Linear Algebraic Representation of Knowledge State of Agent

Satoshi Tojo

JAIST

28 August, 2018

Outline

1 Introduction

2 Linear Algebraic Semantics for Modal Logic

3 Linear Algebraic Semantics for Multi-agent Communication

4 Conclusions

Introduction

- One of the most important aspects of multi-agent communication is changes of agent's knowledge or belief (cf. Gärdenfors 2003)
- Nowadays, such changes are well-discussed in terms of modal logic, as Dynamic Epistemic Logic (DEL)
- We show a computational tool of DEL for multi-agent communication

George de La Tour: Le Tricheur à l'as de carreau

George de La Tour: Le Tricheur à l'as de carreau

George de La Tour: Le Tricheur à l'as de carreau

George de La Tour: Le Tricheur à l'as de carreau

Issues

In the picture, we can see many aspects of belief change of agents triggered by an informing action by others.

- Liar
- Belief revision
- Reliability of news source
- Mutual belief
- Channel/ Whisper /Announcement
- Awareness

How can we formalize these troublesome situations in logic, or in an efficient, scalable and reliable computation system?

Outline

1 Introduction

2 Linear Algebraic Semantics for Modal Logic

3 Linear Algebraic Semantics for Multi-agent Communication

4 Conclusions

Linear Algebraic Approach to Kripke Semantics

Historical development:

- Frame properties (Lemmon & Scott 1977)
- Boolean matrix approach for
 - bisimulation for modal logic (Fitting 2003).
 - belief revision & fusion of belief logic (Liau 2004).
 - DEL with communication channels (Tojo 2013, Hatano, Sano & Tojo 2015).
- Real-valued matrix approach for belief revision & update of belief logic (Fusaoka et al. 2007)
- Relational algebraic approach for modal logic of knowledge (Berghammer & Schmidt 2006).

Linear Algebraic Approach to Kripke Semantics

Define a Kripke Model $\mathfrak{M} = (W, R, V)$ by:

$$W = \{ w_1, w_2, w_3 \}, \\ R = \{ (w_1, w_1), (w_1, w_2), (w_1, w_3), (w_2, w_2), (w_3, w_3) \}, \\ V(p) = \{ w_2 \}.$$

Syntax & Semantics

• $PROP = \{ p, q, ... \}$ is a finite set of propositional variables.

$$\mathsf{Form}_{\mathsf{ML}} \ni A ::= p \mid \neg A \mid (A \lor A) \mid \Diamond A$$

• Given any $\mathfrak{M} = (W, R, V)$ and any $w \in W$,

Matrix Representation of Kripke Semantics

- Accessibility relation $R \mapsto$ a square matrix R^M
- Valuation $V(p) \mapsto$ a column vector $(V(p))^M$

A column vector $||A||_{\mathfrak{M}}$ is defined by:

$$\overline{\begin{bmatrix}1\\0\\0\end{bmatrix}} = \begin{bmatrix}0\\1\\1\end{bmatrix} \qquad \begin{bmatrix}1\\0\\0\end{bmatrix} + \begin{bmatrix}1\\1\\0\end{bmatrix} = \begin{bmatrix}1\\1\\0\end{bmatrix}$$

Example: the column vector of $\Diamond p$

$$\begin{aligned} \|\Diamond p\| &:= R^M \|p\| = R^M (V(p))^M = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \\ \|\Box p\| &= \|\neg \Diamond \neg p\| = \overline{\|\Diamond \neg p\|} = \overline{R \|\neg p\|} = \overline{R \|p\|} \end{aligned}$$

Kripke semantics becomes an extended truth table calculation.

Matrix Representation of Frame Properties

Name	Formula	Matrix Reformulation
Reflexive	T $\Box p ightarrow p$	$R = R + \mathbf{E}$
Symmetric	$B p \to \Box \Diamond p$	$R = {}^tR$ (or $R = {}^tR + R$)
Transitive	4 $\Box p \rightarrow \Box \Box p$	$R = R^2 + R$
Serial	D $\Box p ightarrow \Diamond p$	$R^t R = R^t R + E$ (or $1 = R1$)
Euclidean	5 $\Diamond p \rightarrow \Box \Diamond p$	$R = {}^{t}RR + R$

- E: a unit square matrix
- 1: a column vector of all 1s
- ${}^{t}R$: the transposition of the matrix R

$$\mathbf{E} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad R = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \Rightarrow {}^{t}R = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

Example: Verification of a Frame Property

Let us check whether R is transitive $(R = R^2 + R)$.

