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The Canonicity of Point-free Topology

Andrej Bauer

University of Ljubljana

Abstract. Properties of topological spaces are not absolute, as they may depend on the
ambient mathematical universe. For instance, the answers to some questions in classical
point-set topology hinge on non-standard set-theoretic axioms, while in intuitionistic math-
ematics even such basic properties as the Heine-Borel compactness of the closed interval
depend on the ambient constructive variety.

We show that, in contrast, there is a robust and natural formulation of point-free
topology: the category of countably presented topologies (or locales, or formal spaces) is
determined up to equivalence by the number-theoretic functions of the ambient framework.
As most varieties of constructive mathematics agree that such functions are the Turing
computable ones, they all have the same notion of countably-presented point-free spaces.

(This talk presents joint work with Alex Simpson, University of Ljubljana.)



A spatiality-like property for pointfree topologies

with a positivity relation

Francesco Ciraulo - University of Padova

It is an unchangeable fact of history that pointfree topology appeared after
pointwise one. For this reason the former is “condemned” to compare itself
with the latter and, in particular, to consider the case of spatial topologies as
a notable case. I will talk about one of the constructive manifestations of the
classical notion of spatiality. This has recently been isolated by Sambin [4],
who gave it the name of reducibility. It was then studied in [1], of which I
will present some results. Here are two examples: reducibility for the pointfree
version of Cantor space amounts to the Weak König’s Lemma; reducibility for
the pointfree Baire space states that every element of a (not necessarily de-
cidable) spread belongs to a choice sequence contained in that spread [3]. In
general, reducibility is a point existence property. Reducibility was born in the
more general context of formal topologies with a positivity relation, also called
positive topologies, where it emerged for structural motivations and reasons of
symmetry. In [2] we managed to give a “localic” description of the category of
positive topologies; in view of that work, reducibility can be now understood as
statement about the weakly closed sublocales of the given locale. Classically,
reducibility is equivalent to spatiality, at least in the particular case of locales;
and assuming either spatiality implies reducibility or the converse yields the
full law of excluded middle. In the more general case of positive topologies,
instead, even if classical logic is assumed, reducibility remains distinct from, ac-
tually weaker than, spatiality. This makes the notion of reducibility potentially
interesting also to a classical mathematician.

References

[1] Ciraulo F. and Sambin G., Reducibility, a constructive dual of spatiality,
submitted.

[2] Ciraulo F. and Vickers V., Positivity relations on a locale, APAL, to appear.

[3] Maietti M. E. and Sambin G., Why topology in the minimalist foundation

must be pointfree, Log. Log. Philos. 22 (2013).

[4] Sambin G., Positive Topology via the Basic Picture - New structures for

constructive mathematics, Oxford Logic Guides, OUP, to appear.



The inconsistency of a Brouwerian continuity principle with
the Curry-Howard interpretation

Martin Escardó

Abstract. If all functions (N ! N) ! N are continuous then 0 = 1. We establish this
in intensional (and hence also in extensional) intuitionistic dependent-type theories, with
existence in the formulation of continuity expressed as a ⌃ type via the Curry-Howard
interpretation. But with an intuitionistic notion of anonymous existence, defined as the
propositional truncation of ⌃, it is consistent that all such functions are continuous. A
model is Johnstone’s topological topos. On the other hand, any of these two intuitionistic
conceptions of existence give the same, consistent, notion of uniform continuity for func-
tions (N ! 2) ! N, again valid in the topological topos. It is open whether the consistency
of (uniform) continuity extends to homotopy type theory. The theorems of type theory
informally proved here are also formally proved in Agda, but the development presented
here is self-contained and doesn’t show Agda code.



Sheaf models for Introspection

Michael Fourman

Edinburgh University

Abstract. Our aim is to present a formal representation of Brouwer’s development of
intuitionistic analysis, "exceeding the frontiers of classical mathematics".

We argue that simple sheaf models provide a faithful representation of salient aspects
of Brouwer’s arguments. Examples include Brouwer’s use of fleeing properties to provide
counter-examples to classical truths, and Brouwer’s use of choice sequences to derive the
Fan Theorem and Bar Induction.



