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Covering compactness and choice

A topological space X is covering compact if for any family of
open sets Ui (i ∈ I ) in X we have

if
⋃

i∈I Ui = X , then there are i1, . . . , in ∈ I so that Ui1 ∪ · · · ∪ Uin = X

It is well-known that some basic theorems classical topology use
(and require) the full Axiom of Choice:

Tychonov’s Theorem (AC): If (Xi )i∈I is a family of covering
compact spaces then the product topology∏

i∈I
Xi

is covering compact.

Special case: The Cantor space C = {0, 1}N is compact.
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Constructive approaches to topology

To carry out topology on a constructive foundation it is necessary
to come to grips with compactness.

Brouwer’s solution: The compactness of the Cantor space follows
from the nature of choice sequences. This the Fan Theorem ( in
fact, an axiom). Moreover, it implies that the interval [0, 1] is
covering compact.

Kleene: The Cantor space is not compact under a recursive
realizability interpretation.

E. Bishop: Restricting to metric spaces, covering compactness
should be replaced by total boundedness (Foundations of
Constructive Analysis, 1967).
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Bishop (1967) uses the classical definition: A subset K of metric
space (X , d) is totally bounded if for every ε > 0, the subset K has
an ε-approximation x1, . . . , xn. A sequence of points x1, . . . , xn
(n ≥ 1) in K is an ε-approximation of K if

K ⊆ B(x1, ε) ∪ · · · ∪ B(xn, ε)

where B(x , ε) is the open ball of radius ε around x .
Then K is said to be compact, if in addition K is
(Cauchy)-complete.

This is motivated by the classical fact: (X , d) is covering compact
if and only if (X , d) is totally bounded and complete.

NB: Bishop did not consider ∅ to be compact. But this can be
fixed ...
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Example: [0, 1] ⊆ R is compact.
Example: Any finite set {x1, . . . , xn} ⊆ X is compact (n ≥ 1).

However not every subset of a finite set is compact!

Brouwerian counterexample: Let P be any property. If the set

{0} ∪ {x ∈ R : x = 1 & P}

is totally bounded, then P or ¬P.
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Exercise: Both [−1, 0] and [0, 1] are compact subsets of R. Is
[−1, 0] ∪ [0, 1] compact? Show that if the answer is yes, then for
every x ∈ R,

x ≥ 0 or x ≤ 0

This is a so-called Brouwerian counterexample to closure of
compact sets under finite unions.

Exercise: Give a Brouwerian counterexample to : If A,B ⊆ R are
compact, and A ∩ B inhabited, then A ∩ B is compact.

Exercise: Let A ⊆ R2 be a compact set that intersects a straight
line L. Is A ∩ L compact? (Give a constructive proof or a
Brouwerian counterexample.)
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Some fundamental spaces in analysis are locally compact:

R,Rn,C, . . .

The Bishop-Bridges definition is: An inhabited metric space X is
locally compact if it is complete, and every bounded subset is
included in a totally bounded set.

Prop. Every locally compact space is separable and complete.

NB: This definition is narrower than the classical as it excludes Q,
(0, 1) and certain non-separable spaces.
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Because of failure of the Heine-Borel theorem, Bishop (1967) took
uniform continuity on compact spaces as the fundamental
continuity notion.

Definition Let K be a compact metric space. A function f from
K to a metric space is uniformly continuous if for every ε > 0,
there is δ > 0 such that for all x , y ∈ K

d(x , y) ≤ δ =⇒ d(fx , fy) ≤ ε.

This is the most fruitful notion constructively, since it entails that
suprema and integrals of continuous functions may be found.
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The notion of continuity can then be extended to larger classes of
spaces.

Definition A function f from a locally compact metric space X to
a metric space Y is continuous, if f is uniformly continuous on
each compact subset of X .

The class of locally compact metric spaces and continuous
functions form a category LCM.
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A general definition of continuity between any metric spaces was
suggested by Bishop (see Bridges 1979).

Let X be a metric space. A subset A ⊆ X is a compact image if
there is a compact metric space K and a uniformly continuous
function λ : K // X with A = λ[K ]. A function f : X // Y
between metric spaces is uniformly continuous near each compact
image if for any compact image A ⊆ X and each ε > 0, there is a
δ > 0 such that

x ∈ A, y ∈ X , d(x , y) ≤ δ =⇒ d(fx , fy) ≤ ε.
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Classically this notion coincides with standard continuity:

Thm.(classically): f : X // Y is uniformly continuous near each
compact image iff f is pointwise continuous.