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}} + \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

R is transitive.

Difficulty of The Ordinary Approach

- The verification of the Euclideanness property $\Rightarrow R = {}^{t}RR + R$
- The truth of a formula with the nested modal operators.

$$\Rightarrow \|\Diamond p \to \Box \Diamond p\| = \overline{R\|p\|} + R\overline{R\|p\|} = \mathbf{1}$$

S Belief Calculator(ver. 0.6.4) *	
File Edit View Run Help	
Kripke Model Editor	Calculator
$Rand_{M} Rand_{F} Refl_{F} Sym_{F} Reset$	$\mathbb{ID} \begin{tabular}{ c c c c } \hline \mathbb{I} \oplus \begin{tabular}{c c c } p & c_{ab} \rightarrow \forall \ \land \ \rightarrow \ \diamondsuit \begin{tabular}{ c c } \hline \mathbb{I} \oplus \begin{tabular}{c c c } U & \vdots & \uparrow \begin{tabular}{ c c } \mathcal{I} \oplus \begin{tabular}{ c } \mathcal{I} \oplus \be$
Worlds(W) : Cardinality of worlds(#W) 5	
Agents(Q) : Cardinality of agents(\$Q)	x Truths Erame Property Visualice
Relations(R _s) _{s C G} : agent id 1 + E 0 1 Rand _R	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{cccc} r(u) \in Y = 1 \\ r(u) \in [u_{n-1}(1), \mu_{n-1}(1), \mu_{n-1}(1), \mu_{n-1}(1), \mu_{n-1}(1), \mu_{n-1}(1))] = \\ \hline \\ r(u) = r(u_{n-1}(1), \mu_{n-1}(1), \mu_{n-1}(1), \mu_{n-1}(1), \mu_{n-1}(1), \mu_{n-1}(1))) = \\ r(u) = r(u) = r(u) + r(u) $
Channels(G _a) _{a,b} = 0 : norid (1 + E 0 Rand _O a,1 - a,2 - a,3 a,0 - 0 - 0 a,2 - 0 - 1 a,1 - 1 - 1	
Valuations(V) : Controlley of propositions(Prop) 0.5 E 0 1 Randy P.1 P.2 p.3 0	- Clever formula is will due the week! . - Clever formula is will filled on the adokt. - The weak! is NOT endefuel.

Selief Calculator(ver. 0.6.4) *		
File Edit View Run Help		
Kripke Model Editor	Calculator	
$Rand_{M} Rand_{F} Refl_{F} Sym_{F} Reset$	$10 1 \oplus p e_{ab} \rightarrow V \land \rightarrow \Diamond \Box () P_{a} U : ? L^{a}_{b} T B 4 D 5$	
Worlds(W) : Cardinality of worlds(#W) 5		
Agents(G) : Cardinality of agents(\$G)	x Truths Erame Property Visualize	
$\begin{array}{c c} \mathbf{R}_{eb} \\ \hline \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \\ \mathbf{v}_{4} \\$		
	Truths <u>F</u> rame Property <u>V</u> isualize	
Chammels/Ga/A,b = G inortial E B Rando a,1 a,2 a,3 a,0 0	•costituti (robb out.; •(Great[a_1]) = () His (Great[a_1]) (Great[a_1]) = ())) = •([Great[a_1]]) = () His (Great[a_1]) = ())) = () His (Great[a_1]) = () His (Grea	
Valuations(V) - Controlly of propositions(Bhog) 0 (2) E 0 1 Rendy b,1 b,2 b,3 (2) <	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	
Ready.		

rel_a1

Selief Calculator(ver. 0.6.4) *	
File Edit View Run Help	
	Calculator
$4 \Box p \to \Box \Box p$	a a a a a a a a a a a a a a a a a a a
Agents(G) : Cardinality of agents(#3)	
Relations(R.), e e arent id 1 + E 0 1 Rande	
Pesticon(PO_u e_0^seerid () ([e] + Reamy resultant truth set = (([Vrel {a_1}] p_1) Vto ([Vrel {a_1}]) ([(([Vrel {a_1}] p_1) Vto ([Vrel {a_1}]) ([(([Vrel {a_2}] 1 0000 u_2 1 1.0000 u_3 1 1.0000 u_3 1 1.0000 u_4 1.0000 u_5 1 1.0000 u_5 1 1.0000	<pre></pre>
ranky.	