Universal fibrations and univalence

Ieke Moerdijk

Radboud University, Nijmegen

Abstract. I will discuss various notions of being "universal" for fibrations in the category

of simplicial sets, and show how to get the univalence property for free.



Choice Sequences and Their Uses

Joan R. Moschovakis
Occidental College

Abstract. Brouwer’s (destructive) “First Act of Intuitionism” questioned the universal
applicability of the classical laws of double negation and excluded third. The resulting
limitation to intuitionistic (constructive) reasoning made possible – and was justified by
– Brouwer’s “Second Act of Intuitionism" which accepted arbitrary choice sequences of
natural numbers as legitimate mathematical objects, and required every function defined
on all choice sequences to be continuous in the initial segment topology.

In the 20th century Heyting, Kleene, Vesley, Kreisel, Troelstra, and others clarified
Brouwer’s intuitionistic logic and mathematics by means of formal axiomatic systems; fi-
nally choice sequences could be compared with classical number-theoretic functions, and
Brouwer’s universal spread with classical Baire space. We explain this development, with
the advantages of considering Brouwer’s choice sequences as individual objects in the pro-
cess of generation, spreads as structured sets, and species as extensional properties.



Choice Sequences vs Formal Topology

Thomas Streicher

Technical University Darmstadt

Abstract. It is known from the beginning of Formal Topology that in presence of Bar
Induction (BI) sufficiently many formal spaces have enough points. Classically BI is equiv-
alent to Dependent Choices. Thus BI introduces the (not not) existence of noncomputable
elements in Baire space aka choice sequences. We discuss models of FIM = BI + Continu-
ity, in particular function realizability. By a recent result of Escardo and Xu Continuity
is incompatible even with ITT. Finally, we recall a theorem of Fourman which allows one
to construct a gros topos over a small category of formal spaces which validates FIM.
One may reason in this model and then use Kripke-Joyal to turn the results into Formal
Topology terms. Thus, the illusion of points can be preserved even when working in Type
Theory.



Kripke’s Schema, transfinite proofs, and Troelstra’s Paradox

Mark van Atten

Abstract. According to Brouwer, truth is experienced truth. Assumptions then have

epistemic import: To assume that p is true is to assume that the subject has experienced

its truth. This makes a difference for the way in which principles that involve an assumption

can be justified. In this talk, I will discuss Kripke’s Schema (KS) in this Brouwerian setting.

In the first part, I will give some examples of applications of KS in analysis, and go

through an argument in its favour.

In the second part, I will try to meet some objections to KS that have been voiced by

Kreisel, Veldman, and Vesley; in particular the objection that there is an incompatibility

between (1) the idea, embodied in KS, that mathematical evidence comes in an !-ordering,

and (2) Brouwer’s acceptance of transfinite (fully analysed) proofs.

In the third part, I argue that even though KS does not entail the theory of the

Creating Subject (CS), in a Brouwerian setting objections to CS also undermine KS. The

most prominent problem for CS is Troelstra’s Paradox. As is well known, the construction

of that paradox depends on the acceptability of a certain impredicativity; I argue that it

moreover depends on Markov’s Rule, and is therefore less threatening than it may seem.



The Almost-Fan Theorem

Wim Veldman
(IMAPP, Faculty of Science, Radboud University Nijmegen)

Let A be a decidable subset of the set N of the natural numbers. A is finite
if and only if there exists n such that, for all m in A, m  n. A is almost-finite

if and only if, for every infinite strictly increasing sequence ⇣ of natural numbers
there exists n such that ⇣(n) /2 A.

Every s in N codes a finite sequence of natural numbers. A function � from
N to {0, 1} is a spread-law if and only if, for each s, �(s) = 0 if and only if
9n[�(s ⇤ hni) = 0]. Let F be a subset of the set N of all infinite sequences of
natural numbers. F is a spread if and only if there exists a spread-law � such
that, for all ↵ in N , ↵ 2 F if and only if 8n[�(↵n) = 0]. F is a finitary spread

or a fan if the spread-law � satisfies the additional condition: for each s, the
set {n|�(s ⇤ hni) = 0} is finite. F is an almost-fan if and only if the spread-law
� satisfies the additional condition: for each s, the set {n|�(s ⇤ hni) = 0} is
almost-finite.

