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Logic

« Mathematical logic (in a general sense): a
formal system of inference

 Expressiveness (an aspect of logic)

 Examples of logics sufficient to express the
following statements:

Propositional: P

(contd. on the next slide)



Predicate logic

(contd. from the previous slide)

FOL: Vx Px
SOL: VP,x Px
TOL: VP,,P,x P,P.x

HOL: VP, P, P.,..x P,P,P,.. x



Two remarks on expressiveness

* A sentence of predicate logic (of any order?)
can be set as an atomic formula of
propositional logic. However, the (possible)
resulting propositional logic would be a
metalogic, with all the substructure (the
interpretations of V, 3, P, etc.) being lost

 Let P be a predicate formula of particular
order. Then there is (in general) no lower
order predicate formula @ s.t. P = @



Type theory

 Type: All terms (i.e. individuals, truth-values,
functions or relations) in a logical system (e.g.
nth-order logic) have a type

* Logical systems have relational or functional
types; in most cases these are interdefinable
(cf. Oppenheimer & Zalta (2011) for an

argument that RTT is more general than
FTT)



Type theory (2)

 Type (HOL) := a category associated w/ a term
and identified by the order and arity of the
latter (and by the arities of its arguments, of its
arguments arguments etc. — a well-typed n-th
order term must track the arities of its
arguments to order 0? What if n is transfinite?)

 Type (TT) := a category of semantic value
associated w/ a term



HOL and type theory

« HOL (1) (informal): a logic allowing
predicating over predicates (i.e. TO and up)

« HOL (2): simple type theory

« Simple type theory: TT w/out dependent and
polymorphic types. Ex: Russell's type theory,
Church's type theory

 Modern (or “complex”) type theory. Ex:
Martin-Lof type theory, Coquand's calculus of
constructions



Lambek (1958)

 Lambek (1958), "The mathematics of
sentence structure” (a variant of Categorial
ogrammar and the earliest well-known
example of applying TT on NL)

« Syntactic types ('parts of speech"):

- primitive types s (sentence) and n (name)

- compound types formed by the inductive
definition: If x and y are types, then so are x/y ("x
over ¥') and y\x ("y under x")



Lambek (1958) (2)

 Rewrite rules for concatenation: (x/y)y = x

y(y\x) = x

 An implicit “add matching parentheses” rule to group
constituents (according to their “phrase structure” and to
allow for the rewrite rules to operate)

* The formalism captures linear order (of concatenation) as
well as subordinance and hierarchical constituent
relations

e« Ex: John likes milk : n n\s/n n
- John (likes (milk)) : n(n\s/n(n)) = n(n\(s/(n))(n)) = n(n\s) = s
— ((John) likes) milk : (n)n\s/n)n = ((n)((n)\s)n)n — (s/n)n —s



Lambek (1958) (3)

 Lambek's approach amounts to a description of NL
predicate-argument structure w/ linear order (LPA —
thus of NL syntax as well as sentential and phrasal
semantics)

« Ex: POS Type LPA
IV n\s (x)P
A n/n P(x)
CON s\s/s (P)P(P)

 Another component of his approach is a dedicated
syntactic calculus (Lambek calculus — a formal language
and deductive system primarily of interest to logicians)



Montague (1973)

« Montague ("The proper treatment of
quantification...”, 1973): Syntactic types
("categories” in the style of Categorial grammar):

- Basic types: e (entity or individual expression) and t
(declarative sentence)

- Compound types: If A and B are types, then A/B and
A//B are types (A/B and A//B play the same semantical
but different syntactical roles)

- E.g. IV phrases are of type t/e, T(erms — John, Mary,
he etc.) of type t/IV, TV phrases of type IV/T



Montague (1973) (2)

e 17 syntactic rules, e.g.:

- functional application: combining (concatenating)
expressions of type IV/T and T yields one of type
IV, combining t/t and t yields t etc.

- rules for conjunction, quantification etc.

