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Continuity on the Baire space NN

There are two reasonably constructive notions of continuous function
from the Baire space to N.

I A function f : NN → N such that

NN iB
∼=
//

f
��

Pt(B)

Pt(r)
��

N iN
∼=
// Pr(N )

for some formal topology map r : B → N , viz formally
representable function or FT-continuous function.

I A function realized by some inductively generated
neighbourhood function α : N∗ → N.

Remark. We work constructively (intuitionistically and predicatively),
allowing some constructive choice principles (i.e. countable choice).
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Neighbourhood functions α : N∗ → N

The class K ⊆ N∗ → N of neighbourhood functions is inductively
generated by the following clauses:

n ∈ N
λa.n + 1 ∈ K

,
α(〈〉) = 0 (∀n ∈ N)λa.α(〈n〉 ∗ a) ∈ K

α ∈ K
.

Remark. A neighbourhood function α ∈ K can be identified with a
well-founded tree labelled by N.

1. λa.n + 1 corresponds to a single node tree {(〈〉, n + 1)} labelled
by n + 1.

2. if α(〈〉) = 0 and for each n ∈ N, λa.α(〈n〉 ∗ a) corresponds to a
labelled tree Tn, then α corresponds to a tree
T = {(〈〉, 0)} ∪ {(〈n〉 ∗ a,L) | n ∈ N, (a,L) ∈ Tn}.

The leaves of tree corresponding to α ∈ K determines a bar

Pα =
{

a ∈ N∗ | α(a) > 0 &
(
∀a′ ≺ a

)
α(a′) = 0

}
,

so that
(
∀β ∈ NN) (∃k ∈ N)βk ∈ Pα.
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Neighbourhood functions α : N∗ → N

A neighbourhood function α ∈ K determines a (unique) continuous
function fα : NN → N such that for each β ∈ NN

fα(β) = α(βk)− 1

where k ∈ N is such that βk ∈ Pα.

A function f : NN → N is realizable if f = fα for some α ∈ K. In this
case, we say that α realizes f .

Proposition
A function f : NN → N is realizable iff there exists α ∈ K such that for
all a ∈ Pα the composition f ◦ consa is constant, where
consa : NN → NN is a mapping β 7→ a ∗ β.
Proof. (⇒) Obvious.
(⇐) If α ∈ K satisfies the condition, replace all the labels of the leaf
nodes (a, α(a)) of the tree determined by α with values f (a ∗ 0ω) + 1.
The resulting tree represents α′ ∈ K, which realizes f .
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Formal topologies

A formal topology is a triple S = (S, � ,≤) where (S,≤) is a
preorder and � is a relation � ⊆ S× Pow(S) such that

a ≤ b
a � b

,
a ∈ U
a � U

,
a � U U � V

a � V
,

a � U a � V
a � U ↓ V

.

U � V def⇐⇒ (∀a ∈ U) a � V, U ↓ V def
= ↓U ∩ ↓V

A morphism (formal topology map) between formal topologies S to
S ′ is a relation r ⊆ S× S′ such that

1. S � r−S′,
2. r−{a} ↓ r−{b} � r− (a ↓ b),
3. a � ′U =⇒ r− {a} � r−U

for all a, b ∈ S′ and U ⊆ S′. Two formal topology maps r1, r2 : S → S ′
are defined to be equal if

A r−1 {a} = A r−2 {a}

for all a ∈ S′, where AU = {a ∈ S | a � U}.
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Formal topologies

A point of a formal topology S is a subset α ⊆ S such that
1. (∃a ∈ S) a ∈ α,
2. a, b ∈ α =⇒ (∃c ∈ a ↓ b) c ∈ α,
3. a � ′U & a ∈ α =⇒ (∃a ∈ U) a ∈ α.

Pt(S) denotes the collection of points of S.
A formal topology map r : S → S ′ determines a point map
Pt(r) : Pt(S)→ Pt(S ′) given by

Pt(r)(α) = rα

for all α ∈ Pt(S).

6 / 12



FT-continuous functions

Formal Baire space B = (N∗, � B,≤) is defined by

a ≤ b def⇐⇒ b � a

and � B is the smallest covering relation satisfying

a � B {a ∗ 〈n〉 | n ∈ N}

for all a ∈ N∗.
Formal natural numbers N is a structure (N,∈,=).
There are homeomorphisms:

iB : NN → Pt(B), β 7→
{
βk | k ∈ N

}
,

iN : N→ Pt(N ), n 7→ {n} .

A function f : NN → N is FT-continuous if there exists r : B → N
such that f = i−1

N ◦ Pt(r) ◦ iB.
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FT-continuous functions

Proposition
There exists a bijective correspondence between the FT-continuous
functions f : NN → N and the formal topology maps r : B → N .

Remark. This is an instance of a more general result about complete
metric spaces using the technique of localic completion due to
S. Vickers.
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FT-continuous functions

Define a (new) covering relation Cov ⊆ N∗×Pow(N∗) inductively by

{a} ∈ Cov(a)
,

(∀n ∈ N)Un ∈ Cov(a ∗ 〈n〉)⋃
n∈N Un ∈ Cov(a)

,

where U ∈ Cov(a) def⇐⇒ (a,U) ∈ Cov.
Remark. Cov is a presentation of formal Baire space B, i.e.

a � B U ⇐⇒ (∃V ∈ Cov(a))V ⊆↓ U.

Proposition
A function f : NN → N is FT-continuous iff there exists U ∈ Cov(〈〉)
such that f ◦ consa is constant for each a ∈ U.

Proof.
(⇒) Use the fact that Cov is a presentation of B.
(⇐) Define r : B → N by a r n def⇐⇒ a ∈ U & f (a ∗ 0ω) = n.
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Equivalence

Lemma
For any U ∈ Pow(N∗), we have

U ∈ Cov(〈〉) ⇐⇒ (∃α ∈ K)Pα = U.

Proof. Induction on Cov and K.

Theorem
A function f : NN → N is realizable iff f is FT-continuous.

Corollary
There exists a bijective correspondence between the formal topology
maps r : B → N and the realizable functions f : NN → N.
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Miscellanea

A function f : NN → NN is realizable if πn ◦ f : NN → N is realizable
for each n ∈ N.

Proposition
There exists a bijective correspondence between the formal topology
maps r : B → B and the realizable functions f : NN → NN.

Proposition
A function f : NN → NN is realizable iff f is uniformly continuous with
respect to the covering uniformity Cov(〈〉), i.e. for any V ∈ Cov(〈〉)
there exists U ∈ Cov(〈〉) such that

(∀a ∈ U) (∃b ∈ V)
(
∀β ∈ NN

)
β ∈ a =⇒ f (β) ∈ b.
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