) = {N ∈ Λ(Σ2) | ∃M ∈ A (G ) : N = L(M)}

Modularity: ACGs can be composed as lexicons are functions.

7



TAG as ACGs

+ Montague semantics (Pogodalla, 2004a)

TAG derivation
trees Λ(ΣTAG)

Derived trees
Λ(Σtrees)

Gderived trees

Strings
Λ(Σstring)

Gyield

Logical formulas
Λ(Σlogic)

GTAG sem.
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From TAG derivation to TAG derived trees

Derivation trees Their interpretations as derived trees

CFred : NP NP1 Fred
Claughs : SA ( VPA ( NP ( S λ aS aV np. aS (S2 np (aV (VP2 (V1 laughs))))
Cloudly : VPA ( VPA λaV x . aV (V2 x (Adv1 loudly))
IXA

: XA λx .x

NP

Fred

S

NP↓ VP

V

laughs

VP

VP∗ Adv

loudly

9
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S
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V
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VP

VP∗ Adv

loudly
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αfred βloudly

1 2

M0 = Cleft IS (Cloudly IV) CFred

Gyield ◦ Gderived trees(M0) = Fred + loudly + laughs
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From TAG derivation to Montague Translations (Pogodalla, 2004b)

Derivation trees Interpretations into Montague Grammar

CFred : NP λP.P fred

Claughs : SA ( VPA ( NP ( S λ aS aV np. aS (np (aV (λx . smile x)))
Cloudly : VPA ( VPA λ aV. aV (λx . loud x))
IXA

: XA λx .x

NP

Fred

S

NP↓ VP

V

laughs

VP

VP∗ Adv

loudly
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TAG derivation trees to HOL (Pogodalla, 2017)

Constants of ΣTAG Their interpretations by GTAG sem.

Cfred : NP λP.P fred : (e → t)→ t
Cwoman : nA ( NP λD.λq .D woman q
Csmart : nA ( nA λD. λn .λq .D (λ x . (smart x) ∧ (n x))q
Cevery ,Ceach : nA λP Q . ∀ x . (P x) ⊃ (Q x)
Csome , Ca : nA λP Q . ∃ x . (P x) ∧ (Q x)
Ckissed : SA ( VPA ( NP ( NP ( S λadvs advv sbj obj . advs (sbj (λx .(obj (advv (λy .kiss x y)))))
IX : XA λx .x
S t

11



Continuations, event semantics, ACG

Previous approaches

syntax-event semantics interface using ACG (Winter and Zwarts, 2011) – their
grammar is not TAG;

syntax-event semantic interface (Champollion, 2015):

I uses continuations: verbs are of type (v → t) → t
I negation scopes over existentially closed formula (¬∃w . . .)

I no distinction of arguments and adjuncts, e.g.

λx .go x VS λf .∃w .go(w) ∧ f (w)

Our approach

use continuations, like (Champollion, 2015)

negation scopes over event quantifier, like (Champollion, 2015)

retain arguments within a lexical entry of a verb, like AMR

(universal) quantification, like (Stabler, 2018)
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Interpretation as HOL formulas modeling event semantics: First try

everything should get a chance for a continuation

but one has to know when to stop (close)

S := (v → t)→ t
T := t
Closure := λP.P True : ((v → t)→ t)→ t
Cjohn := λP.P john
Cwalks := λadvs advv subj . advs (subj (advv (λx .λh.∃w . (walkw) ∧ (arg0 w x) ∧ (h w))))
Csmart := λD.λn.λq.λf .D(λxh.(n x h) ∧ (smart x))q f

CnA
every := λp.λq.λf .∀x .(p x f ) ⊃ (q x f )

CnA(NP
woman := λD.D(λ x h.(woman x ∧ h x))

CSA(SA
certainly := λm. λV . m (λh.V (λv .(certainly v) ∧ (h v))

CVPA(VPA
fast := λm. λV .m (λx .λh.Vx(λv .(fast v) ∧ (h v)))

CVPA
does not := λVxh.¬(V x h)
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First try: Results

(1) Every smart woman walks.
M1 = Closure (Cwalks IS IVP (Cwoman (Csmart Cevery ))) : T

(2) John does not walk.
M2 = Closure (Cwalks IS Cdoes not Cjohn) : T

(3) Every smart woman walks fast.
M3 = Closure (Cwalks IS(Cfast IVP)(Cwoman (Csmart Cevery ))) : T

(4) Certainly, every smart woman walks.
M4 = Closure (Cwalks(Ccertainly IS)IVP(Cwoman (Csmart Cevery ))) : T

