Formally representable functions from N^{N} to N

Tatsuji Kawai

School of Information Science Japan Advanced Institute of Science and Technology

This work is supported by Core-to-Core Program A. Advanced Research Networks by Japan Society for the Promotion of Science. There are two reasonably constructive notions of continuous function from the Baire space to \mathbb{N} .

• A function $f \colon \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ such that

$$\begin{array}{c|c} \mathbb{N}^{\mathbb{N}} & \xrightarrow{i_{\mathcal{B}}} \operatorname{Pt}(\mathcal{B}) \\ f & & & \downarrow^{\operatorname{Pt}(r)} \\ \mathbb{N} & \xrightarrow{i_{\mathcal{N}}} \operatorname{Pr}(\mathcal{N}) \end{array}$$

for some formal topology map $r: \mathcal{B} \to \mathcal{N}$, viz formally representable function or **FT-continuous** function.

A function realized by some inductively generated neighbourhood function α: N^{*} → N. There are two reasonably constructive notions of continuous function from the Baire space to $\ensuremath{\mathbb{N}}.$

• A function $f \colon \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ such that

$$\begin{array}{c|c} \mathbb{N}^{\mathbb{N}} & \xrightarrow{i_{\mathcal{B}}} \operatorname{Pt}(\mathcal{B}) \\ f & & & \downarrow^{\operatorname{Pt}(r)} \\ \mathbb{N} & \xrightarrow{i_{\mathcal{N}}} \operatorname{Pr}(\mathcal{N}) \end{array}$$

for some formal topology map $r: \mathcal{B} \to \mathcal{N}$, viz formally representable function or **FT-continuous** function.

A function realized by some inductively generated neighbourhood function α: N^{*} → N.

Remark. We work constructively (intuitionistically and predicatively), allowing some constructive choice principles (i.e. countable choice).

Neighbourhood functions $\alpha \colon N^* \to N$

The class $K \subseteq \mathbb{N}^* \to \mathbb{N}$ of **neighbourhood functions** is inductively generated by the following clauses:

$$\frac{n \in \mathbb{N}}{\lambda a.n+1 \in K}, \qquad \frac{\alpha(\langle \rangle) = 0 \quad (\forall n \in \mathbb{N}) \lambda a. \alpha(\langle n \rangle * a) \in K}{\alpha \in K}$$

Remark. A neighbourhood function $\alpha \in K$ can be identified with a well-founded tree labelled by \mathbb{N} .

- **1.** $\lambda a.n + 1$ corresponds to a single node tree $\{(\langle \rangle, n + 1)\}$ labelled by n + 1.
- **2.** if $\alpha(\langle \rangle) = 0$ and for each $n \in \mathbb{N}$, $\lambda a. \alpha(\langle n \rangle * a)$ corresponds to a labelled tree T_n , then α corresponds to a tree $T = \{(\langle \rangle, 0)\} \cup \{(\langle n \rangle * a, L) \mid n \in \mathbb{N}, (a, L) \in T_n\}.$

The leaves of tree corresponding to $\alpha \in K$ determines a bar

$$P_{\alpha} = \left\{ a \in \mathbb{N}^* \mid \alpha(a) > 0 \And \left(\forall a' \prec a \right) \alpha(a') = 0 \right\},$$

so that $(\forall \beta \in \mathbb{N}^{\mathbb{N}}) (\exists k \in \mathbb{N}) \overline{\beta} k \in P_{\alpha}$.

Neighbourhood functions $\alpha \colon N^* \to N$

A neighbourhood function $\alpha \in K$ determines a (unique) continuous function $f_{\alpha} \colon \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ such that for each $\beta \in \mathbb{N}^{\mathbb{N}}$

$$f_{\alpha}(\beta) = \alpha(\overline{\beta}k) - 1$$

where $k \in \mathbb{N}$ is such that $\overline{\beta}k \in P_{\alpha}$.

A function $f: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ is **realizable** if $f = f_{\alpha}$ for some $\alpha \in K$. In this case, we say that α realizes f.