Let F be a subset of N and let B be a subset of N. B is a bar in F if and only
if 8↵ 2 F9n[↵n 2 B]. (↵n denotes the initial part

�
↵(0),↵(1), . . . ,↵(n� 1)

�
of

↵.) B is thin if and only if, for all s, t in B, if s 6= t, then s ? t, that is: s is, as
a finite sequence, not an initial part of t and neither is t an initial part of s.

The Fan Theorem FT is the statement:

Let F be a fan. Every decidable subset of N that is thin and a bar
in F is a finite subset of N.

The Almost-Fan Theorem AFT is the statement:

Let F be an almost-fan. Every decidable subset of N that is thin
and a bar in F is an almost-finite subset of N.

Both theorems follow from Brouwer’s Thesis on Bars in N . The Almost-Fan
Theorem implies the Fan Theorem. The relation between FT and AFT may
be compared to the relation between Weak König’s Lemma WKL and König’s

Lemma KL in classical Reverse Mathematics. The Principle of Open Induction
on Cantor space follows from AFT and implies FT.

We consider some consequences and equivalents both of the Almost-Fan
Theorem and of the Principle of Open Induction on Cantor space.



A coherent account of geometricity

Steve Vickers

University of Birmingham

Abstract. I shall present a coherence issue that arises on the trail of fibrewise topology,

or a dependent type theory of spaces (always point-free). The results can be applied to

space constructions such as powerlocales (hyperspaces) and valuation locales. At a certain

point the treatment is impredicative, but I conjecture that this can be circumvented.

In topos theory, internal spaces and reindexing along continuous maps (geometric mor-

phisms) are equivalent to bundles and pullback; and if a map is viewed as a generalized

point then the bundle pullback is a generalized fibre. From the point of view of dependent

types, we are therefore interested in "geometric" constructions of spaces, which are pre-

served - up to isomorphism - by reindexing and hence work fibrewise. The present work

provides sufficient conditions for the coherence of those isomorphisms.

The first part of the argument is predicative, and depends on a careful analysis of the

known techniques of working geometrically on presentations of spaces (or formal topolo-

gies). It uses the essentially algebraic theory of arithmetic universes as framework for

presenting each space construction in a uniform, generic way, instantiated over any base

by substitution.

The second part is still impredicative, and requires a condition that the construction

should, on morphisms between presentations, preserve the property of inducing a homeo-

morphism between the spaces.
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Formally representable functions from NN
to N

Tatsuji Kawai

Japan Advanced Institute of Science and Technology

tatsuji.kawai@jaist.ac.jp

A function F : Pt(S) ! Pt(S 0) between the formal spaces of formal topolo-
gies S and S 0 is said to be formally representable if there exists a morphism
r : S ! S 0 such that F = Pt(r), where Pt : FTop ! Top is the right adjoint
of the standard adjunction between the category of topological spaces Top and
that of formal topologies FTop.

Here, we are interested in a particular case where S is the formal Baire space
B and S 0 is the formal discrete space N of natural numbers. Identifying Pt(B)
with NN and Pt(N ) with N by the axiom of unique choice, we ask what kind
of function from NN to N is formally representable. Classically, the monotone
bar induction, which is equivalent to the spatiality of B, implies that the for-
mally representable functions are exactly the pointwise continuous functions.
Constructively, this need not be the case since the statement that every point-
wise continuous function from NN to N is formally representable is equivalent to
a version of bar induction stronger than the bar induction for decidable bars [1].

In this talk, we show that a function F : NN ! N is formally representable
if and only if F is realised by some neighbourhood function ↵ : N⇤ ! N, i.e.

(8� 2 NN) (9n 2 N)↵(h�(0), . . . , �(n� 1)i) = F (�) + 1.

By a neighbourhood function, we mean an element of the class K ✓ NN⇤
of

inductively generated neighbourhood functions [2, Chapter 4, Section 8.4].
We work in Bishop constructive mathematics with the axiom of countable

choice and generalised inductive definitions which have rules with countable
premises.