The notion also generalizes continuity on LCMs:

Thm. Let X be locally compact. Then f : X // Y is uniformly
continuous near each compact image iff f is continuous.
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In point-free topology (locale theory, formal topology) there is one
standard notion of continuity defined in terms of covering relations
between the basic open.

This can help us to find the fruitful notions of continuity between
metric spaces or other point-based spaces.

One example is the following.
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Continuous maps between open subspaces

Let X and Y be locally compact metric spaces. For open subsets
U ⊆ X and V ⊆ Y a suitable definition of continuous map U

// V in BISH is:

f : U // V is continuous iff for every compact S b U,

C1) f is uniformly continuous on S and
C2) f [S ] b V .

Here S b U ⇔def (∃t > 0)({x ∈ X : d(x ,S) ≤ t} ⊆ U).

These spaces and maps form the category OLCM of open
subspaces of locally compact metric spaces.
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Note that the meaning of b is strongly dependent on the
underlying space X :

Write Sr for {x ∈ X : d(x ,S) ≤ t}.

I X = [0, 1]: Then S = [0, 1] is totally bounded and Sr = [0, 1]
for any r . Hence S b X .

I For Y = V = R, we get the standard notion of (uniform)
continuity: [0, 1] // R.

I For Y = R and V = (0,+∞), we get uniformly continuous
functions which are uniformly positive.

I X = R, U = (0,+∞): Note that S = (0, 1) is totally
bounded, but we do not have S b U. The reciprocal will be
continuous (0,+∞) // R.
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Point-free topology

A quite early idea in topology: study spaces in terms of the
relation between the open sets. (Wallman 1938, Menger 1940,
McKinsey & Tarski 1944, Ehresmann, Benabou, Papert, Isbell,...)

For a topological space X the frame of open sets (O(X ),⊆) is a
complete lattice satisfying an infinite distributive law

U ∧
∨
i∈I

Vi =
∨
i∈I

U ∧ Vi

(or, equivalently, is a complete Heyting algebra). The inverse
mapping of a continuous function f : X // Y gives rise to a
lattice morphism

f −1 : O(Y ) // O(X )

which preserves arbitrary suprema
∨

.
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Many important properties of topological spaces may be expressed
without referring to the points, but only referring to the relation
between the open sets.
Def A frame (or locale) is a complete lattice A which satisfies the
infinite distributive law:

a ∧ (
∨
i∈I

bi ) =
∨
i∈I

a ∧ bi

for any subset {bi : i ∈ I} ⊆ A.
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A frame morphism h : A // B from between frames is a lattice
morphism that preserves infinite suprema:

(i) h(T) = T,

(ii) h(a ∧ b) = h(a) ∧ h(b),

(iii) h(
∨

i∈I ai ) =
∨

i∈I h(ai ).

The frames and frame morphisms form a category, Frm.

Example

A typical frame morphism is the pre-image operation f −1 : O(Y )
// O(X ), where f : X // Y is any continuous function.
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For conceptual reasons one considers the opposite category of the
category of frames:
Def Let A and B be two locales. A locale morphism f : A // B
is a frame morphism f ∗ : B // A.
The composition g ◦ f of locale morphisms f : A // B and g : B

// C is given by
(g ◦ f )∗ = f ∗ ◦ g∗.

Denote the category of locales and locale morphisms by Loc.

The locale (frame) (O({?}),⊆) that comes from the one point
space {?} is denoted 1. It is the terminal object of Loc. Here
T = {?} and ⊥ = ∅.
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Fundamental adjunction

Theorem The functor Ω : Top // Loc is left adjoint to the
functor Pt : Loc // Top, that is, there is an bijection

θX ,A : Loc(Ω(X ),A) ∼= Top(X ,Pt(A)),

natural in X and A.

Here Ω(X ) = (O(X ),⊆) and Ω(f )∗ = f −1 : Ω(Y ) // Ω(X ) for
f : X // Y .

Pt(A) is the set of points of the locale A, and Pt(f )(x) = f ◦ x .
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A locale is spatial if it has enough points to distinguish elements of
the locale i.e.

a∗ = b∗ =⇒ a = b.