Spaghetti of Accessibility

Spaghetti of Accessibility

Our approach can cover the following topics:

- Matrix representation of graph of a Kripke model
- Computation of the truth value of a formula
- The validity and the satisfiability of a formula
- Frame properties (reflexivity, symmetricity, transitivity, seriality and Euclideanness)

Outline

1 Introduction

2 Linear Algebraic Semantics for Modal Logic

3 Linear Algebraic Semantics for Multi-agent Communication

4 Conclusions

Multi-agent Communication

For Multi-agent system, we propose:

- Logic of belief with communication channels and its dynamic operators
- A linear algebraic reformulation for proposed operators
- Dynamic change of belief by matrix calculation

Digression: what is communication? If you are alone in the universe ...

- Have you possessed language?
- Some claim we need language to think.

Further Digression: what is language?

CFG and RG

• Language of domestic finch: $((ab)^+c)^+$

- Human language
 - CFG NPDA
 - ★ We came to see a movie to Shibuya.
 - ★ We came to Shibuya to see a movie.
 - * (*) We came to see to Shibuya a movie.
 - Dutch crossing
 - ★ He said that A saw B help C feed the dogs.
 - ★ Hij zegt dat A B C de honden zag helpen voeren.

Logical Studies for Multi-agent communication

Historical development:

- **DEL** for public announcements (Plaza 1989 etc.)
- Integration of communication channels into DEL
 - Two-dimensional approach of Facebook logic (Seligman et al. 2011, Sano & Tojo 2013).
 - Linear algebraic approach of DEL (Tojo 2013).

It is unknown whether resulting logics of two-dimensional approach is decidable.

We extend our linear algebraic approach for Dynamic Logic of Relation Changers (DLRC) to handle communication channels.

Syntax

PROP = { p, q, ... } is a finite set of propositional variables.
G = { a, b, ... } is a finite set of agents.

$$A ::= p \mid \mathsf{c}_{ab} \mid \neg A \mid A \lor B \mid \mathsf{B}_a A$$

- c_{ab}: "there is a channel from agent a to agent b."
- B_a A: "agent a believes A."

Kripke Semantics

Let us extend our Kripke semantics by a channel relation.

•
$$\mathfrak{M} = (W, (R_a)_{a \in G}, (C_{ab})_{a,b \in G}, V)$$
 is a Kripke model.

• $C_{ab} \subseteq W$ is a channel relation s.t. $C_{aa} = W$.

Given any $\mathfrak{M} = (W, (R_a)_{a \in G}, (C_{ab})_{a,b \in G}, V)$ and any $w \in W$,

$$\begin{array}{lll}\mathfrak{M}, w \models \mathsf{c}_{ab} & \text{iff} \quad w \in \mathcal{C}_{ab}\\ \mathfrak{M}, w \models \mathsf{B}_{a} \mathcal{A} & \text{iff} \quad \text{for all } v \in W : wR_{a}v \text{ implies } \mathfrak{M}, v \models \mathcal{A}_{a} \end{array}$$

The truth set $[A]_{\mathfrak{M}}$ is defined by:

$$\llbracket A \rrbracket_{\mathfrak{M}} = \{ w \in W \mid \mathfrak{M}, w \models A \}.$$

Hilbert-style Axiomatization HK_c

$$\begin{array}{ll} (\textbf{Taut}) & A, A \text{ is a tautology} \\ (\textbf{K}_{[B]}) & \textbf{B}_a(A \rightarrow B) \rightarrow (\textbf{B}_a A \rightarrow \textbf{B}_a B) & (a \in \textbf{G}) \\ (\textbf{Selfchn}) & \textbf{c}_{aa} & (a \in \textbf{G}) \\ (\textbf{MP}) & \text{From } A \text{ and } A \rightarrow B, \text{ infer } B \\ (\textbf{Nec}_{[B]}) & \text{From } A, \text{ infer } \textbf{B}_a A & (a \in \textbf{G}) \end{array}$$

Theorem

This axiomatization is decidable, sound and complete for the previous Kripke semantics.

Conditional Private Announcement $[A\downarrow_b^a]$

 $[A \downarrow_b^a]$: "Agent *a* sends a message *A* to agent *b* via a channel."