References

[1] T. Kawai. A uniform continuity principle for the Baire space and a cor-
responding bar induction, 2015. Submitted for presentation at Topology,

Algebra, and Categories in Logic 2015, Ischia (Italy), June 2015.
[2] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics: An In-

troduction. Volume I, volume 121 of Studies in Logic and the Foundations of

Mathematics. North-Holland, Amsterdam, 1988.



Duality and Monoidal Structures
on Sambin’s Basic Pairs

Yoshihiro Maruyama
Quantum Group

Department of Computer Science
University of Oxford

maruyama@cs.ox.ac.uk

We aim at examining duality and monoidal structures on basic pairs,
which were introduced by Sambin to lay down a foundation for formal topol-
ogy, a predicative form of point-free topology or locale theory.

Basic pairs have internal dualities inherent in them, and in this talk, we
externalise them in the form of duality between categories (as opposed to
duality in categories), thereby deriving different dualities between (topologi-
cal, convex, and measurable) point-set spaces and point-free spaces from the
internal dualities of basic pairs.

Moreover, the duality structure on basic pairs leads us to taking into
account a monoidal structure on the category of basic pairs. The monoidal
category of basic pairs, then, turns out to form a model of what is called
categorical quantum mechanics (which was introduced by Abramsky and
Coecke to account for the substructural logic of quantum mechanics).
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A Marriage of Brouwer’s Intuitionism and
Hilbert’s Finitism

Takako Nemoto

School of Information Science, JAIST, Nomi Asahidai 1-1, JAPAN
nemototakako@gmail.com

In this talk, we consider the consistency strength of various Brouwerian ax-
ioms. We show that the system consists of the following axioms over intuitionistic
logic still has the same proof theoretic strength as PRA, which is considered as
a formalization of Hilbert’s finitism (cf. [4]).

1. Basic arithmetic
2. Fan theorem for (not necessarily binary) decidable fan with arbitrary bar
3. Bar induction for Π0

1 property
4. Generalized continuity principle
5. Axiom of choice
6. Σ0

2 induction (not only Σ0
1 -induction)

We show that the above system together with Markov’s Principle can be in-
terpreted into a system of second order arithmetic with the same consistency
strength as PRA via realizability interpretation based on continuous function
application. We also consider which combination of axioms lifts up the consis-
tency strength. We show

– 1+ 2+3+5+6+“4 with uniqueness condition”+ LLPO has the same con-
sistency strength as PRA (via Lifschitz functional realizability interpretation
introduced by [2]), while 1 + 4 + LLPO is inconsistent (cf. [2]);

– 1+“2 restricted to ∆0
0 bar”+ LPO has the same consistency strength as PA

(via negative translation and the method used in [3, Theorem III.7.2]);
– 1+“2 restricted to binary fan with Π0

1 bar”+LPO has the same consistency
strength as PA (by extending the forcing method in [?] to second order forcing
relation of higher complexity);

– 1+Π0
2 induction over intuitionistic has the same consistency strength as the

one over classical logic (via forcing interpretation used in [?]).

This is a joint work with Kentaro Sato.

References

1. T. Coquand and M. Hofmann, A new method for establishing conservativity of clas-
sical systems over their intuitionitic versions,Mathematical Structures in Computer
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WEAK FACTORIZATION SYSTEMS

FOR INTENSIONAL TYPE THEORY

PAIGE NORTH

In this talk, I will characterize the weak factorization systems which can serve
to interpret intensional type theory.

In 1984, Per Martin-Löf introduced his intensional type theory [ML84], in which
the notion of equality was bifurcated into definitional equality and propositional

equality. Only a decade later, with Hofmann and Streicher’s groupoid interpreta-
tion of type theory [HS96], did it become clear that these two notions of equality do
not coincide. While definitional equality is a judgement as to whether two things
are equal, as equality usually is, propositional equality is represented by a type, the
identity type, which Hofmann and Streicher showed can possess much more infor-
mation. In his thesis [War08], Michael Warren showed how the rules governing this
identity type produce a weak factorization system and that this weak factorization
system bears much similarity to the classical Hurewicz weak factorization system
on the category of topological spaces. Thus the connection between intensional
type theory and homotopy theory became clear.