A space X is sober if every irreducible closed set is the closure of a
unique point. (A nonempty closed C is irreducible, if for any closed
C ′,C ′′: C ⊆ C ′ ∪ C ′′ implies C ⊆ C ′ or C ⊆ C ′′.)

The adjunction induces an equivalence between the category of
sober spaces and category of spatial locales:

Sob ' Spa

Remark Ω gives a full and faithful embedding of all Hausdorff
spaces into locales (in fact of all sober spaces).
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Locale Theory — Formal Topology

Standard Locale Theory can be dealt with in an impredicative
constructive setting, e.g. in a topos (Joyal and Tierney 1984).

The predicativity requirements of BISH requires a good
representation of locales, formal topologies. They were introduced
by Martin-Löf and Sambin (Sambin 1987) for this purpose.

(A,≤, C ) is a formal topology if (A,≤) is a preorder, and C is an
abstract cover relation which extends ≤. It represents a locale
(Sat(A),⊆) whose elements are the saturated subsets U ⊆ A, i.e.

aCU =⇒ a ∈ U

(A formal topology corresponds to Grothendieck’s notion of a site
on a preordered set. )
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More in detail: A formal topology X is a pre-ordered set (X ,≤) of
so-called basic neighbourhoods. This is equipped with a covering
relation aCU between elements a of X and subsets U ⊆ X and so
that {a ∈ X : aCU} is a subset of X . The cover relation is
supposed to satisfy the following conditions:

(Ext) If a ≤ b, then aC {b},
(Refl) If a ∈ U, then aCU,

(Trans) If aCU and U CV , then aCV ,

(Loc) If aCU and aCV , then aCU ∧ V .

Here U CV is an abbreviation for (∀x ∈ U) x CV . Moreover
U ∧ V is short for the formal intersection U≤ ∩ V≤, where
W≤ = {x ∈ X : (∃y ∈W )x ≤ y}, the down set of W.
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A point of a formal topology X = (X ,≤, C ) is a subset α ⊆ X
such that

(i) α is inhabited,

(ii) if a, b ∈ α, then for some c ∈ α with c ≤ a and c ≤ b,

(iii) if a ∈ α and a ≤ b, then b ∈ α,

(iv) if a ∈ α and aCU, then b ∈ α for some b ∈ U.

The collection of points in X is denoted Pt(X ). It has a point-set
topology given by the open neighbourhoods:

a∗ = {α ∈ Pt(X ) : a ∈ α}.

23 / 101



Part 1: Constructive approaches to topology
Part 2: Point-free construction of spaces

Part 3: Metric Spaces and Formal Topology

Non-constructive aspects of topology
Metric spaces
Review: Locales
Review: Formal Topology

Many properties of the formal topology X can now be defined in
terms of the cover directly. We say that X is compact if for any
subset U ⊆ X

X CU =⇒ (∃ f.e. U0 ⊆ U) X CU0.

For U ⊆ X define

U⊥ = {x ∈ X : {x} ∧ U C ∅},

the open complement of U. It is easily checked that U⊥ ∧ U C ∅,
and if V ∧ U C ∅, then V CU⊥.
A basic neighbourhood a is well inside another neighbourhood b if
X C {a}⊥ ∪ {b}. In this case we write a ≪ b. A formal topology
X is regular if its cover relation satisfies

aC {b ∈ X : b ≪ a}.

(Compact Hausdorff = Compact regular.)
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Point-free proofs are more basic

Theorem (Johnstone 1981): Tychonov’s Theorem holds for
locales, without assuming AC.

A slogan of B. Banaschewski:

choice-free localic argument
+ suitable choice principles = classical result on spaces

In fact, Tychonov’s theorem for locales is constructive even in the
predicative sense (Coquand 1992).
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This suggestive slogan can be generalised

constructive localic argument
+ Brouwerian principle = intuitionistic result on spaces.

However, since the work of the Bishop school (BISH) on
constructive analysis it is known that there is often a basic

BISH constructive argument
+ Brouwerian principle = intuitionistic result on metric spaces.

A natural question: how does BISH constructive topology and
constructive locale theory relate? For instance on metric spaces.
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Formal reals R

The basic neighbourhoods of R are {(a, b) ∈ Q2 : a < b} given
the inclusion order (as intervals), denoted by ≤. The cover C is
generated by

(G1) (a, b) ` {(a′, b′) : a < a′ < b′ < b} for all a < b,

(G2) (a, b) ` {(a, c), (d , b)} for all a < d < c < b.

