
From Tree Adjoining Grammars to Higher Order Representations of
Abstract Meaning Representations via Abstract Categorial

Grammars

Rasmus Blanck, Aleksandre Maskharashvili
Centre for Linguistic Theory and Studies in Probability,

University of Göteborg

29 August 2018
Symposium on Logic and Algorithms in Computational Linguistics

Stockholm, Sweden

Motivation

Abstract Meaning Representation (AMR) (Banarescu et al., 2013)

I semantic treebank
I de-languagized (still biased towards English)
I used for semantic parsing (Artzi, Lee, and Zettlemoyer, 2015) and generation (Flanigan

et al., 2016)
I limitations: (universal) quantification, negation

I recent developments:
AMRs were transformed as FOL formulas (Bos, 2016)
AMRs were transformed as HOL formulas modeling event semantics (Stabler, 2018)
problems of quantification, negation were overcome . . .

Tree Adjoining Grammars (TAGs) (Joshi, Levy, and Takahashi, 1975)
I more expressive than context-free grammars (CFGs)
I (arguably) capable of modeling syntax of natural languages
I polynomial parsing algorithms (like CFGs)
I used for generation

Abstract Categorial Grammars (ACGs) (De Groote, 2001)
I type-logical grammatical framework
I encodes grammatical formalisms, including TAG
I ACG encoding of TAG enjoys polynomial parsing and generation algorithms
I embodies Curry’s tecto/pheno level distinctions
I inspired by Montague’s translation from syntax to semantics (HOL formulas)

2

Motivation

Abstract Meaning Representation (AMR) (Banarescu et al., 2013)
I semantic treebank
I de-languagized (still biased towards English)
I used for semantic parsing (Artzi, Lee, and Zettlemoyer, 2015) and generation (Flanigan

et al., 2016)
I limitations: (universal) quantification, negation

I recent developments:
AMRs were transformed as FOL formulas (Bos, 2016)
AMRs were transformed as HOL formulas modeling event semantics (Stabler, 2018)
problems of quantification, negation were overcome . . .

Tree Adjoining Grammars (TAGs) (Joshi, Levy, and Takahashi, 1975)
I more expressive than context-free grammars (CFGs)
I (arguably) capable of modeling syntax of natural languages
I polynomial parsing algorithms (like CFGs)
I used for generation

Abstract Categorial Grammars (ACGs) (De Groote, 2001)
I type-logical grammatical framework
I encodes grammatical formalisms, including TAG
I ACG encoding of TAG enjoys polynomial parsing and generation algorithms
I embodies Curry’s tecto/pheno level distinctions
I inspired by Montague’s translation from syntax to semantics (HOL formulas)

2

Motivation

Abstract Meaning Representation (AMR) (Banarescu et al., 2013)
I semantic treebank
I de-languagized (still biased towards English)
I used for semantic parsing (Artzi, Lee, and Zettlemoyer, 2015) and generation (Flanigan

et al., 2016)
I limitations: (universal) quantification, negation
I recent developments:

AMRs were transformed as FOL formulas (Bos, 2016)
AMRs were transformed as HOL formulas modeling event semantics (Stabler, 2018)
problems of quantification, negation were overcome . . .

Tree Adjoining Grammars (TAGs) (Joshi, Levy, and Takahashi, 1975)
I more expressive than context-free grammars (CFGs)
I (arguably) capable of modeling syntax of natural languages
I polynomial parsing algorithms (like CFGs)
I used for generation

Abstract Categorial Grammars (ACGs) (De Groote, 2001)
I type-logical grammatical framework
I encodes grammatical formalisms, including TAG
I ACG encoding of TAG enjoys polynomial parsing and generation algorithms
I embodies Curry’s tecto/pheno level distinctions
I inspired by Montague’s translation from syntax to semantics (HOL formulas)

2

Motivation

Abstract Meaning Representation (AMR) (Banarescu et al., 2013)
I semantic treebank
I de-languagized (still biased towards English)
I used for semantic parsing (Artzi, Lee, and Zettlemoyer, 2015) and generation (Flanigan

et al., 2016)
I limitations: (universal) quantification, negation
I recent developments:

AMRs were transformed as FOL formulas (Bos, 2016)
AMRs were transformed as HOL formulas modeling event semantics (Stabler, 2018)
problems of quantification, negation were overcome . . .

Tree Adjoining Grammars (TAGs) (Joshi, Levy, and Takahashi, 1975)

I more expressive than context-free grammars (CFGs)
I (arguably) capable of modeling syntax of natural languages
I polynomial parsing algorithms (like CFGs)
I used for generation

Abstract Categorial Grammars (ACGs) (De Groote, 2001)
I type-logical grammatical framework
I encodes grammatical formalisms, including TAG
I ACG encoding of TAG enjoys polynomial parsing and generation algorithms
I embodies Curry’s tecto/pheno level distinctions
I inspired by Montague’s translation from syntax to semantics (HOL formulas)

2

Motivation

Abstract Meaning Representation (AMR) (Banarescu et al., 2013)
I semantic treebank
I de-languagized (still biased towards English)
I used for semantic parsing (Artzi, Lee, and Zettlemoyer, 2015) and generation (Flanigan

et al., 2016)
I limitations: (universal) quantification, negation
I recent developments:

AMRs were transformed as FOL formulas (Bos, 2016)
AMRs were transformed as HOL formulas modeling event semantics (Stabler, 2018)
problems of quantification, negation were overcome . . .

Tree Adjoining Grammars (TAGs) (Joshi, Levy, and Takahashi, 1975)
I more expressive than context-free grammars (CFGs)
I (arguably) capable of modeling syntax of natural languages
I polynomial parsing algorithms (like CFGs)
I used for generation

Abstract Categorial Grammars (ACGs) (De Groote, 2001)
I type-logical grammatical framework
I encodes grammatical formalisms, including TAG
I ACG encoding of TAG enjoys polynomial parsing and generation algorithms
I embodies Curry’s tecto/pheno level distinctions
I inspired by Montague’s translation from syntax to semantics (HOL formulas)

2

Motivation

Abstract Meaning Representation (AMR) (Banarescu et al., 2013)
I semantic treebank
I de-languagized (still biased towards English)
I used for semantic parsing (Artzi, Lee, and Zettlemoyer, 2015) and generation (Flanigan

et al., 2016)
I limitations: (universal) quantification, negation
I recent developments:

AMRs were transformed as FOL formulas (Bos, 2016)
AMRs were transformed as HOL formulas modeling event semantics (Stabler, 2018)
problems of quantification, negation were overcome . . .