M1 := ∀x(woman x ∧ smart x ⊃ ∃w (walkw) ∧ (arg0 w x)) X

M2 := ¬∃w (walkw) ∧ (arg0 w john) X
M3 := ∀x(woman x ∧ smart x ∧ fast x ⊃ ∃w(walkw) ∧ (arg0 w x) ∧ (fastw))
M4 := ∀x (woman x∧smart x ∧ certainly x ⊃ ∃w(walkw) ∧ (arg0 w x)∧(certainlyw))
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Locating the problem

S := (v → t)→ t
T := t
Closure := λP.P True : ((v → t)→ t)→ t
Cjohn := λP.P john
Cwalks := λadvs advv subj . advs (subj (advv (λx .λh.∃w . (walkw) ∧ (arg0 w x) ∧ (h w))))
Csmart := λD.λn.λq.λf .D(λxh.(n x h) ∧ (smart x))q f

CnA
every := λp.λq.λf .∀x .(p x f ) ⊃ (q x f )

CnA(NP
woman := λD.D(λ x h.(woman x ∧ h x))

CSA(SA
certainly := λm. λV . m (λh.V (λv .(certainly v) ∧ (h v))

CVPA(VPA
fast := λm. λV .m (λx .λh.Vx(λv .(fast v) ∧ (h v)))

CVPA
does not := λVxh.¬(V x h)

15



Second try: No continuations for noun phrases

New interpretations

Cjohn := λP.P john : (e → Ω)→ Ω
Cwalks := λadvs advv subj .advs (subj (advv (λx .λh.∃w . (walkw) ∧ (arg0 w x) ∧ (h w))))
Cwoman := λD.D(λ x .woman x)
Cevery := λPQ.λh.∀x(Px ⊃ Qxh) : (e → t)→ (e → Ω)→ Ω
Ca := λPQ.λh.∃x(Px ∧ Qxh) : (e → t)→ (e → Ω)→ Ω
Csmart := λD.λn.λq.λf .D(λx .(n x ) ∧ (smart x))q f
Ccertainly := λm. λV . m (λh.V (λv .(certainly v) ∧ (h v))
Cfast := λm. λV .m (λx .λh.Vx(λv .(fast v) ∧ (h v)))
Cdoes not := λVxh.¬(V x h)
Citisnotthecase := λS h.¬(S h)

Where: Ω ≡def (v → t)→ t

M3 :=∀x(woman x ∧ smart x ⊃ ∃w(walkw) ∧ (arg0 w x) ∧ (fastw))

M4 :=∀x(woman x ∧ smart x ⊃ ∃w(walkw) ∧ (arg0 w x) ∧ (certainlyw))
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Bonus: Coreference, Raising

Cwants : SA ( VPA ( NP ( S′A Cto-sleep : S′A ( S
Cwants := λadvs advv subj .λPred .advs (subj(advv .λx h.

∃w((wantw) ∧ (h w) ∧ (arg0 w x) ∧ Pred(λQ.Q x)(λr .Arg1 w r))
Cto-sleep := λcont.cont(λsubj .subj(λx .λf .∃u.(sleep u) ∧ (arg0 u x) ∧ (f u))
S′A := (((e → Ω)→ Ω)→ Ω)→ Ω

(5) a. John wants to sleep.
M5 = Closure(Cto-sleep (Cwants IS IVPCjohn)) : T
∃w(wantw) ∧ (arg0 w john) ∧ (∃u(sleep u) ∧ (Arg1 w u) ∧ (arg0 u john))

b. Every boy wants to sleep.
M6 = Closure(Cto-sleep (Cwants IS IVP(CboyCevery ))) : T
∀x(boy x⊃∃w(wantw)∧(arg0 w x)∧(∃u.(sleep u)∧(Arg1 w u)∧(arg0 u x)))

c. Every boy does not want to sleep.
M7 = Closure(Cto-sleep (Cwants IS IVP(CboyCevery ))) : T
∀x(boy x⊃¬(∃w(wantw)∧(arg0 w x)∧(∃u.(sleep u)∧(Arg1 w u)∧(arg0 u x))))

only one reading out of two
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Future Work and Conclusion

TAG deriva-
tion trees

Derived trees

Strings

Logical formulas
HOL formulas

for event
semantics

Current approach

TAG derivation trees to Stable’s HOL translation of AMRs using ACGs

Coreference missing in AAMR

An approach to NLG with HOL encodings of AMRs for free

Future work

Encode more complex interaction of quantifiers and negation

A large scale ACG

Maintain reasonable bounds on parsing/generation complexity
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Thank You
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