When the communication succeeds? Our assumptions:

- There should be a channel from *a* to *b*.
- Agent *a* believes the content of the message, to avoid Moore sentences.

Semantics of $[A\downarrow_b^a]$

 $\mathfrak{M}, w \models [A \downarrow_b^a] B \quad \text{iff} \quad \mathfrak{M}^{A \downarrow_b^a}, w \models B$ where $\mathfrak{M}^{A \downarrow_b^a} = (W, (R'_a)_{a \in G}, (C_{ab})_{a,b \in G}, V)$ and $(R'_c)_{c \in G}$ is defined as:

• If
$$c = b$$
, for all $x \in W$,

$$R'_b(x) := \begin{cases} R_b(x) \cap \llbracket A \rrbracket_{\mathfrak{M}} & \text{if } \mathfrak{M}, x \models c_{ab} \land B_a A \\ R_b(x) & \text{otherwise.} \end{cases}$$

• Otherwise, $R'_c := R_c$.

Agent *b* restricts his/her belief by $[A]_{\mathfrak{M}}$ if

- there is a channel from a to b,
- agent *a* believes the content of the message.

Other agents than *b* do not change beliefs.

Hilbert-style Axiomatization $HK_{c[\cdot \downarrow_{h}^{a}]}$

In addition to all the axioms and rules of HK_c , we add: $[A \downarrow_b^a] p \leftrightarrow p$, $[A \downarrow_b^a] c_{cd} \leftrightarrow c_{cd}$, $[A \downarrow_b^a] \neg B \leftrightarrow \neg [A \downarrow_b^a] B$, $[A \downarrow_b^a] (B \lor C) \leftrightarrow [A \downarrow_b^a] B \lor [A \downarrow_b^a] C$, $[A \downarrow_b^a] B_c B \leftrightarrow B_c [A \downarrow_b^a] B (c \neq b)$ $[A \downarrow_b^a] B_b B \leftrightarrow ((c_{ab} \land B_a A) \rightarrow B_b (A \rightarrow [A \downarrow_b^a] B)) \land$ $(\neg (c_{ab} \land B_a A) \rightarrow B_b [A \downarrow_b^a] B)$ ($\mathsf{Nec}_{[A \downarrow_b^a]}$) From *B*, infer $[A \downarrow_b^a] B$

Theorem

This is a decidable, sound and complete axiomatization for the previous Kripke semantics.

PDL-extension of Our Syntax

- $\mathsf{PROP} = \{ p, q, \dots \}$ is a finite set of propositional variables.
- $G = \{a, b, ...\}$ is a finite set of atomic programs.
- We regard each agent's belief as an atomic program.

$$\alpha ::= \mathbf{a} \mid (\alpha \cup \alpha) \mid (\alpha; \alpha) \mid ?A$$
$$A ::= \mathbf{p} \mid \mathbf{c}_{\mathbf{a}\mathbf{b}} \mid \neg A \mid A \lor A \mid [\alpha]A$$

• [a] corresponds to the accessibility of agent a, that is R_a .

The Relation Changer $[A\downarrow_b^a]$

 $[A\downarrow_b^a]$: If $c_{ab} \wedge B_a A$ then restrict R_b to A else keep R_b .

If X then α else $\beta \quad \stackrel{\text{def}}{\Leftrightarrow} \quad (?X; \alpha) \cup (?\neg X; \beta).$

$$\begin{array}{rcl} \alpha_b &:= & \text{if } \mathsf{c}_{ab} \wedge \mathsf{B}_a A \text{ then } b; ?A \text{ else } b \\ &:= & (?(\mathsf{c}_{ab} \wedge \mathsf{B}_a A); b; ?A) \cup (?\neg(\mathsf{c}_{ab} \wedge \mathsf{B}_a A); b) \\ R_b^{\prime M} &= \|?(\mathsf{c}_{ab} \wedge \mathsf{B}_a A)\|R_b^M\|?A\| + \|?\neg(\mathsf{c}_{ab} \wedge \mathsf{B}_a A)\|R_b^M \end{array}$$