Tree Adjoining Grammars (TAGs) (Joshi, Levy, and Takahashi, 1975)
I more expressive than context-free grammars (CFGs)
I (arguably) capable of modeling syntax of natural languages
I polynomial parsing algorithms (like CFGs)
I used for generation

Abstract Categorial Grammars (ACGs) (De Groote, 2001)
I type-logical grammatical framework
I encodes grammatical formalisms, including TAG
I ACG encoding of TAG enjoys polynomial parsing and generation algorithms
I embodies Curry’s tecto/pheno level distinctions
I inspired by Montague’s translation from syntax to semantics (HOL formulas)

2

Motivation

Abstract Meaning Representation (AMR) (Banarescu et al., 2013)
I semantic treebank
I de-languagized (still biased towards English)
I used for semantic parsing (Artzi, Lee, and Zettlemoyer, 2015) and generation (Flanigan

et al., 2016)
I limitations: (universal) quantification, negation
I recent developments:

AMRs were transformed as FOL formulas (Bos, 2016)
AMRs were transformed as HOL formulas modeling event semantics (Stabler, 2018)
problems of quantification, negation were overcome . . .

Tree Adjoining Grammars (TAGs) (Joshi, Levy, and Takahashi, 1975)
I more expressive than context-free grammars (CFGs)
I (arguably) capable of modeling syntax of natural languages
I polynomial parsing algorithms (like CFGs)
I used for generation

Abstract Categorial Grammars (ACGs) (De Groote, 2001)
I type-logical grammatical framework
I encodes grammatical formalisms, including TAG
I ACG encoding of TAG enjoys polynomial parsing and generation algorithms
I embodies Curry’s tecto/pheno level distinctions
I inspired by Montague’s translation from syntax to semantics (HOL formulas)

2

AMR

Based on frames
Uniquely rooted directed acyclic graph (DAG) with labeled edges and nodes

I graph nodes encode entities and events (neo-Davidsonian)
I edges represent relations among entities, events, etc.

Capable of expressing various phenomena (e.g. coreference)

Problem with expressing universal quantification in DAG (maybe Hilbert’s ε-terms?)
Stabler (2018): AAMR

I transform AMR DAG into tree
I use tree transducers to obtain HOL formulas with events

I drawback: coreference is lost

Example

A boy wants to go / All boys want to / The boy wants to go / . . .
- all have same AMR semantics:

(w/want01 : arg0(b/boy)

: arg1(g/go01 : arg0 b))
– AMR in PENMAN notation

∃w∃g∃b (instance(w ,want01) ∧ instance(g ,w)∧
instance(b, boy) ∧ arg0(w , b) ∧ arg1(w , g) ∧ arg0(g , b))

– AMR in FOL notation

most(boy.pl, λb∃w(walk01.pres(w)∧ : arg0(w , b))) – Stabler’s HOL encoding

3

AMR

Based on frames
Uniquely rooted directed acyclic graph (DAG) with labeled edges and nodes

I graph nodes encode entities and events (neo-Davidsonian)
I edges represent relations among entities, events, etc.

Capable of expressing various phenomena (e.g. coreference)
Problem with expressing universal quantification in DAG (maybe Hilbert’s ε-terms?)

Stabler (2018): AAMR
I transform AMR DAG into tree
I use tree transducers to obtain HOL formulas with events

I drawback: coreference is lost

Example

A boy wants to go / All boys want to / The boy wants to go / . . .
- all have same AMR semantics:

(w/want01 : arg0(b/boy)

: arg1(g/go01 : arg0 b))
– AMR in PENMAN notation

∃w∃g∃b (instance(w ,want01) ∧ instance(g ,w)∧
instance(b, boy) ∧ arg0(w , b) ∧ arg1(w , g) ∧ arg0(g , b))

– AMR in FOL notation

most(boy.pl, λb∃w(walk01.pres(w)∧ : arg0(w , b))) – Stabler’s HOL encoding

3

AMR

Based on frames
Uniquely rooted directed acyclic graph (DAG) with labeled edges and nodes

I graph nodes encode entities and events (neo-Davidsonian)
I edges represent relations among entities, events, etc.

Capable of expressing various phenomena (e.g. coreference)
Problem with expressing universal quantification in DAG (maybe Hilbert’s ε-terms?)
Stabler (2018): AAMR

I transform AMR DAG into tree
I use tree transducers to obtain HOL formulas with events

I drawback: coreference is lost

Example

A boy wants to go / All boys want to / The boy wants to go / . . .
- all have same AMR semantics:

(w/want01 : arg0(b/boy)

: arg1(g/go01 : arg0 b))
– AMR in PENMAN notation

∃w∃g∃b (instance(w ,want01) ∧ instance(g ,w)∧
instance(b, boy) ∧ arg0(w , b) ∧ arg1(w , g) ∧ arg0(g , b))

– AMR in FOL notation

most(boy.pl, λb∃w(walk01.pres(w)∧ : arg0(w , b))) – Stabler’s HOL encoding

3

AMR

Based on frames
Uniquely rooted directed acyclic graph (DAG) with labeled edges and nodes

I graph nodes encode entities and events (neo-Davidsonian)
I edges represent relations among entities, events, etc.

Capable of expressing various phenomena (e.g. coreference)
Problem with expressing universal quantification in DAG (maybe Hilbert’s ε-terms?)
Stabler (2018): AAMR

I transform AMR DAG into tree
I use tree transducers to obtain HOL formulas with events
I drawback: coreference is lost

Example

A boy wants to go / All boys want to / The boy wants to go / . . .
- all have same AMR semantics:

(w/want01 : arg0(b/boy)

: arg1(g/go01 : arg0 b))
– AMR in PENMAN notation

∃w∃g∃b (instance(w ,want01) ∧ instance(g ,w)∧
instance(b, boy) ∧ arg0(w , b) ∧ arg1(w , g) ∧ arg0(g , b))

– AMR in FOL notation

most(boy.pl, λb∃w(walk01.pres(w)∧ : arg0(w , b))) – Stabler’s HOL encoding

3

Tree-Adjoining Grammar (TAG) (Joshi, Levy, and Takahashi, 1975)

Elementary trees –

Operations on trees –

Generated structures –

4

Tree-Adjoining Grammar (TAG) (Joshi, Levy, and Takahashi, 1975)