Neighbourhood functions $\alpha \colon N^* \to N$

A neighbourhood function $\alpha \in K$ determines a (unique) continuous function $f_{\alpha} \colon \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ such that for each $\beta \in \mathbb{N}^{\mathbb{N}}$

$$f_{\alpha}(\beta) = \alpha(\overline{\beta}k) - 1$$

where $k \in \mathbb{N}$ is such that $\overline{\beta}k \in P_{\alpha}$.

A function $f: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ is **realizable** if $f = f_{\alpha}$ for some $\alpha \in K$. In this case, we say that α realizes f.

Proposition

A function $f: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ is realizable iff there exists $\alpha \in K$ such that for all $a \in P_{\alpha}$ the composition $f \circ \operatorname{cons}_{a}$ is constant, where $\operatorname{cons}_{a}: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is a mapping $\beta \mapsto a * \beta$.

Proof. (\Rightarrow) Obvious.

(\Leftarrow) If $\alpha \in K$ satisfies the condition, replace all the labels of the leaf nodes $(a, \alpha(a))$ of the tree determined by α with values $f(a * 0^{\omega}) + 1$. The resulting tree represents $\alpha' \in K$, which realizes f.

A formal topology is a triple $S = (S, \lhd, \le)$ where (S, \le) is a preorder and \lhd is a relation $\lhd \subseteq S \times Pow(S)$ such that

$$\begin{array}{ll} \displaystyle \frac{a \leq b}{a \lhd b}, & \displaystyle \frac{a \in U}{a \lhd U}, & \displaystyle \frac{a \lhd U \quad U \lhd V}{a \lhd V}, & \displaystyle \frac{a \lhd U \quad a \lhd V}{a \lhd U \downarrow V}. \\ \displaystyle U \lhd V \iff (\forall a \in U) \, a \lhd V, & \displaystyle U \downarrow V \stackrel{\mathsf{def}}{=} \downarrow U \cap \downarrow V \end{array}$$

A morphism (formal topology map) between formal topologies S to S' is a relation $r \subseteq S \times S'$ such that

1.
$$S \lhd r^{-}S'$$
,
2. $r^{-}\{a\} \downarrow r^{-}\{b\} \lhd r^{-}(a \downarrow b)$,
3. $a \lhd' U \implies r^{-}\{a\} \lhd r^{-}U$

for all $a, b \in S'$ and $U \subseteq S'$. Two formal topology maps $r_1, r_2 : S \to S'$ are defined to be equal if

$$\mathcal{A} r_1^- \{a\} = \mathcal{A} r_2^- \{a\}$$

for all $a \in S'$, where $\mathcal{A} U = \{a \in S \mid a \lhd U\}$.

A **point** of a formal topology S is a subset $\alpha \subseteq S$ such that

1.
$$(\exists a \in S) a \in \alpha$$
,
2. $a, b \in \alpha \implies (\exists c \in a \downarrow b) c \in \alpha$,
3. $a \triangleleft' U \& a \in \alpha \implies (\exists a \in U) a \in \alpha$.

 $Pt(\mathcal{S})$ denotes the collection of points of \mathcal{S} .

A formal topology map $r: S \to S'$ determines a point map $Pt(r): Pt(S) \to Pt(S')$ given by

$$\operatorname{Pt}(r)(\alpha) = r\alpha$$

for all $\alpha \in Pt(\mathcal{S})$.

Formal Baire space $\mathcal{B}=(\mathbb{N}^*,\,\lhd_{\,\mathcal{B}},\leq)$ is defined by

$$a \leq b \stackrel{\mathsf{def}}{\Longleftrightarrow} b \preceq a$$

and $\triangleleft_{\mathcal{B}}$ is the smallest covering relation satisfying

$$a \triangleleft_{\mathcal{B}} \{a * \langle n \rangle \mid n \in \mathbb{N}\}$$

for all $a \in \mathbb{N}^*$.

Formal natural numbers \mathcal{N} is a structure $(\mathbb{N}, \in, =)$.

There are homeomorphisms:

$$\begin{split} i_{\mathcal{B}} : \mathbb{N}^{\mathbb{N}} \to \operatorname{Pt}(\mathcal{B}), \quad \beta \mapsto \left\{ \overline{\beta}k \mid k \in \mathbb{N} \right\}, \\ i_{\mathcal{N}} : \mathbb{N} \to \operatorname{Pt}(\mathcal{N}), \quad n \mapsto \{n\}. \end{split}$$

A function $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ is **FT-continuous** if there exists $r : \mathcal{B} \to \mathcal{N}$ such that $f = i_{\mathcal{N}}^{-1} \circ \operatorname{Pt}(r) \circ i_{\mathcal{B}}$.