PDL semantics

$$\begin{split} \llbracket \mathsf{R}_{a} \rrbracket_{\mathfrak{M}} & := \mathsf{R}_{a} \\ \llbracket \pi \cup \pi' \rrbracket_{\mathfrak{M}} & := \llbracket \pi \rrbracket_{\mathfrak{M}} \cup \llbracket \pi' \rrbracket_{\mathfrak{M}} \\ \llbracket \pi; \pi' \rrbracket_{\mathfrak{M}} & := \llbracket \pi \rrbracket_{\mathfrak{M}} \circ \llbracket \pi' \rrbracket_{\mathfrak{M}} \\ \llbracket \varphi \rrbracket_{\mathfrak{M}} & := \llbracket \pi \rrbracket_{\mathfrak{M}} \circ \llbracket \pi' \rrbracket_{\mathfrak{M}} \\ \llbracket \varphi \rrbracket_{\mathfrak{M}} & := \llbracket \pi \rrbracket_{\mathfrak{M}} \circ \llbracket \pi' \rrbracket_{\mathfrak{M}} \\ \llbracket \varphi \rrbracket_{\mathfrak{M}} & := \llbracket \pi \rrbracket_{\mathfrak{M}} \circ \llbracket \pi' \rrbracket_{\mathfrak{M}} \\ \llbracket \varphi \rrbracket_{\mathfrak{M}} & := \llbracket \langle (w, w) \in W^{2} \mid w \in \llbracket \varphi \rrbracket_{\mathfrak{M}} \} \\ \llbracket \rho \rrbracket_{\mathfrak{M}} & := V(p) \\ \llbracket c_{ab} \rrbracket_{\mathfrak{M}} & := V(p) \\ \llbracket c_{ab} \rrbracket_{\mathfrak{M}} & := C_{ab} \\ \llbracket \neg \varphi \rrbracket_{\mathfrak{M}} & := K \setminus \llbracket \varphi \rrbracket_{\mathfrak{M}} \cup \llbracket \psi \rrbracket_{\mathfrak{M}} \\ \llbracket \varphi \lor_{\mathfrak{M}} & := \llbracket \varphi \rrbracket_{\mathfrak{M}} \cup \llbracket \psi \rrbracket_{\mathfrak{M}} \\ \llbracket \pi \rrbracket_{\mathfrak{M}} \langle w \rangle = \llbracket w \in W \mid \llbracket \pi \rrbracket_{\mathfrak{M}} (w) \subseteq \llbracket \varphi \rrbracket_{\mathfrak{M}} \} \end{split}$$

Matrix Representation of Channel and Programs

A column vector $||A||_{\mathfrak{M}}$ is defined by:

$$\begin{split} \|p\|_{\mathfrak{M}} &:= (V(p))^{M}, \\ \|c_{ab}\|_{\mathfrak{M}} &:= \frac{C_{ab}^{M},}{\|A\|_{\mathfrak{M}},} \\ \|\neg A\|_{\mathfrak{M}} &:= \frac{\|A\|_{\mathfrak{M}},}{\|A\|_{\mathfrak{M}},} \\ \|A \lor A\|_{\mathfrak{M}} &:= \frac{\|A\|_{\mathfrak{M}} + \|A\|_{\mathfrak{M}},}{\|a\|_{\mathfrak{M}},} \\ \|[\alpha]A\|_{\mathfrak{M}} &:= R_{\alpha}^{M}, \\ \|a\|_{\mathfrak{M}} &:= R_{a}^{M}, \\ \|\alpha \cup \beta\|_{\mathfrak{M}} &:= \|\alpha\|_{\mathfrak{M}} + \|\beta\|_{\mathfrak{M}}, \\ \|\alpha; \beta\|_{\mathfrak{M}} &:= \|\alpha\|_{\mathfrak{M}} \|\beta\|_{\mathfrak{M}}, \\ \|2A\|_{\mathfrak{M}} &:= \begin{cases} 1 & \text{if } i = j \text{ and } \|A\|_{\mathfrak{M}}(i) = 1, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Example

Suppose that there are channels between agent a and b in every world, and agent a believes p at w_2 .

$$\begin{bmatrix} ?(\mathbf{c}_{ab} \land \mathbf{B}_{a} p) \end{bmatrix}^{M} R_{b}^{M} \llbracket ?p \rrbracket^{M} = \llbracket ?\mathbf{c}_{ab} \rrbracket^{M} \llbracket ?\mathbf{B}_{a} p \rrbracket^{M} R_{b}^{M} \llbracket ?p \rrbracket^{M} \\ = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