Elementary trees –
I Initial trees: domain of locality

Operations on trees –

Generated structures –

Example

NP

Fred

VP

Adv

loudly

VP∗

S

NP ↓ VP

V

laughs

4

Tree-Adjoining Grammar (TAG) (Joshi, Levy, and Takahashi, 1975)

Elementary trees –
I Initial trees: domain of locality

Operations on trees – substitution

Generated structures –

Example

NP

Fred

VP

Adv

loudly

VP∗

S

NP ↓ VP

V

laughs

4

Tree-Adjoining Grammar (TAG) (Joshi, Levy, and Takahashi, 1975)

Elementary trees –
I Initial trees: domain of locality
I Auxiliary trees: recursion

Operations on trees – substitution

Generated structures –

Example

NP

Fred

VP

Adv

loudly

VP∗

S

NP ↓ VP

V

laughs

4

Tree-Adjoining Grammar (TAG) (Joshi, Levy, and Takahashi, 1975)

Elementary trees –
I Initial trees: domain of locality
I Auxiliary trees: recursion

Operations on trees – substitution and adjunction

Generated structures –

Example

NP

Fred

VP

Adv

loudly

VP∗

S

NP ↓ VP

V

laughs

4

Tree-Adjoining Grammar (TAG) (Joshi, Levy, and Takahashi, 1975)

Elementary trees –
I Initial trees: domain of locality
I Auxiliary trees: recursion

Operations on trees – substitution and adjunction

Generated structures – derived trees.

Example

NP

Fred

VP

Adv

loudly

VP∗

S

NP ↓ VP

V

laughs

S

NP

Fred

VP

Adv

loudly

VP

V

laughs

4

Tree-Adjoining Grammar (TAG) (Joshi, Levy, and Takahashi, 1975)

Elementary trees –
I Initial trees: domain of locality
I Auxiliary trees: recursion

Operations on trees – substitution and adjunction

Generated structures – derived trees. Their by-products : derivation trees

Example

NP

Fred

VP

Adv

loudly

VP∗

S

NP ↓ VP

V

laughs

S

NP

Fred

VP

Adv

loudly

VP

V

laughs

αlaughs

βloudly αFred

2 1

4

Outline

1 ACG
ACG definition

Abstract Categorial Grammar (ACG)
(De Groote, 2001)

Main Features

ACGs are a grammatical framework

An ACG G generates two languages :
I The abstract language A(G)
I The object language O(G)

Abstract language : Admissible structures (parse structures, derivations)

Object language : An interpretation of the abstract language

Basic properties

Modularity Both languages are of the same nature – sets of linear λ-terms :
ACGs can be composed

Parsing 2nd order ACGs are reversible (Salvati, 2005; Kanazawa, 2007)

6

Abstract Categorial Grammar (ACG)
(De Groote, 2001)

Main Features

ACGs are a grammatical framework

An ACG G generates two languages :
I The abstract language A(G)
I The object language O(G)

Abstract language : Admissible structures (parse structures, derivations)

Object language : An interpretation of the abstract language

Basic properties

Modularity Both languages are of the same nature – sets of linear λ-terms :
ACGs can be composed

Parsing 2nd order ACGs are reversible (Salvati, 2005; Kanazawa, 2007)

6

Abstract Categorial Grammar (ACG)
(De Groote, 2001)

Main Features

ACGs are a grammatical framework

An ACG G generates two languages :
I The abstract language A(G)
I The object language O(G)

Abstract language : Admissible structures (parse structures, derivations)

Object language : An interpretation of the abstract language

Basic properties

Modularity Both languages are of the same nature – sets of linear λ-terms :
ACGs can be composed

Parsing 2nd order ACGs are reversible (Salvati, 2005; Kanazawa, 2007)

6

Abstract Categorial Grammar (ACG)
(De Groote, 2001)

Main Features

ACGs are a grammatical framework

An ACG G generates two languages :
I The abstract language A(G)
I The object language O(G)

Abstract language : Admissible structures (parse structures, derivations)

Object language : An interpretation of the abstract language

Basic properties

Modularity Both languages are of the same nature – sets of linear λ-terms

:
ACGs can be composed

Parsing 2nd order ACGs are reversible (Salvati, 2005; Kanazawa, 2007)

6

Abstract Categorial Grammar (ACG)
(De Groote, 2001)

Main Features

ACGs are a grammatical framework

An ACG G generates two languages :
I The abstract language A(G)
I The object language O(G)

Abstract language : Admissible structures (parse structures, derivations)

Object language : An interpretation of the abstract language

Basic properties

Modularity Both languages are of the same nature – sets of linear λ-terms :
ACGs can be composed

Parsing 2nd order ACGs are reversible (Salvati, 2005; Kanazawa, 2007)

6

Abstract Categorial Grammar (ACG)
(De Groote, 2001)

Main Features

ACGs are a grammatical framework

An ACG G generates two languages :
I The abstract language A(G)
I The object language O(G)

Abstract language : Admissible structures (parse structures, derivations)

Object language : An interpretation of the abstract language

Basic properties

Modularity Both languages are of the same nature – sets of linear λ-terms :
ACGs can be composed

Parsing 2nd order ACGs are reversible (Salvati, 2005; Kanazawa, 2007)

6

ACG definition

Definition (ACG)

An abstract categorial grammar (ACG) G is a quadruple 〈Σ1,Σ2,L, s〉, where

1 Σ1 and Σ2 are higher-order linear signatures, called the abstract vocabulary and the
object vocabulary, respectively;

2 L : Σ1 −→ Σ2 is a lexicon; L(λx .M) = λx .L(M) and L(M N) = L(M) L(N)

3 s is a type of the abstract vocabulary (either atomic or built upon the atomic types in
Σ1), called the distinguished type of the grammar.

The abstract language: A(G) = {M ∈ Λ(Σ1) | `Σ1 M : s is derivable}
The object language: O(G) = {N ∈ Λ(Σ2) | ∃M ∈ A (G) : N = L(M)}

Modularity: ACGs can be composed as lexicons are functions.

7

ACG definition

Definition (ACG)

An abstract categorial grammar (ACG) G is a quadruple 〈Σ1,Σ2,L, s〉, where

1 Σ1 and Σ2 are higher-order linear signatures, called the abstract vocabulary and the
object vocabulary, respectively;

2 L : Σ1 −→ Σ2 is a lexicon; L(λx .M) = λx .L(M) and L(M N) = L(M) L(N)

3 s is a type of the abstract vocabulary (either atomic or built upon the atomic types in
Σ1), called the distinguished type of the grammar.