In their paper, van den Berg and Garner [BG12] described algebraic conditions
on an endofunctor of a category which enable it to serve as an interpretation of the
identity type. In this talk, I will describe the weak factorization systems that can
give rise to such an endofunctor, thus characterizing the weak factorization systems
that can interpret intensional type theory. In fact, they are exactly those in which
(1) every object is fibrant and (2) the left class of maps is stable under pullback
along the right class. I will also talk about internal categories and presheaves in
such a category, and under which conditions they themselves form a category that
can interpret intensional type theory.

References

[BG12] Benno van den Berg and Richard Garner. “Topological and simplicial
models of identity types”. In: ACM Trans. Comput. Log. 13.1 (2012),
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Type Theory”. In: In Venice Festschrift. Oxford University Press, 1996,
pp. 83–111.

[ML84] Per Martin-Löf. “Intuitionistic type theory”. In: Naples: Bibliopolis (1984).
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The Cantor space as a Bishop space

Iosif Petrakis

Mathematics Institute, LMU Munich
petrakis@math.lmu.de

Roughly speaking, in topology with points there are two ways to determine the
continuous functions between sets X and Y . The first is to start from some com-
mon space-structure on X and Y that determines a posteriori which functions
X ! Y are continuous with respect to it, while the second is to start from a
given class C of “continuous” functions X ! Y that determines a posteriori
a common space-structure on X and Y that corresponds to C. One could say
that Brouwer used the second way for X = 2N and Y = N, and the first for
X = Y = R. The theory of Bishop spaces (TBS) is an approach to constructive
topology with points which is based on the second way to determine continuity.
In [1] Bishop introduced function spaces, here called Bishop spaces, without re-
ally exploring them. In [2] Bridges revived the subject, in [3] Ishihara studied a
subcategory of the category of Bishop spaces, while in [4]-[7] we try to develop
TBS.
A Bishop space is a structure F = (X,F ), where the topology F of functions on
X is a subset of the real-valued functions F(X) on X, which includes the con-
stant functions and it is closed under addition, uniform limits and composition
with the Bishop-continuous functions Bic(R) i.e., the functions R ! R which are
uniformly continuous on every bounded subset of the constructive reals R. Since
these definitional clauses can be seen as inductive rules, one can talk about the
least Bishop space F(F0) including a given set F0 ✓ F(X). As a special case of
the product Bishop topology, the Cantor topology

W
n2N ⇡n = F({⇡n | n 2 N})

is the least topology on 2N including the projections.
Our aim is to present results on the Cantor space, seen as the Bishop space
(2N,

W
n2N ⇡n), that are related to intuitionistic analysis. If ⇢ is the standard met-

ric on 2N and Cu(2N) denotes the set of uniformly continuous real-valued func-
tions on 2N, we show that

W
n2N ⇡n ✓ Cu(2N), therefore the Fan theorem holds

for the elements of
W

n2N ⇡n. Moreover,
W

n2N ⇡n includes the set {⇢↵ | ↵ 2 2N},
where ⇢↵(�) = ⇢(↵,�), for every � 2 2N. Consequently,

W
n2N ⇡n = Cu(2N) and,

most importantly, a compact metric space endowed with the topology of the uni-
formly continuous functions is a 2-compact Bishop space. We call a Bishop space
F 2-compact, if there is an epimorphism from some Bishop product 2I to F . In
this way 2-compactness generalizes the notion of a compact metric space and
seems to be an appropriate function-theoretic notion of compactness for TBS.
All our proofs are within Bishop’s informal system of constructive mathematics
BISH.
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Formal Topology, Domains and Finite Density

Davide Rinaldi

University of Leeds

Abstract. The connections between formal topology and domains have been thoroughly

investigated in the literature. In particular, unary formal topologies represent a natural

way to describe constructively algebraic cpo’s. In the most recent formulation of formal

topology, convergence is modelled by means of a multi-valued operation. By tuning the

properties of such operation, we first obtain natural constructive presentation of Scott

and bifinite domains. This setting allows us, by means of an appropriate hierarchy of

hereditarily total functionals together with an abstract notion of totality, to do a proof of

the Kleene-Kreisel-Berger Density Theorem. In the context of non-flat domains, moreover,

this proof can be done with finite methods and without points.