The set of points Pt(R) of R form a structure isomorphic to the
Cauchy reals R. For a point α with (a, b) ∈ α we have by (G2) e.g.

(a, (a + 2b)/3) ∈ α or ((2a + b)/3, b) ∈ α.
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G1:
(—————————————)

...
(——————————————–)

...

(———————————————–)

G2:
(———–)

(———–)

(——————)
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An elementary characterisation of the cover relation on formal reals
is:

(a, b)CU ⇐⇒ (∀a′, b′ ∈ Q)(a < a′ < b′ < b ⇒
(∃finite F ⊆ U) (a′, b′)∗ ⊆ F ∗)

Note that for finite F the pointwise inclusion (a′, b′)∗ ⊆ F ∗ is
decidable, since the end points of the intervals are rational
numbers. (Exercise)
This characterization is crucial in the proof of the Heine-Borel
theorem (see Cederquist, Coquand and Negri).
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For any rational number q there is a point in Pt(R);

q̂ = {(a, b) ∈ Q2 : a < q < b}.

For a Cauchy sequence x = (xn) of rational numbers we define

x̂ = {(a, b) ∈ Q2 : (∃k)(∀n ≥ k) a < xn < b}

which is a point of R.

Order relations on real numbers α, β ∈ Pt(R):

α < β ⇐⇒def (∃(a, a′) ∈ α)(∃(b, b′) ∈ β) a′ < b

α ≤ β ⇐⇒def ¬(β < α)⇐⇒ (∀(b, b′) ∈ β)(∀(a, a′) ∈ α)a ≤ b′
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Closed subspaces

Let X be a formal topology. Each subset V ⊆ X determines a
closed sublocale X \ V whose covering relation C ′ is given by

aC ′U ⇐⇒def aCU ∪ V .

Note that V C ′∅ and ∅C ′V , so the new cover relation identifies
the open set V with the empty set. What remains is the
complement of V .

Theorem If X is compact, and U ⊆ X a set of neighbourhoods,
then X \ U is compact.
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We define he unit interval by [0, 1] = R \ V where
V = {(a, b) : b < 0 or 1 < a}. Denote the cover relation of [0, 1]
by C ′.

Heine-Borel theorem [0, 1] is a compact formal topology.

Proof. Suppose X C ′U, where X is the basic nbhds of R. Thus in
particular (0− 2ε, 1 + 2ε)C ′U and thus (0− 2ε, 1 + 2ε)CV ∪ U.
By the elementary characterisation of C there is a finite
F ⊆ V ∪ U with (0− ε, 1 + ε)∗ ⊆ F ∗. As F is finite, we can prove
(0− ε, 1 + ε)CF using G1 and G2. Also we find finite
F1 ⊆ F ∩ U ⊆ U so that (0− ε, 1 + ε)CV ∪ F1. Hence
(0− ε, 1 + ε)C ′F1. But X C ′(0− ε, 1 + ε) so X C ′F1.
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Open subspaces

Let X be a formal topology. Each set V ⊆ X of neighbourhoods
determines an open sublocale X|V whose covering relation C ′ is
given by

aC ′U ⇐⇒def a ∧ V CU.

Note that U1C ′U2 iff U1 ∧ V CU2 ∧ V . Hence only the part
inside V counts when comparing two open sets.

Example

For two points α, β ∈ R the open interval (α, β) is R|V where

V = {(a, b) : α < â & b̂ < β}.
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Continuous maps relate the covers

Let X = (X ,≤, C ) and Y = (Y ,≤′, C ′) be formal topologies. A
relation F ⊆ X × Y is a continuous mapping X // Y if

I U C ′V =⇒ F−1U CF−1 V , (”preservation of arbitrary sups”)

I X CF−1 Y , (”preservation of finite infs”)

I aCF−1V , aCF−1W =⇒ aCF−1 (V ∧W ).

I aCU, x F b for all x ∈ U =⇒ a F b,

Each such induces a continuous point function f = Pt(F ) given by

α 7→ {b : (∃a ∈ α)R(a, b)} : Pt(X ) // Pt(Y)

and that satisfies: a F b ⇒ f [a∗] ⊆ b∗.
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The category of formal topologies.