The abstract language: A(G) = {M ∈ Λ(Σ1) | `Σ1 M : s is derivable}

The object language: O(G) = {N ∈ Λ(Σ2) | ∃M ∈ A (G) : N = L(M)}

Modularity: ACGs can be composed as lexicons are functions.

7

ACG definition

Definition (ACG)

An abstract categorial grammar (ACG) G is a quadruple 〈Σ1,Σ2,L, s〉, where

1 Σ1 and Σ2 are higher-order linear signatures, called the abstract vocabulary and the
object vocabulary, respectively;

2 L : Σ1 −→ Σ2 is a lexicon; L(λx .M) = λx .L(M) and L(M N) = L(M) L(N)

3 s is a type of the abstract vocabulary (either atomic or built upon the atomic types in
Σ1), called the distinguished type of the grammar.

The abstract language: A(G) = {M ∈ Λ(Σ1) | `Σ1 M : s is derivable}
The object language: O(G) = {N ∈ Λ(Σ2) | ∃M ∈ A (G) : N = L(M)}

Modularity: ACGs can be composed as lexicons are functions.

7

ACG definition

Definition (ACG)

An abstract categorial grammar (ACG) G is a quadruple 〈Σ1,Σ2,L, s〉, where

1 Σ1 and Σ2 are higher-order linear signatures, called the abstract vocabulary and the
object vocabulary, respectively;

2 L : Σ1 −→ Σ2 is a lexicon; L(λx .M) = λx .L(M) and L(M N) = L(M) L(N)

3 s is a type of the abstract vocabulary (either atomic or built upon the atomic types in
Σ1), called the distinguished type of the grammar.

The abstract language: A(G) = {M ∈ Λ(Σ1) | `Σ1 M : s is derivable}
The object language: O(G) = {N ∈ Λ(Σ2) | ∃M ∈ A (G) : N = L(M)}

Modularity: ACGs can be composed as lexicons are functions.

7

TAG as ACGs

+ Montague semantics (Pogodalla, 2004a)

TAG derivation
trees Λ(ΣTAG)

Derived trees
Λ(Σtrees)

Gderived trees

Strings
Λ(Σstring)

Gyield

Logical formulas
Λ(Σlogic)

GTAG sem.

8

TAG as ACGs

+ Montague semantics (Pogodalla, 2004a)

TAG derivation
trees Λ(ΣTAG)

Derived trees
Λ(Σtrees)

Gderived trees

Strings
Λ(Σstring)

Gyield

Logical formulas
Λ(Σlogic)

GTAG sem.

8

TAG as ACGs

+ Montague semantics (Pogodalla, 2004a)

TAG derivation
trees Λ(ΣTAG)

Derived trees
Λ(Σtrees)

Gderived trees

Strings
Λ(Σstring)

Gyield

Logical formulas
Λ(Σlogic)

GTAG sem.

8

TAG as ACGs

+ Montague semantics (Pogodalla, 2004a)

TAG derivation
trees Λ(ΣTAG)

Derived trees
Λ(Σtrees)

Gderived trees

Strings
Λ(Σstring)

Gyield

Logical formulas
Λ(Σlogic)

GTAG sem.

8

TAG as ACGs

+ Montague semantics (Pogodalla, 2004a)

TAG derivation
trees Λ(ΣTAG)

Derived trees
Λ(Σtrees)

Gderived trees

Strings
Λ(Σstring)

Gyield

Logical formulas
Λ(Σlogic)

GTAG sem.

8

TAG as ACGs + Montague semantics (Pogodalla, 2004a)

TAG derivation
trees Λ(ΣTAG)

Derived trees
Λ(Σtrees)

Gderived trees

Strings
Λ(Σstring)

Gyield

Logical formulas
Λ(Σlogic)

GTAG sem.

8

From TAG derivation to TAG derived trees

Derivation trees Their interpretations as derived trees

CFred : NP NP1 Fred
Claughs : SA (VPA (NP (S λ aS aV np. aS (S2 np (aV (VP2 (V1 laughs))))
Cloudly : VPA (VPA λaV x . aV (V2 x (Adv1 loudly))
IXA

: XA λx .x

NP

Fred

S

NP↓ VP

V

laughs

VP

VP∗ Adv

loudly

9

From TAG derivation to TAG derived trees

Derivation trees Their interpretations as derived trees

CFred : NP NP1 Fred
Claughs : SA (VPA (NP (S λ aS aV np. aS (S2 np (aV (VP2 (V1 laughs))))
Cloudly : VPA (VPA λaV x . aV (V2 x (Adv1 loudly))
IXA

: XA λx .x

NP

Fred

S

NP↓ VP

V

laughs

VP

VP∗ Adv

loudly

9

From TAG derivation to TAG derived trees

Derivation trees Their interpretations as derived trees
CFred : NP NP1 Fred

Claughs : SA (VPA (NP (S λ aS aV np. aS (S2 np (aV (VP2 (V1 laughs))))
Cloudly : VPA (VPA λaV x . aV (V2 x (Adv1 loudly))
IXA

: XA λx .x

NP

Fred

S

NP↓ VP

V

laughs

VP

VP∗ Adv

loudly

9

From TAG derivation to TAG derived trees

Derivation trees Their interpretations as derived trees
CFred : NP NP1 Fred
Claughs : SA (VPA (NP (S λ aS aV np. aS (S2 np (aV (VP2 (V1 laughs))))

Cloudly : VPA (VPA λaV x . aV (V2 x (Adv1 loudly))
IXA

: XA λx .x

NP

Fred

S

NP↓ VP

V

laughs

VP

VP∗ Adv

loudly

9

From TAG derivation to TAG derived trees

Derivation trees Their interpretations as derived trees
CFred : NP NP1 Fred
Claughs : SA (VPA (NP (S λ aS aV np. aS (S2 np (aV (VP2 (V1 laughs))))
Cloudly : VPA (VPA λaV x . aV (V2 x (Adv1 loudly))

IXA
: XA λx .x

NP

Fred

S

NP↓ VP

V

laughs

VP

VP∗ Adv

loudly

9

From TAG derivation to TAG derived trees

Derivation trees Their interpretations as derived trees
CFred : NP NP1 Fred
Claughs : SA (VPA (NP (S λ aS aV np. aS (S2 np (aV (VP2 (V1 laughs))))
Cloudly : VPA (VPA λaV x . aV (V2 x (Adv1 loudly))
IXA