Minimal Criminals and Minimal Logic

Peter M. Schuster

University of Verona

Abstract. In many a proof by contradiction of a universal statement the existence of a
minimal counterexample is proved by invoking Zorn’s Lemma. Whenever minimal logic
suffices for establishing the hypotheses, we can reread the proof in a systematic way as
a direct and inductive proof with Raoult’s principle of Open Induction. As the extremal
elements disappear, we thus eliminate the corresponding ideal objects or points of spaces.
Our result further opens up the road to extracting the computational content from the
classical proofs we have started with. We go beyond earlier work also inasmuch as our new
method does not require the presence of a binary operation.



Cubical sets as a classifying topos

⇤

Bas Spitters

Carnegie Mellon University, Pittsburgh

Abstract

Coquand’s cubical set model for homotopy type theory provides the basis for a computational

interpretation of the univalence axiom and some higher inductive types, as implementated in the cubical

proof assistant. We show that the underlying cube category is the opposite of the Lawvere theory of De

Morgan algebras. The topos of cubical sets itself classifies of the theory of ‘free De Morgan algebras’.

This provides us with a topos with an internal ‘interval’. Using this we construct a model of type

theory following van den Berg and Garner. However, it is possible that the interval can also be used

to construct other models.

Introduction

Kreisel and Troelstra’s elimination translation [KT70] provides an explanation of choice se-
quences. A semantic, topos theoretic, presentation of this technique was developed in the
eighties [Fou84, vdHM84] and has found renewed interest [Fou13, XE13] recently. One goal of
homotopy type theory [Uni13] is to serve as an internal language for elementary higher toposes,
a theory that this currently being developed by a number of researchers. Elementary higher
toposes should be a natural home for the development of spread models of type theory, as it is
a natural place to study sheaf models of homotopy type theory. In this abstract we use tools
from topos theory to present the cubical set model.

The topos of cubical sets

Simplicial sets from a standard framework for homotopy theory. The topos of simplicial sets
is the classifying topos of the theory of strict linear orders with endpoints. Cubical sets turn
out to be more amenable to a constructive treatment of homotopy type theory. Grandis and
Mauri [GM03] describe the classifying theories for several cubical sets without diagonals. We
consider the most recent cubical set model [Coq15]. This consists of symmetric cubical sets
with connections (^,_), reversions (¬) and diagonals. Let F be the category of finite sets with
all maps. Consider the monad DM on F which assigns to each finite set F the finite set of the
free DM-algebra on F . That this set is finite can be seen using the disjunctive normal form.
The cube category in [Coq15] is the Kleisli category for the monad DM .

Lawvere theory Recall that for each algebraic (=finite product) theory T , the Lawvere
theory C

fp

[T ] is the opposite of the category of free finitely generated models. This is the
classifying category for T : models of T in any finite product category category E correspond
to product-preserving functors C

fp

[T ] ! E. The Kleisli category KL

DM

is precisely the
opposite of the Lawvere theory for DM-algebras: maps I ! DM(J) are equivalent to DM-
maps DM(I) ! DM(J) since each such DM-map is completely determined by its behavior on
the atoms, as DM(I) is free.

⇤I gratefully acknowledge the support of the Air Force O�ce of Scientific Research through MURI grant
FA9550-15-1-0053. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the AFOSR.
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Classifying topos To obtain the classifying topos for an algebraic theory, we first need to
complete with finite limits, i.e. to consider the category C

fl

as the opposite of finitely presented

DM-algebras. Then C

op

fl

! Set, i.e. functors on finitely presented T -algebras, is the classifying
topos. This topos contains a generic T -algebra M . T -algebras in any topos F correspond to
left exact left adjoint functors from the classifying topos to F .

Let FG be the category of free finitely generated DM-algebras and let FP the category of
finitely presented ones. We have a fully faithful functor f : FG ! FP . This gives a geometric
morphism � between the functor toposes. Since f is fully faithful, � is an embedding.