Proposition

There exists a bijective correspondence between the FT-continuous functions $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ and the formal topology maps $r : \mathcal{B} \to \mathcal{N}$.

Remark. This is an instance of a more general result about complete metric spaces using the technique of localic completion due to S. Vickers.

FT-continuous functions

Define a (new) covering relation $Cov \subseteq \mathbb{N}^* \times \mathsf{Pow}(\mathbb{N}^*)$ inductively by

$$\frac{(\forall n \in \mathbb{N}) U_n \in \operatorname{Cov}(a * \langle n \rangle)}{\bigcup_{n \in \mathbb{N}} U_n \in \operatorname{Cov}(a)}$$

where $U \in \operatorname{Cov}(a) \stackrel{\text{def}}{\iff} (a, U) \in \operatorname{Cov}$.

Remark. Cov is a presentation of formal Baire space \mathcal{B} , i.e.

$$a \lhd_{\mathcal{B}} U \iff (\exists V \in \operatorname{Cov}(a)) V \subseteq \downarrow U.$$

FT-continuous functions

Define a (new) covering relation $Cov \subseteq \mathbb{N}^* \times \mathsf{Pow}(\mathbb{N}^*)$ inductively by

$$\frac{(\forall n \in \mathbb{N}) U_n \in \operatorname{Cov}(a * \langle n \rangle)}{\bigcup_{n \in \mathbb{N}} U_n \in \operatorname{Cov}(a)},$$

where $U \in \operatorname{Cov}(a) \iff (a, U) \in \operatorname{Cov}$.

Remark. Cov is a presentation of formal Baire space \mathcal{B} , i.e.

$$a \lhd_{\mathcal{B}} U \iff (\exists V \in \operatorname{Cov}(a)) V \subseteq \downarrow U.$$

Proposition

A function $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ is FT-continuous iff there exists $U \in \text{Cov}(\langle \rangle)$ such that $f \circ \text{cons}_a$ is constant for each $a \in U$.

Proof.

 (\Rightarrow) Use the fact that Cov is a presentation of \mathcal{B} .

 $(\Leftarrow) \text{ Define } r: \mathcal{B} \to \mathcal{N} \text{ by } \ a \ r \ n \ \stackrel{\text{def}}{\Longleftrightarrow} \ a \in U \ \& \ f(a \ast 0^{\omega}) = n.$

Lemma For any $U \in \mathsf{Pow}(\mathbb{N}^*)$, we have

$$U \in \operatorname{Cov}(\langle \rangle) \iff (\exists \alpha \in K) P_{\alpha} = U.$$

Proof. Induction on Cov and *K*.

Theorem

A function $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ is realizable iff f is FT-continuous.

Corollary

There exists a bijective correspondence between the formal topology maps $r : \mathcal{B} \to \mathcal{N}$ and the realizable functions $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$.

A function $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is **realizable** if $\pi_n \circ f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ is realizable for each $n \in \mathbb{N}$.

Proposition

There exists a bijective correspondence between the formal topology maps $r : \mathcal{B} \to \mathcal{B}$ and the realizable functions $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$.

Proposition

A function $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is realizable iff f is uniformly continuous with respect to the covering uniformity $Cov(\langle \rangle)$, i.e. for any $V \in Cov(\langle \rangle)$ there exists $U \in Cov(\langle \rangle)$ such that

$$(\forall a \in U) (\exists b \in V) (\forall \beta \in \mathbb{N}^{\mathbb{N}}) \beta \in a \implies f(\beta) \in b.$$

C. Xu and M. Escardó.

A constructive model of uniform continuity. volume 7941 of *Lecture Notes in Computer Science*, pages 236–249. Springer, 2013.

G. van der Hoeven and I. Moerdijk. Sheaf models for choice sequences. Annals of Pure and Applied Logic, 27(1):63–107, 1984.

E. Palmgren.

A constructive and functorial embedding of locally compact metric spaces into locales.

Topology and its Applications., 154:1854–1880, 2007.