: XA λx .x

NP

Fred

S

NP↓ VP

V

laughs

VP

VP∗ Adv

loudly

9

From TAG derivation to TAG derived trees

Derivation trees Their interpretations as derived trees
CFred : NP NP1 Fred
Claughs : SA (VPA (NP (S λ aS aV np. aS (S2 np (aV (VP2 (V1 laughs))))
Cloudly : VPA (VPA λaV x . aV (V2 x (Adv1 loudly))
IXA

: XA λx .x

NP

Fred

S

NP↓ VP

V

laughs

VP

VP∗ Adv

loudly

αlaughs

αfred βloudly

1 2

M0 = Cleft IS (Cloudly IV) CFred

9

From TAG derivation to TAG derived trees

Derivation trees Their interpretations as derived trees
CFred : NP NP1 Fred
Claughs : SA (VPA (NP (S λ aS aV np. aS (S2 np (aV (VP2 (V1 laughs))))
Cloudly : VPA (VPA λaV x . aV (V2 x (Adv1 loudly))
IXA

: XA λx .x

NP

Fred

S

NP↓ VP

V

laughs

VP

VP∗ Adv

loudly

αlaughs

αfred βloudly

1 2

M0 = Cleft IS (Cloudly IV) CFred

Gyield ◦ Gderived trees(M0) = Fred + loudly + laughs

9

From TAG derivation to Montague Translations (Pogodalla, 2004b)

Derivation trees Interpretations into Montague Grammar

CFred : NP λP.P fred

Claughs : SA (VPA (NP (S λ aS aV np. aS (np (aV (λx . smile x)))
Cloudly : VPA (VPA λ aV. aV (λx . loud x))
IXA

: XA λx .x

NP

Fred

S

NP↓ VP

V

laughs

VP

VP∗ Adv

loudly

10

From TAG derivation to Montague Translations (Pogodalla, 2004b)

Derivation trees Interpretations into Montague Grammar
CFred : NP λP.P fred

Claughs : SA (VPA (NP (S λ aS aV np. aS (np (aV (λx . smile x)))
Cloudly : VPA (VPA λ aV. aV (λx . loud x))
IXA

: XA λx .x

NP

Fred

S

NP↓ VP

V

laughs

VP

VP∗ Adv

loudly

10

From TAG derivation to Montague Translations (Pogodalla, 2004b)

Derivation trees Interpretations into Montague Grammar
CFred : NP λP.P fred

Claughs : SA (VPA (NP (S λ aS aV np. aS (np (aV (λx . smile x)))
Cloudly : VPA (VPA λ aV. aV (λx . loud x))
IXA

: XA λx .x

NP

Fred

S

NP↓ VP

V

laughs

VP

VP∗ Adv

loudly

10

From TAG derivation to Montague Translations (Pogodalla, 2004b)

Derivation trees Interpretations into Montague Grammar
CFred : NP λP.P fred

Claughs : SA (VPA (NP (S λ aS aV np. aS (np (aV (λx . smile x)))

Cloudly : VPA (VPA λ aV. aV (λx . loud x))
IXA

: XA λx .x

NP

Fred

S

NP↓ VP

V

laughs

VP

VP∗ Adv

loudly

10

From TAG derivation to Montague Translations (Pogodalla, 2004b)

Derivation trees Interpretations into Montague Grammar
CFred : NP λP.P fred

Claughs : SA (VPA (NP (S λ aS aV np. aS (np (aV (λx . smile x)))
Cloudly : VPA (VPA λ aV. aV (λx . loud x))

IXA
: XA λx .x

NP

Fred

S

NP↓ VP

V

laughs

VP

VP∗ Adv

loudly

10

From TAG derivation to Montague Translations (Pogodalla, 2004b)

Derivation trees Interpretations into Montague Grammar
CFred : NP λP.P fred

Claughs : SA (VPA (NP (S λ aS aV np. aS (np (aV (λx . smile x)))
Cloudly : VPA (VPA λ aV. aV (λx . loud x))
IXA

: XA λx .x

NP

Fred

S

NP↓ VP

V

laughs

VP

VP∗ Adv

loudly

αlaughs

αfred βloudly

1 2

M0 = Claughs IS (Cloudly IV) CFred

10

From TAG derivation to Montague Translations (Pogodalla, 2004b)

Derivation trees Interpretations into Montague Grammar
CFred : NP λP.P fred

Claughs : SA (VPA (NP (S λ aS aV np. aS (np (aV (λx . smile x)))
Cloudly : VPA (VPA λ aV. aV (λx . loud x))
IXA

: XA λx .x

NP

Fred

S

NP↓ VP

V

laughs

VP

VP∗ Adv

loudly

αlaughs

αfred βloudly

1 2

M0 = Claughs IS (Cloudly IV) CFred

LLog(M0) = loud (smile fred)

10

TAG derivation trees to HOL (Pogodalla, 2017)

Constants of ΣTAG Their interpretations by GTAG sem.

Cfred : NP λP.P fred : (e → t)→ t
Cwoman : nA (NP λD.λq .D woman q
Csmart : nA (nA λD. λn .λq .D (λ x . (smart x) ∧ (n x))q
Cevery ,Ceach : nA λP Q . ∀ x . (P x) ⊃ (Q x)
Csome , Ca : nA λP Q . ∃ x . (P x) ∧ (Q x)
Ckissed : SA (VPA (NP (NP (S λadvs advv sbj obj . advs (sbj (λx .(obj (advv (λy .kiss x y)))))
IX : XA λx .x
S t

11

Continuations, event semantics, ACG

Previous approaches

syntax-event semantics interface using ACG (Winter and Zwarts, 2011) – their
grammar is not TAG;

syntax-event semantic interface (Champollion, 2015):

I uses continuations: verbs are of type (v → t) → t
I negation scopes over existentially closed formula (¬∃w . . .)

I no distinction of arguments and adjuncts, e.g.

λx .go x VS λf .∃w .go(w) ∧ f (w)

Our approach

use continuations, like (Champollion, 2015)

negation scopes over event quantifier, like (Champollion, 2015)

retain arguments within a lexical entry of a verb, like AMR

(universal) quantification, like (Stabler, 2018)

12

Continuations, event semantics, ACG

Previous approaches

syntax-event semantics interface using ACG (Winter and Zwarts, 2011) – their
grammar is not TAG;

syntax-event semantic interface (Champollion, 2015):
I uses continuations: verbs are of type (v → t) → t
I negation scopes over existentially closed formula (¬∃w . . .)