After we calculate also the remaining part of R'_b , *i.e.*, $[[?\neg(c_{ab} \land B_a p)]^M R^M_b$, we combine both results to obtain updated relation R'_b of agent *b* as:

$$\begin{aligned} R'_{b} &= [[?(\mathsf{c}_{ab} \land \mathsf{B}_{a} \, p)]]^{M} R^{M}_{b} [[?p]]^{M} + [[?\neg(\mathsf{c}_{ab} \land \mathsf{B}_{a} \, p)]]^{M} R^{M}_{b} \\ &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \end{aligned}$$

Collective Belief Revision

We do not specify the recipients in advance. We may expand our static syntax \mathcal{L} with a dynamic operator $[\varphi \downarrow^H]$ $(H \subseteq G)$ whose reading is 'after a group H of agents sends information φ via communication channels'. Given a Kripke model $\mathfrak{M} = (W, (R_a)_{a \in G}, (C_{ab})_{a,b \in G}, V)$ and a world $w \in W$, we define the semantics of $[\varphi \downarrow^H] \psi$ by:

$$\mathfrak{M}, \mathbf{w} \models [\varphi \downarrow^{H}] \psi \text{ iff } \mathfrak{M}^{\varphi \downarrow^{H}}, \mathbf{w} \models \psi,$$

where $\mathfrak{M}^{\varphi \downarrow^{H}} = (W, (R'_{a})_{a \in G}, (C_{ab})_{a,b \in G}, V)$ and R'_{a} is defined as follows: for all $w \in W$, if there is some $b \in H$ such that $w \in C_{ba}$ and $\mathfrak{M}, w \models \mathsf{B}_{b} \varphi$, we put

$${\sf R}'_{\sf a}(w):={\sf R}_{\sf a}(w)\cap \llbracket arphi
rbracket_{\mathfrak{M}}.$$

Otherwise, we put $R'_a(w) := R_a(w)$.

Hilbert Style Axiomatization

In addition to all the axioms and rules of \mathbf{K}_{c} , we add:
$$\begin{split} & [\varphi\downarrow^{H}]\rho & \leftrightarrow \rho, \\ & [\varphi\downarrow^{H}]\mathbf{c}_{ab} & \leftrightarrow \mathbf{c}_{ab}, \\ & [\varphi\downarrow^{H}]\neg\psi & \leftrightarrow \neg[\varphi\downarrow^{H}]\psi, \\ & [\varphi\downarrow^{H}](\psi\vee\chi) & \leftrightarrow [\varphi\downarrow^{H}]\psi\vee[\varphi\downarrow^{H}]\chi, \\ & [\varphi\downarrow^{H}]B_{a}\psi & \leftrightarrow (\bigvee_{b\in H}(\mathbf{c}_{ba}\wedge B_{b}\varphi) \rightarrow B_{a}(\varphi\rightarrow[\varphi\downarrow^{H}]\psi)) \\ & \wedge(\neg(\bigvee_{b\in H}(\mathbf{c}_{ba}\wedge B_{b}\varphi)) \rightarrow B_{a}[\varphi\downarrow^{H}]\psi) \\ & (\mathbf{Nec}_{[\downarrow^{H}]}) \text{ From } \psi, \text{ infer } [\varphi\downarrow^{H}]\psi \end{split}$$

Outline

1 Introduction

2 Linear Algebraic Semantics for Modal Logic

3 Linear Algebraic Semantics for Multi-agent Communication

Conclusions

- What we have done
 - Matrix representation of accessibility in Kripke semantics
 - Matrix representation of relation changer: a sequence of program (transitivity of relation) is represented by a product of matrices
- What we have not done
 - Rumor: a transitive closure of collective belief revision
 - Reliability: each agent may choose which to believe
 - So many indices; can we control the order of matrix/vector calculation by covariant/contra-variant tensors?

References

- Ryo Hatano, Katsuhiko Sano, and Satoshi Tojo. Linear algebraic semantics for multi-agent communication. In Proc. of the 7th International Conference on Agents and Artificial Intelligence, volume 1, pages 172-181, 2015.
- Ryo Hatano, Katsuhiko Sano, and Satoshi Tojo. Teaching modal logic from linear algebraic viewpoints. In Proc. of the 4th International Conference on Tools for Teaching Logic, pages 55-64, 2015. (Also, extended version is in: Journal of Logics and their Applications vol.4, no.1, 2017)