 Semantics is presented in terms of an
intensional logic (a HOL). NL sentences are
translated into the IL and analyzed in
possible worlds semantics



Montague (1973) (3)

« Montague semantics (contd.):

- 3 elementary types: the type of individuals e, type
of truth values t€{1,0}, type of indices (possible
world - time pairs) s

- 2 type-forming rules: 1. for any types a,b, <a,b> is
a type (the type of functions from a to b), 2. for
any type a, <s,a> is a type (an intensional type,
the type of functions from indices to a)



Montague (1973) (4)

* Syntax-semantics (type) translation is given
by the type-assignment function T: T(e) = e,
T(t) = t, TA/B) = TA//B) = <<8,T(B)>,T(A)>
(Bennett's (1974) simplification: T(IV) =
T(CN) = <e,t>)

 An example translation of John sleeps into
the IL (which (in the simplest case) would be
sth like sleep(j)) goes as specified on the
following 2 slides



John sleeps (Montague 1973)

- John : T = t/IV —» <<s, T(IV)>, T(t)> = <<8,T(t/e)>,t>
- <<s,<e,t>>,t> (by Bennett) - AP."P(john)

- Explanation: <s,<e,t>> := type of functions from
indices to sets (i.e. properties) of individuals
(propi); <<s,<e,t>>,t>, the type of functions from
propi to {0,1}, is the type of properties of individual
concepts (prop¢). Montague uses t-functional
semantics, so <<s,<e,t>>,t> = AP."P (where P :=
“property”’, "X := the extension of X), i.e. a function
taking prop! as arg-s and returning (by A-
abstraction) their extensions (t-values). Finally A-
apply the function to argument john: AP."P(john)



John sleeps (Montague 1973) (2)

- sleep : IV - <e,t> (by Bennett) = sleep’ (no
translation rule for type <e,t> except for the
generica = a’)

- Composition (translation rule T4): F,(a,b) =
a’(*db’) ("X := the intension of X): AP."P(john)
(“sleep’)

- [B-conversion (A-calculus): AP.["P(john)]("sleep’) —
“*sleep’(john)

- “-elimination (Montague): "sleep’(john) —
sleep’(john)



Montague (1973) (7)

 Features of Montague grammar (1973):

— Model-theoretic semantics

— Truth-functionality and intensionality. Even PNs
(John etc.) are of the type propc <<s,<e,t>>,t>
rather than propi <s,<e,t>>, sets <e,t> or
individuals e. "/.../ I regard the construction of /.../
[the] notion of truth under an arbitrary
interpretation /.../ as the basic goal of serious
syntax and semantics" (Montague 1970)



Montague (1973) (8)

* Features of Montague grammar (1973) (contd.):

- Intensional logic. For tackling the meanings (i.e.
truth-conditions) of words like unicorn, seek (we can
seek nonexistent things) etc. In general, if u is a

meaningful

| expression, then its intension is also a

meaningful

| expression of type <s,a> (a the type of u)

- Eclectic, idiosyncratic: categorial grammar in syntax;
model theory, IL, HOL and A-calculus in semantics

- A fragment of English (e.g. no As; only quantified XPs
in examples (XP := DP|INP) — what would it do w/ a S
like John likes milk?)



Generalized quantifiers

 Mostowski (1957), Lindstrom (1966). Applications on NL:
Barwise and Cooper (1981), ..., Westerstahl (2011), Keenan
and Westerstahl (2011), etc.

* The idea (but not terminology) of NL applications due to
Montague (1974, EFL): some XPs are generalized

quantifiers
* Def: A generalized quantifier Q (of arbitrary type) is

* Syntactically, a variable-binding operator such that given
a sequence of first-order formulas ¢,,...,0,, Q[x,],...,[x.](®,

...,0,) 1s a formula, and QIx,],...,[x,] binds all free
occurrences of [x,],...,[x, ] 1n @,,...,0,, resp. ([x] :== X,..., X,
for 1<i<k).