I no distinction of arguments and adjuncts, e.g.

λx .go x VS λf .∃w .go(w) ∧ f (w)

Our approach

use continuations, like (Champollion, 2015)

negation scopes over event quantifier, like (Champollion, 2015)

retain arguments within a lexical entry of a verb, like AMR

(universal) quantification, like (Stabler, 2018)

12

Continuations, event semantics, ACG

Previous approaches

syntax-event semantics interface using ACG (Winter and Zwarts, 2011) – their
grammar is not TAG;

syntax-event semantic interface (Champollion, 2015):
I uses continuations: verbs are of type (v → t) → t
I negation scopes over existentially closed formula (¬∃w . . .)

I no distinction of arguments and adjuncts, e.g.

λx .go x VS λf .∃w .go(w) ∧ f (w)

Our approach

use continuations, like (Champollion, 2015)

negation scopes over event quantifier, like (Champollion, 2015)

retain arguments within a lexical entry of a verb, like AMR

(universal) quantification, like (Stabler, 2018)

12

Interpretation as HOL formulas modeling event semantics: First try

everything should get a chance for a continuation

but one has to know when to stop (close)

S := (v → t)→ t
T := t
Closure := λP.P True : ((v → t)→ t)→ t
Cjohn := λP.P john
Cwalks := λadvs advv subj . advs (subj (advv (λx .λh.∃w . (walkw) ∧ (arg0 w x) ∧ (h w))))
Csmart := λD.λn.λq.λf .D(λxh.(n x h) ∧ (smart x))q f

CnA
every := λp.λq.λf .∀x .(p x f) ⊃ (q x f)

CnA(NP
woman := λD.D(λ x h.(woman x ∧ h x))

CSA(SA
certainly := λm. λV . m (λh.V (λv .(certainly v) ∧ (h v))

CVPA(VPA
fast := λm. λV .m (λx .λh.Vx(λv .(fast v) ∧ (h v)))

CVPA
does not := λVxh.¬(V x h)

13

Interpretation as HOL formulas modeling event semantics: First try

everything should get a chance for a continuation

but one has to know when to stop (close)

S := (v → t)→ t
T := t
Closure := λP.P True : ((v → t)→ t)→ t
Cjohn := λP.P john
Cwalks := λadvs advv subj . advs (subj (advv (λx .λh.∃w . (walkw) ∧ (arg0 w x) ∧ (h w))))
Csmart := λD.λn.λq.λf .D(λxh.(n x h) ∧ (smart x))q f

CnA
every := λp.λq.λf .∀x .(p x f) ⊃ (q x f)

CnA(NP
woman := λD.D(λ x h.(woman x ∧ h x))

CSA(SA
certainly := λm. λV . m (λh.V (λv .(certainly v) ∧ (h v))

CVPA(VPA
fast := λm. λV .m (λx .λh.Vx(λv .(fast v) ∧ (h v)))

CVPA
does not := λVxh.¬(V x h)

13

Interpretation as HOL formulas modeling event semantics: First try

everything should get a chance for a continuation

but one has to know when to stop (close)

S := (v → t)→ t
T := t
Closure := λP.P True : ((v → t)→ t)→ t
Cjohn := λP.P john
Cwalks := λadvs advv subj . advs (subj (advv (λx .λh.∃w . (walkw) ∧ (arg0 w x) ∧ (h w))))
Csmart := λD.λn.λq.λf .D(λxh.(n x h) ∧ (smart x))q f

CnA
every := λp.λq.λf .∀x .(p x f) ⊃ (q x f)

CnA(NP
woman := λD.D(λ x h.(woman x ∧ h x))

CSA(SA
certainly := λm. λV . m (λh.V (λv .(certainly v) ∧ (h v))

CVPA(VPA
fast := λm. λV .m (λx .λh.Vx(λv .(fast v) ∧ (h v)))

CVPA
does not := λVxh.¬(V x h)

13

First try: Results

(1) Every smart woman walks.
M1 = Closure (Cwalks IS IVP (Cwoman (Csmart Cevery))) : T

(2) John does not walk.
M2 = Closure (Cwalks IS Cdoes not Cjohn) : T

(3) Every smart woman walks fast.
M3 = Closure (Cwalks IS(Cfast IVP)(Cwoman (Csmart Cevery))) : T

(4) Certainly, every smart woman walks.
M4 = Closure (Cwalks(Ccertainly IS)IVP(Cwoman (Csmart Cevery))) : T

M1 := ∀x(woman x ∧ smart x ⊃ ∃w (walkw) ∧ (arg0 w x)) X

M2 := ¬∃w (walkw) ∧ (arg0 w john) X
M3 := ∀x(woman x ∧ smart x ∧ fast x ⊃ ∃w(walkw) ∧ (arg0 w x) ∧ (fastw))
M4 := ∀x (woman x∧smart x ∧ certainly x ⊃ ∃w(walkw) ∧ (arg0 w x)∧(certainlyw))

14

First try: Results

(1) Every smart woman walks.
M1 = Closure (Cwalks IS IVP (Cwoman (Csmart Cevery))) : T

(2) John does not walk.
M2 = Closure (Cwalks IS Cdoes not Cjohn) : T

(3) Every smart woman walks fast.
M3 = Closure (Cwalks IS(Cfast IVP)(Cwoman (Csmart Cevery))) : T

(4) Certainly, every smart woman walks.
M4 = Closure (Cwalks(Ccertainly IS)IVP(Cwoman (Csmart Cevery))) : T

M1 := ∀x(woman x ∧ smart x ⊃ ∃w (walkw) ∧ (arg0 w x)) X
M2 := ¬∃w (walkw) ∧ (arg0 w john) X

M3 := ∀x(woman x ∧ smart x ∧ fast x ⊃ ∃w(walkw) ∧ (arg0 w x) ∧ (fastw))
M4 := ∀x (woman x∧smart x ∧ certainly x ⊃ ∃w(walkw) ∧ (arg0 w x)∧(certainlyw))

14

First try: Results

(1) Every smart woman walks.
M1 = Closure (Cwalks IS IVP (Cwoman (Csmart Cevery))) : T

(2) John does not walk.
M2 = Closure (Cwalks IS Cdoes not Cjohn) : T

(3) Every smart woman walks fast.
M3 = Closure (Cwalks IS(Cfast IVP)(Cwoman (Csmart Cevery))) : T