The subtopos SetFG of the classifying topos for DM-algebras is given by a quotient theory,
the theory of the model �⇤

M . This model is given by pullback and thus is equivalent to the
canonical DM-algebra (m) := m for each m 2 FG. So cubical sets are the classifying topos
for ‘free DM-algebras’. Each finitely generate DM-algebra has the disjunction property and
is strict, 0 6= 1. These properties are geometric and hence also hold for . This disjunction
property is important in the implementation [Coq15, 3.1].

This result can be generalized to related algebraic structures, e.g. Kleene algebras. A Kleene
algebra is a DM-algebra with the property for all x, y, x ^ ¬x  y _ ¬y. With Coquand we
checked that free finitely generated Kleene algebras also have the disjunction property.

Model of type theory

Coquand’s presentation of the cubical model does not depend on a general categorical framework
for constructing models of type theory. Docherty [Doc14] presents a model on cubical sets with
connections using the general theory of path object categories [vdBG12]. The precise relation
with the model in [BCH14] is left open. We present a slightly di↵erent construction using
similar tools, but combined with internal reasoning, starting from the observation [Coq15] that
represents the interval. To obtain a model of type theory on a category C it su�ces to provide

an involutive ‘Moore path’ category object on C with certain properties. Now, category objects
on cubical sets are categories in that topos. The Moore path category MX consists of lists of
composable paths ! X with the zero-length paths e

x

as left and right identity. To obtain a
nice path object category, we quotient by the relation which identifies constant paths of any
length. The reversion ¬ on allows us to reverse paths of length 1. This reversion extends to
paths of any length. We obtain an involutive category: Moore paths provide strictly associative
composition, but non-strict inverses.

A path contraction is a map MX ! MMX which maps a path p to a path from p to
the constant path on tp (t for target). Like Docherty, we use connections to first define the
map from X to X

⇥ by �p.�ij.p(i _ j) and then extended this to a contraction. All these
constructions are algebraic and hence work functorially. We obtain a nice path object category.

We have obtained a model of type theory [vdBG12, Doc14] starting from the interval in
the cubical model, we plan to compare this more carefully with the one in [Coq15]. Finally, like
in Voevodsky’s HTS [Voe13], we define intensional identity types inside the extensional type
theory of a topos. One wonders whether HTS can be interpreted in the present model. Like the
presentation above, the topos simplicial sets, on which HTS is based, carries an generic interval
object with reversion and a sup operation. It appears that much of the models construction
above carries over.

Acknowledgements I would like to thank Awodey and Coquand for discussions on the topic
of this paper. Independently, Awodey showed that Cartesian cubical sets (without connections
or reversions) classify strictly bipointed objects.
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A minimalist predicative generalization of elementary

toposes

Maria Emilia Maietti

University of Padova

Abstract. We propose a generalization of the notion of Lawvere-Tierney’s elementary
topos where the axiom of unique choice is not necessarily valid.

The outcome is a variant of Moerdijk-Palmgren-Van Den Berg’s notion of predicative
topos and it has an elementary topos as an example.

We name "minimalist elementary topos" such a notion since its definition is inspired by
the design of the two-level Minimalist Foundation (for short MF), ideated with G. Sambin
in [5] and completed in [1]. An example is provided by the quotient model used to interpret
one level of MF into the other and analyzed categorically in [2],[3],[4].

As a consequence it shares the same properties of the Minimalist Foundation reported
in [6] in allowing

1. a definition of "choice sequence" distinct from that of "lawlike sequence";
2. a definition of boolean minimalist topos which is predicative;
3. examples where both Cauchy reals and also Dedekind reals do not form a set but

only proper collections of choice sequences whose topology must the be defined in point-free
term by using formal topology;

4. examples whose internal logic validates both Bar Induction for choice sequences and
formal Church thesis for lawlike sequences.

• [1] M.E. Maietti. A minimalist two-level foundation for constructive mathematics.
Annals of Pure and Applied Logic, 160(3):319–354, 2009.

• [2] M.E. Maietti and G. Rosolini. Quotient completion for the foundation of con-
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• [4] M.E. Maietti and G. Rosolini. Unifying exact completions. Applied Categorical
Structures, 23:43–52, 2015.