Generalized quantifiers (2)

 Semantically, a mapping from arbitrary universes (non-
empty sets) M to a set Q,, of subsets of M, which interprets

formulas of the form Q[x,],...,[x, 1(®,,...,9,) according to the
clause:

« M F QIx,],....Ix.] (@,([x,L[bD),...,px.],[b]) 1ff Q,(p,([x,],
[b])M,[Xl], . oo ,ka( [Xk],[b])M,[Xk])

where M = (M, I); y.(Ix.],[y]) a formula w/ [x],[y] free; [b] a
sequence of elements of M corresponding to [yl; Y,([x,],[bDy
1 the extension of Y.([x.],[y]) in M relative to [b], i.e. the set
of n.-tuples [a.] s.t. M = y.([a.],[b]), where [a.] is a sequence
of elements of M corresponding to [x.] (Mostowski 1957;
Lindstrom 1966; Westerstahl 2014))



Generalized quantifiers (3)

 GQs (or just 'quantifiers’) are second-order relations, so
an nth-order quantifier (a maximal-order quantifier of
nth-order logic) is an n+1¢h-order predicate

 GQs i1s thus an application of HOL (and of a proper
subsystem of complex TT) on NL. Remark: there is (at
least) one application of GQs using dependent types
(Grudzinska and Zawadowski 2014)

 Ex-s: a tall man (linguistically, unquantified XP), all
men (complex XP headed by a quantifier), at least 8 but
maybe less than a million men (complex XP w/ at least
2 quantifiers)



Generalized Quantifier Theory

* In GQT sense, XPs are GQs. Linguistically speaking,
not all XPs are GQs (e.g. milk, horses, drunken men
etc.). Note that common nouns (¢ree, milk etc.) are
not GQs, while all proper nouns (John, Lake Ontario
etc.) are GQs. Also personal pronouns ((s)he, him,
their etc.), demonstratives (this, those etc.)
“determiners” (linguistically, determiners and
quantifiers) (a, thet, all, none, ten, at least 8 etc.) are
GQs. As seen from their typing (next slide), GQs
may include entire Ss in their scope

T The prevailing view in GQT



Generalized quantifiers: typing
and beyond

« Relational typing: a GQ is of type <n,...,n,> (n:>1) iff it applies to k
formulas and binds n; variables in the i-th formula

 Examples (GQT; <...> type; each row's last type is syntactic, rest
semantic; relational typing and the operational parts of GQs bold):

¢ <<8,<e,t>>,t> ~ <1> ~ <XP> {John, the linguist C. Woo, this,
you, her, them...}

. <<e,t>,<<8,<e,t>>,t>> ~ <1,1> ~ <CNP,XP> ~ D,+CNP = XP (D, :=

1-place D (GQT)) {(the |l a) man, all poets slept, more grey than
black rats (slept | mastered the rule)...}

¢ <<<e,t>,<et>>,<<8,<et>> t>> ~ <<1,1>,1> ~ <1,1,1> ~
<<CNP,CNP> XP> ~ D,+2CNP — XP {more rats than cats (slept |

mastered the rule)...}



Generalized quantifiers: typing
and (way) beyond

<<e,t>,<<e,t>,<e,t>>> ~ <1,<1,1>> ~ <1,1,1> ~ <CNP <IVP,IVP>>
~ D, +CNP+2IV - 2IVP {more rats slept than crept...}

<e,t>,<et>>,<<e,t> <e,t>>> ~ <<1,1>,<1,1>> ~ «1,1,1,1> ~
<<CNP,CNP><IVP,IVP>> ~ D,+2CNP+2IV — 2IVP {more rats
slept than cats crept...}

<<e,t>,<e,t>>,<<8,<<8,<e,t>>,t>>,<e,t>>> ~ <<1,1>,2> ~ <1,1,2> ~
<<CNP,CNP>,TVP> ~ 2D,+2CNP+TV - TVP {more than seven
rats bit four cats...}

<<<e,t>,<<e t>,<e, t>>,<e t>> <?>> ~ <<1,<1,1>,1>,3> ~ «1,1,1,1,3>
~ <<CNP,<CNP,CNP>,CNP> DVP> ~ 2D,+D,+4CNP+DV - DVP
{more than seven but probably less than a million rats gave
more roses than lilies to at least 2 cats...}