(4) Certainly, every smart woman walks.
M4 = Closure (Cwalks(Ccertainly IS)IVP(Cwoman (Csmart Cevery))) : T

M1 := ∀x(woman x ∧ smart x ⊃ ∃w (walkw) ∧ (arg0 w x)) X
M2 := ¬∃w (walkw) ∧ (arg0 w john) X
M3 := ∀x(woman x ∧ smart x ∧ fast x ⊃ ∃w(walkw) ∧ (arg0 w x) ∧ (fastw))

M4 := ∀x (woman x∧smart x ∧ certainly x ⊃ ∃w(walkw) ∧ (arg0 w x)∧(certainlyw))

14

First try: Results

(1) Every smart woman walks.
M1 = Closure (Cwalks IS IVP (Cwoman (Csmart Cevery))) : T

(2) John does not walk.
M2 = Closure (Cwalks IS Cdoes not Cjohn) : T

(3) Every smart woman walks fast.
M3 = Closure (Cwalks IS(Cfast IVP)(Cwoman (Csmart Cevery))) : T

(4) Certainly, every smart woman walks.
M4 = Closure (Cwalks(Ccertainly IS)IVP(Cwoman (Csmart Cevery))) : T

M1 := ∀x(woman x ∧ smart x ⊃ ∃w (walkw) ∧ (arg0 w x)) X
M2 := ¬∃w (walkw) ∧ (arg0 w john) X
M3 := ∀x(woman x ∧ smart x ∧ fast x ⊃ ∃w(walkw) ∧ (arg0 w x) ∧ (fastw))
M4 := ∀x (woman x∧smart x ∧ certainly x ⊃ ∃w(walkw) ∧ (arg0 w x)∧(certainlyw))

14

Locating the problem

S := (v → t)→ t
T := t
Closure := λP.P True : ((v → t)→ t)→ t
Cjohn := λP.P john
Cwalks := λadvs advv subj . advs (subj (advv (λx .λh.∃w . (walkw) ∧ (arg0 w x) ∧ (h w))))
Csmart := λD.λn.λq.λf .D(λxh.(n x h) ∧ (smart x))q f

CnA
every := λp.λq.λf .∀x .(p x f) ⊃ (q x f)

CnA(NP
woman := λD.D(λ x h.(woman x ∧ h x))

CSA(SA
certainly := λm. λV . m (λh.V (λv .(certainly v) ∧ (h v))

CVPA(VPA
fast := λm. λV .m (λx .λh.Vx(λv .(fast v) ∧ (h v)))

CVPA
does not := λVxh.¬(V x h)

15

Second try: No continuations for noun phrases

New interpretations

Cjohn := λP.P john : (e → Ω)→ Ω
Cwalks := λadvs advv subj .advs (subj (advv (λx .λh.∃w . (walkw) ∧ (arg0 w x) ∧ (h w))))
Cwoman := λD.D(λ x .woman x)
Cevery := λPQ.λh.∀x(Px ⊃ Qxh) : (e → t)→ (e → Ω)→ Ω
Ca := λPQ.λh.∃x(Px ∧ Qxh) : (e → t)→ (e → Ω)→ Ω
Csmart := λD.λn.λq.λf .D(λx .(n x) ∧ (smart x))q f
Ccertainly := λm. λV . m (λh.V (λv .(certainly v) ∧ (h v))
Cfast := λm. λV .m (λx .λh.Vx(λv .(fast v) ∧ (h v)))
Cdoes not := λVxh.¬(V x h)
Citisnotthecase := λS h.¬(S h)

Where: Ω ≡def (v → t)→ t

M3 :=∀x(woman x ∧ smart x ⊃ ∃w(walkw) ∧ (arg0 w x) ∧ (fastw))

M4 :=∀x(woman x ∧ smart x ⊃ ∃w(walkw) ∧ (arg0 w x) ∧ (certainlyw))

16

Second try: No continuations for noun phrases

New interpretations

Cjohn := λP.P john : (e → Ω)→ Ω
Cwalks := λadvs advv subj .advs (subj (advv (λx .λh.∃w . (walkw) ∧ (arg0 w x) ∧ (h w))))
Cwoman := λD.D(λ x .woman x)
Cevery := λPQ.λh.∀x(Px ⊃ Qxh) : (e → t)→ (e → Ω)→ Ω
Ca := λPQ.λh.∃x(Px ∧ Qxh) : (e → t)→ (e → Ω)→ Ω
Csmart := λD.λn.λq.λf .D(λx .(n x) ∧ (smart x))q f
Ccertainly := λm. λV . m (λh.V (λv .(certainly v) ∧ (h v))
Cfast := λm. λV .m (λx .λh.Vx(λv .(fast v) ∧ (h v)))
Cdoes not := λVxh.¬(V x h)
Citisnotthecase := λS h.¬(S h)

Where: Ω ≡def (v → t)→ t

M3 :=∀x(woman x ∧ smart x ⊃ ∃w(walkw) ∧ (arg0 w x) ∧ (fastw))

M4 :=∀x(woman x ∧ smart x ⊃ ∃w(walkw) ∧ (arg0 w x) ∧ (certainlyw))

16

Bonus: Coreference, Raising

Cwants : SA (VPA (NP (S′A Cto-sleep : S′A (S
Cwants := λadvs advv subj .λPred .advs (subj(advv .λx h.

∃w((wantw) ∧ (h w) ∧ (arg0 w x) ∧ Pred(λQ.Q x)(λr .Arg1 w r))
Cto-sleep := λcont.cont(λsubj .subj(λx .λf .∃u.(sleep u) ∧ (arg0 u x) ∧ (f u))
S′A := (((e → Ω)→ Ω)→ Ω)→ Ω