• [5] M.E. Maietti and G. Sambin. Toward a minimalist foundation for constructive
mathematics. In L. Crosilla and P. Schuster, editor, From Sets and Types to Topology
and Analysis:Practicable Foundations for Constructive Mathematics, number 48 in
Oxford Logic Guides, pages 91–114. Oxford University Press, 2005.

• [6] M.E. Maietti and G. Sambin. "Why topology in the Minimalist Foundation must
be pointfree" in Logic and Logical Philosophy 22,167–199, 2013



Two Pictures of a Continuum

Per Martin-Löf

Stockholm University

Abstract. The usual picture of a topological space, based on Venn diagrams and utilized

in set-theoretic topology, will be compared with the picture of a spread, which is Brouwer’s

substitute for the notion of a topological space, and a type-theoretic formalization of the

notion of a spread will then be given.



Spreads and choice sequences in the minimalist foundation.

Spatial intuition and computational interpretation

reconciled

Giovanni Sambin

University of Padova

Abstract. In a dynamic, evolutionary approach to philosophy of mathematics, which I
proposed to call dynamic constructivism, one is not so much interested in what mathe-
matical entities are, as in why and how we construct them, how we communicate them, to
which domains we can fruitfully apply them.

The formal counterpart of dynamic constructivism is a foundational system, developed
in collaboration with Milly Maietti and called minimalist foundation MF, which acts as
a framework in which all notions and all foundational conceptions can be formulated and
can interact dynamically. In particular, MF allows us to introduce the two notions of
function (total singlevalued relation) and operation (hypothetical construction of elements,
or indexed family of elements, or its �-abstraction) and keep them distinct. This means
that the so called axiom of unique choice AC! is not valid in MF. In turn, this means
conceiving 9x'(x) true when we have a guarantee that a witness c can eventually be
found, also when no operation providing it is available.

My claim is that a choice sequence is nothing but a function from N to N, that is a
relation ' such that 8n9!m'(n,m), as opposed to a sequence an 2 N (n 2 N) given by
an explicit law. Assuming AC! to be valid means, conversely, that the distinction between
operations and functions is essentially lost, either because one considers only functions (as
in the classical approach) or because one restricts application of mathematics to operations
and their graphs.

The pointfree approach to topology seems essential to give a general mathematical
status to these ideas. Pointfree topology represents the real, computational side of math-
ematics. In particular, spreads are surprisingly well expressed as inhabited formal closed
subsets, in the definition of positive topology (a positive topology is, roughly speaking, a
formal topology in which the positivity predicate is replaced by a positivity relation).

Ideal aspects are then expressed through the notion of ideal point of a positive topology.
Ideal points of Baire positive topology on List(N) turn out to coincide with functions from
N to N, i.e. choice sequences. So an ideal point belonging to a given formal closed subset
in Baire positive topology becomes a precise, definite expression for a choice sequence to
stay in a given spread.

In this set up, Bar Induction BI is just an equivalent formulation of spatiality of Baire
positive topology. So BI is a specific example of a general property of positive topologies.
The very nature of choice sequences says that also the constructive dual to spatiality,
called reducibility, should be valid in Baire positive topology. In fact, it amounts to Spread
Habitation SH, which says that every spread is inhabited by a choice sequence.
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Both BI and SH are perfectly precise and clear mathematical statements. Both are
intuitively obvious, but from the perspective of MF and positive topology one would not
expect them to be provable. This situation suggests that a simple way out is to prove meta-
mathematically that such ideal principles are conservative over real, pointfree topology;
intuitively, whatever one can prove on pointfree topology passing through choice sequences
and using BI or SH, one can also prove without. Trying to prove conservativity of BI and
SH is work in progress.

This reconstruction of the notions of spread and choice sequence is in my opinion faithful
to Brouwer’s ideas. It is mathematically well-defined and technically elementary; the price
is a little change in the foundational attitude of constructivism. The benefit is that it
opens the possibility of reconciling Brouwer’s still debated assumptions on the continuum
with the successful computational approaches by Bishop and Martin-Löf, without any
modification of the latter. Suggestively, our spatial intuitions as human beings are totally
reliable, as long as they do not destroy computational content.
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