Generalized Quantifier Theory:
features

* Interpreting XPs (in GQT sense) and larger NL
structures (possibly w/ entire Ss in their scope) as

GQs

 Handling of complex mono- and polyadic
(pertaining to unary and binary/ternary Vs, resp.)
allegedely quantificational phenomena in NL

 Handling intensions as well as extensions

* Disambiguating scopes and readings and
computing logical forms of certain NL expressions



MG and GQT: shortcomings

* By default, uninterested in / do not adequately account for:

- Anaphora and other “dynamic” phenomena (and interface(s) to
morphosyntax in general)

- Sufficiently fine-grained semantic typing (e.g. Luo 2010, Asher
2014)

- Typological diversity of human language

- Cognitive/psychological plausibility of its models and
interpretations

- In silico implementability of the formalisms and results

- Developing useful frameworks or formalisms for descriptive,
applied or computational linguistics



MG and GQT: impact

 For many logicans and (analytic) philosophers of language:

- The legacy and bread-and-butter work in theoretical formal semantics of
NL

e For most linguists:

- Definitions and terminology incompatible w/ linguistics

— The role of quantification in NL blown out of proportion (both in principle
and wrt. its applicability to and scope in particular NL expressions)

- Disjoint from (and difficult to reconcile w/) linguistics
* In general:

- GQT (1981-...), primarily notable for its interpretation of NL quantification,
is a direct continuation and significant extension of MG (1970-1974)

- For (largely) historical reasons, MG-GQT is probably the leading branch of
theoretical formal semantics of NL



Ranta (1994)

 Ranta ("Type-theoretical grammar", 1994), a
framework for analyzing NL syntax and
semantics based on Martin-Lof (or intuitionistic
or constructive) type theory

* Propositions as types principle (MLTT):
propositions are sets, proofs (specifically, proof
objects) are elements. The truth of a proposition
means that the set has an element. E.g. the
proposition A&B is true (i.e. proven) by the set
{{P,Q}}, where P is a proof object of A and @ a

proof object of B



Proof (in Martin-Lof type theory)

* Proof object vs. proof process (MLTT):
l.x:A

n.bkx):B
n+l. Ax.b(x) :A - B

Proof object is Ax.b(x), proof process is the sequence of
rows (1, ..., n+1) (":" := "is an element of" = "is of
type"). In this case, the proof object Ax.b(x) = the set of
pairs (x,b(x)) in the function = the pair of rows (1, n)



Back to Ranta's TTG (1994)

 The kind of semantics implemented by MLTT, TTG
and other similar frameworks is called proof-
theoretic (and contrasted with model-theoretic
semantics)

 TTG represents NL syntax and semantics on a
single level

 NL generation is divided into 2 components:
defining grammatical representations ("formalism”
or 'parse trees") and sugaring (transforming the
unambiguous "formalism" to potentially ambiguous
(but "readable") strings)



Ranta (1994) (3)

 TTG (the general picture):

--definition - - -= formalism - - -= semantics

S

) : :
parsing sugaring
! e

: Y
English

* The path (definition, formalism, sugaring,
English) is generation



Ranta (1994) (4)

« Ex: the full formalization of a man walks (the
proof process of the corresponding proof
object ("(x : man)" is the premise and "1." the label
of the hypothesis immediately below them)):

(x : man) 1.

x walks : proposition x_:man subst.

man : set x walks : proposition 2F, 1.