(5) a. John wants to sleep.
M5 = Closure(Cto-sleep (Cwants IS IVPCjohn)) : T
∃w(wantw) ∧ (arg0 w john) ∧ (∃u(sleep u) ∧ (Arg1 w u) ∧ (arg0 u john))

b. Every boy wants to sleep.
M6 = Closure(Cto-sleep (Cwants IS IVP(CboyCevery))) : T
∀x(boy x⊃∃w(wantw)∧(arg0 w x)∧(∃u.(sleep u)∧(Arg1 w u)∧(arg0 u x)))

c. Every boy does not want to sleep.
M7 = Closure(Cto-sleep (Cwants IS IVP(CboyCevery))) : T
∀x(boy x⊃¬(∃w(wantw)∧(arg0 w x)∧(∃u.(sleep u)∧(Arg1 w u)∧(arg0 u x))))

only one reading out of two

17

Future Work and Conclusion

TAG deriva-
tion trees

Derived trees

Strings

Logical formulas
HOL formulas

for event
semantics

Current approach

TAG derivation trees to Stable’s HOL translation of AMRs using ACGs

Coreference missing in AAMR

An approach to NLG with HOL encodings of AMRs for free

Future work

Encode more complex interaction of quantifiers and negation

A large scale ACG

Maintain reasonable bounds on parsing/generation complexity

18

Future Work and Conclusion

TAG deriva-
tion trees

Derived trees

Strings

Logical formulas
HOL formulas

for event
semantics

Current approach

TAG derivation trees to Stable’s HOL translation of AMRs using ACGs

Coreference missing in AAMR

An approach to NLG with HOL encodings of AMRs for free

Future work

Encode more complex interaction of quantifiers and negation

A large scale ACG

Maintain reasonable bounds on parsing/generation complexity

18

Future Work and Conclusion

TAG deriva-
tion trees

Derived trees

Strings

Logical formulas
HOL formulas

for event
semantics

Current approach

TAG derivation trees to Stable’s HOL translation of AMRs using ACGs

Coreference missing in AAMR

An approach to NLG with HOL encodings of AMRs for free

Future work

Encode more complex interaction of quantifiers and negation

A large scale ACG

Maintain reasonable bounds on parsing/generation complexity
18

Thank You

19

References I

Artzi, Yoav, Kenton Lee, and Luke Zettlemoyer (2015). “Broad-coverage CCG Semantic
Parsing with AMR”. In: Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing. Lisbon, Portugal: Association for Computational
Linguistics, pp. 1699–1710. doi: 10.18653/v1/D15-1198. url:
http://www.aclweb.org/anthology/D15-1198.

Banarescu, Laura et al. (2013). “Abstract Meaning Representation for Sembanking”. In:
Proceedings of the 7th Linguistics Annotation Workshop & Interoperability with
Discourse. Sofia, Bulgaria, pp. 178–186.

Bos, Johan (2016). “Expressive Power of Abstract Meaning Representations”. In:
Computational Linguistics 42.3, pp. 527–535. doi: 10.1162/COLI_a_00257. eprint:
https://doi.org/10.1162/COLI_a_00257. url:
https://doi.org/10.1162/COLI_a_00257.

Champollion, Lucas (2015). “The interaction of compositional semantics and event
semantics”. In: Linguistics and Philosophy 38.1, pp. 31–66. issn: 1573-0549. doi:
10.1007/s10988-014-9162-8.

20

https://doi.org/10.18653/v1/D15-1198
http://www.aclweb.org/anthology/D15-1198
https://doi.org/10.1162/COLI_a_00257
https://doi.org/10.1162/COLI_a_00257
https://doi.org/10.1162/COLI_a_00257
https://doi.org/10.1007/s10988-014-9162-8

References II

De Groote, Philippe (2001). “Towards Abstract Categorial Grammars”. In: Association for
Computational Linguistics, 39th Annual Meeting and 10th Conference of the European
Chapter, Proceedings of the Conference, pp. 148–155. acl: P01-1033. url:
http://aclweb.org/anthology/P/P01/P01-1033.

Flanigan, Jeffrey et al. (2016). “Generation from Abstract Meaning Representation using
Tree Transducers”. In: Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies. San Diego, California: Association for Computational Linguistics,
pp. 731–739. doi: 10.18653/v1/N16-1087. url:
http://www.aclweb.org/anthology/N16-1087.

Joshi, Aravind K., Leon S. Levy, and Masako Takahashi (1975). “Tree Adjunct Grammars”.
In: Journal of Computer and System Sciences 10.1, pp. 136–163. doi:
10.1016/S0022-0000(75)80019-5.

Kanazawa, Makoto (2007). “Parsing and Generation as Datalog Queries”. In: Proceedings
of the 45th Annual Meeting of the Association of Computational Linguistics (ACL).
Prague, Czech Republic: Association for Computational Linguistics, pp. 176–183. acl:
P07-1023. url: http://www.aclweb.org/anthology/P07-1023.

21

P01-1033
http://aclweb.org/anthology/P/P01/P01-1033
https://doi.org/10.18653/v1/N16-1087
http://www.aclweb.org/anthology/N16-1087
https://doi.org/10.1016/S0022-0000(75)80019-5
P07-1023
http://www.aclweb.org/anthology/P07-1023

References III

Pogodalla, Sylvain (2004a). “Computing Semantic Representation: Towards ACG Abstract
Terms as Derivation Trees”. In: Proceedings of TAG+7, pp. 64–71. url:
http://hal.inria.fr/inria-00107768/PDF/A04-R-058.pdf.

– (2004b). “Computing Semantic Representation: Towards ACG Abstract Terms as
Derivation Trees”. In: Proceedings of the Seventh International Workshop on Tree
Adjoining Grammar and Related Formalisms (TAG+7), pp. 64–71.

– (2017). “A syntax-semantics interface for Tree-Adjoining Grammars through Abstract
Categorial Grammars”. In: Journal of Language Modelling 5.3, pp. 527–605. doi:
10.15398/jlm.v5i3.193. url: https://hal.inria.fr/hal-01242154.

Salvati, Sylvain (2005). “Problèmes de filtrage et problèmes d’analyse pour les grammaires
catógorielles abstraites”. PhD thesis. Institut National Polytechnique de Lorraine. url:
http://www.labri.fr/perso/salvati/downloads/articles/these.pdf.

Stabler, Edward (2018). “Reforming AMR”. In: Formal Grammar. Ed. by Annie Foret,
Reinhard Muskens, and Sylvain Pogodalla. Springer Berlin Heidelberg, pp. 72–87. isbn:
978-3-662-56343-4.

Winter, Yoad and Joost Zwarts (2011). “Event Semantics and Abstract Categorial
Grammar”. In: The Mathematics of Language. Ed. by Makoto Kanazawa et al. Springer
Berlin Heidelberg, pp. 174–191.

22

http://hal.inria.fr/inria-00107768/PDF/A04-R-058.pdf
https://doi.org/10.15398/jlm.v5i3.193
https://hal.inria.fr/hal-01242154
http://www.labri.fr/perso/salvati/downloads/articles/these.pdf

	ACG
	ACG definition