The inductively generated formal topologies and continuous
mappings form a category FTop, which is classically equivalent to
Loc.
They both share many abstract properties with the category of
topological spaces which can be expressed in category theoretic
language.
This makes it possible to describe topological constructions
without mentioning points.
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Recall: A product of objects A and B in a category C is an object
A×B and two arrows π1 : A×B // A and π2 : A×B // B in
C, so that for any arrows f : P // A and g : P // B there is a
unique arrow 〈f , g〉 : P // A× B so that π1〈f , g〉 = f and
π2〈f , g〉 = g .

A A× Boo π1
A

c

__

f
??

??
??

??
??

??
? A× B B

π2 //A× B

c

OO

〈f ,g〉

B

c

??

g

��
��
��
��
��
��
�
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The dual notion of product is coproduct or sum.

A coproduct of objects A and B in a category C is an object A + B
and two arrows ι1 : A // A + B and ι2 : B // A + B in C, so
that for any arrows f : A // P and g : B // P there is a
unique arrow

(f
g

)
: A + B // P so that

(f
g

)
ι1 = f and

(f
g

)
ι2 = g .

A A + B
ι1 //A

c

f

��?
??

??
??

??
??

??
A + B Boo ι2
A + B

c

(f
g

)
��

B

c

g

����
��
��
��
��
��
�
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A equalizer of a pair of arrows A
f //
g
// B in a category C is a

object E and an arrow e : E // A with fe = ge so that for any
arrow k : K // A with fk = gk there is a unique arrow t : K

// E with et = k .

E A
e //E

K

OO

t

A

K

??

k

��
��
��
��
��
��

B
f //

B
g

//

In Top: E = {x ∈ A : f (x) = g(x)}.

Dual notion: A coequalizer of a pair of arrows A
f //
g
// B in a

category C is a object Q and an arrow q : B // Q with qf = qg
so that for any arrow k : B // Q with kf = kg there is a unique
arrow t : Q // K with tq = k. 38 / 101
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Categorical topology. As the category of topological spaces has
limits and colimits, many spaces of interest can be built up using
these universal constructions, starting from the real line and
intervals.

The circle
{(x , y) ∈ R× R : x2 + y2 = 1}

is an equaliser of the constant 1 map and (x , y) 7→ x2 + y2.

It can also be constructed as a coequaliser of s, t : {?} // [0, 1]
where s(?) = 0, t(?) = 1. (Identifying ends of a compact interval.)
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The categorical properties of the category FTop of set-presented
formal topologies ought to be same as that of the category of
locales Loc.

Theorem. Loc has small limits and small colimits.

However, since we are working under the restraint of predicativity
(as when the meta-theory is Martin-Löf type theory) this is far
from obvious. (Locales are complete lattices with an infinite
distributive law.)
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FTop has . . .
Limits:
• Products
• Equalisers
• (and hence) Pullbacks

Colimits:
• Coproducts (Sums)
• Coequalisers
• (and hence) Pushouts

Moreover:
• certain exponentials (function spaces): X I , when I is locally
compact.
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Further constructions using limits and colimits

1. The torus may be constructed as the coequaliser of the
followings maps R2 × Z2 // R2

(x,n) 7→ x (x,n) 7→ x + n.

2. The real projective space RPn may be constructed as
coequaliser of two maps

Rn+1 × R 6=0
// Rn+1

(x, λ) 7→ x (x, λ) 7→ λx.
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3. For A ↪→ X and f : A // Y , the pushout gives the attaching
map construction:

X Y ∪f X//

A

X

� _

��

A Y
f // Y

Y ∪f X
��

4. The special case of 3, where Y = 1 is the one point space, gives
the space X/A where A in X is collapsed to a point.

43 / 101



Part 1: Constructive approaches to topology
Part 2: Point-free construction of spaces

Part 3: Metric Spaces and Formal Topology

Real numbers
Subspaces
Category of formal topologies

Products of formal topologies

Let A = (A,≤A, C A) and B = (B,≤B , C B) be inductively
generated formal topologies. The product topology is
A× B = (A× B,≤′, C ′) where

(a, b) ≤′ (c , d)⇐⇒def a ≤A c & b ≤B d

and C ′ is the smallest cover relation on (A× B,≤A×B) so that

I aC AU =⇒ (a, b)C ′U × {b},
I b C BV =⇒ (a, b)C ′{a} × V .