(2x : man)(x walks) : proposition



Type theory w/ records

 Type theory w/ records (e.g. Cooper 2005)

1s another proof-theoretic approach to NL
semantics and syntax based on MLTT

e Capitalizes on dependent types (a feature of
MLTT and other modern TTs):

A(a,, ...,a,) :=type A depending on objects a,,
., a

n



Type theory w/ records (2)

e Ifa,:T,a,:Ty\a,),....,a :T(a,...,a, ), arecord [, =
a,...l.=a,..lisoftypell,:T,L,: Ty L), ..., L :
T (..., ;)]. Thus a record type is a set of fields
consisting of a label and type (Cooper 2005)

 Ex: a man walks corresponds to a record type [x : Ind,
¢, : man(x), ..., ¢, : walk(x)]. A record of this type is [x =
a,c,=p, C, =p,]l, Where a : Ind (the type of
individuals) and p,, p, are proofs of man(a) and

walk(a), resp. Note that the record may have had
additional fields and still be of this type. The types
man(x), walk(x) are dependent types of proofs



Subtyping

 Pervasive in NL, e.g.:
- [spruce] < [tree] < [plant] £ P (P := physical object)
- [large book] < [book]

 Contravariant propagation of subtyping for function types
(Reynolds 1981):

A<A’ B < B’
A'-»B < A- B’

- E.g. since [John Smith] < [John] and [famous man] £ [man],

[John] = [man] = PROP < [John Smith] = [famous man] - PROP

[John is a man] < [John Smith is a famous man] (PROP := proposition)



Subtyping (2)

e “Subsumptive” subtyping: «¢:A A<B
a:B

* The problem: “subsumptive” subtyping introduces new
objects into a type, which is incompatible w/

— Canonicity: Any closed object of an inductive type is
definitionally equal to a canonical object of that type

e Solution: Coercive subtyping (Luo 1999-...):
[—f:(B)C [Fa:A (A< B:Type

[ f(a)=f(cla)):C




Subtyping (3)

* Rules that extend coercive subtyping to local
contexts, allowing for interpretations of
sentences like omelette wants the bill etc. Since

e [want] : [animate] - E - PROP (E := entity)

 [omelette] < [inanimate]

coercions are required (and can be introduced —
Luo 2010) for local contexts, allowing for
l[omelette] < [animate] and the expression to be
well-typed in appropriate contexts



Fine-grained typing in MTT:
copredication

« MTT allows for straightforward accounts of copredication, as in /
picked up and mastered the book, the well-typedness of which is
ensured by

 [pick up] : [human] -» P -» PROP
< [human] -» P&I - PROP
< [human] - [book] - PROP
e [master] : [human] - I - PROP
< [human] - P&I -» PROP
< [human] - [book] - PROP
(I := informational object; P&I < P; P&I < I)

« MG/GQT interpretation of copredication is usually much more
complex




Fine-grained typing in MTT:
selectional restrictions

Differently from MG and GQT, MTTs allow for fine-grained
typing of concepts (Luo 2010, Asher 2014):

MG/GQT: CNP, IVP : <e,t>

MTT: [man], [humanl], [spruce] : Type

MG/GQT cannot account for selectional restrictions:
- MG/GQT: [talk] : <e,t>

- MTT: [talk] : [human] - PROP

Differently from MG/GQT, MTT can account for type clashes
in NL expressions (e.g. a table talks, green ideas etc.)



Fine-grained typing in MTT: two-
levelled semantics

e MTT accommodates 2 kinds of semantics: those of
presupposed and proffered types (Asher 2014)

« Allows for logical forms w/ presupposed types for type-
checking, e.g.

AP:poprop Ax:p (Px A REDx) for expressions _ is red
or red _ (P := physical object, PROP := proposition)

 The eventual (proffered) types will be usually even more
fine-grained, because

RED(a) £ a £ P, w/ a the proffered type



Category theory and NL

 Lambek (1988) “Categorial and Categorical
Grammars”, de Groote (2001), Pollard (2011),
Asher (2014), Preller (2014)

 Metatheory (except for Preller 2014): setting
up a categorical framework for a linguistic
(esp. semantic) theory (mostly very general
descriptions of NL using CCCs, Topos, a pre-
Boolean algebra object PROP, Stone duality,
biproduct dagger categories...)



Conclusions (if any)

..and thanks



Meanwhile in a single-sorted HOL

« A(B(C(x)))
« A'(B'(C'(y)))

where x,y are m,n-tuples of individuals, resp.
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