The projection π1 : A× B // A is defined by

(a, b) π1 c ⇐⇒def (a, b)C ′A× {c}

(Second projection is similar.)
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Example

The formal real plane R2 = R×R has by this construction formal
rectangles ((a, b), (c , d)) with rational vertices for basic
neighbourhoods (ordered by inclusion). The cover relation may be
characterized in an elementary, non-inductive way as

((a, b), (c , d))C ′U ⇐⇒
(∀u, v , x , y)[a < u < v < b, c < x < y < d ⇒

(∃finite F ⊆ U)(u, v)× (x , y) ⊆ F ∗]
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Formal topological manifolds

A formal topology M is an n-dimensional manifold if there are two
families of sets of open neighbourhoods {Ui ⊆ M}i∈I and
{Vi ⊆ Rn}i∈I and a family of isomorphisms in FTop

ϕi : M|Ui
// (Rn)|Vi

(i ∈ I )

so that
M C {Ui : i ∈ I}.
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Subspaces defined by inequations

Let V ⊆ R2 be the set of open neighbourhoods above the graph
y = x i.e.

V = {((a, b), (c , d)) ∈ R2 : b < c}

Then L = (R2)|V ↪→ R2 has for points pairs (α, β) with α < β.
Let f , g : X // R be continuous maps. Then form the pullback:

L R2� � //

S

L
��

S X� � // X

R2

〈f ,g〉

��

Then the open subspace S ↪→ X has for points those ξ ∈ Pt(X )
where f (ξ) < g(ξ).
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Subspaces defined by inequations (cont.)

Similarly we may define subspaces by non-strict inequalities.
Define K = (R2 \ V ) ↪→ R2, then K has for points (α, β) ∈ R2

such that α ≥ β.

Replacing L by K is the previous pullback diagram we get that
S ↪→ X has for points those ξ ∈ Pt(X ) where f (ξ) ≥ g(ξ).
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Coequalizers in formal topology

Coequalizers are used to built quotient spaces, and together with
sums, to attach spaces to spaces.

As the category Loc is opposite of the category Frm the

coequalizer of A
f //
g
// B in Loc can be constructed as the equalizer

of the pair B
f ∗ //

g∗
// A in Frm.

As Frm is ”algebraic” the equalizer can be constructed as

E = {b ∈ B : f ∗(b) = g∗(b)} ↪→ B
f ∗ //

g∗
// A
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Coequalizers in formal topology (cont.)

A direct translation into FTop yields the following suggestion for a
construction:

{U ∈ P(B) : F̃−1U = G̃−1U}

for a pair of continuous mappings F ,G : A // B between formal
topologies. Here W̃ = {a ∈ A : aCW }.

Difficulty: the new basic neighbourhoods U do not form a set.
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It turns out that can one find, depending on F and G , a set of
subsets R(B) with the property that

F̃−1U = G̃−1U, b ∈ U =⇒

(∃V ∈ R(B))(b ∈ V ⊆ U & F̃−1V = G̃−1V )

Now the formal topology, whose basic neighbourhoods are

Q = {V ∈ R(B) : F̃−1V = G̃−1V },

and where
U CQW iff U C B ∪W

for W ⊆ R(B), defines a coequaliser. Moreover the coequalising
morphism P : B // Q is given by:

a P U iff aC BU.
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Exercise: Construct the standard topological n-simplex

∆n = {(x0, . . . , xn) ∈ Rn+1 : x0 + · · ·+ xn = 1, x0 ≥ 0, . . . , xn ≥ 0}

in a point-free way. (Combine the above constructions.)

Exercise: For a simplicial set S , construct its geometric realization
|S | in a point-free way.
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Cohesiveness of formal spaces: joining paths

Def The space Y has the Path Joining Principle (PJP) if
f : [a, b] // Y and g : [b, c] // Y
are continuous functions with f (b) = g(b), then there exists a
unique continuous function h : [a, c] // Y , with h(t) = f (t) for
t ∈ [a, b], and h(t) = g(t) for t ∈ [b, c].

Theorem Each complete metric space Y satisfies PJP.
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For general metric spaces PJP fails constructively:

Proposition There is a metric space Y (=[−1, 0] ∪ [0, 1]), such
that if the PJP is valid for Y , then for any real x

x ≤ 0 or x ≥ 0.

Proof : Exercise.

However:

Proposition In FTop the PJP holds for any Y .
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There is a stronger version (HJP) which allows for the composition
of homotopies:

Proposition: Let X be a formal topology. For α ≤ β ≤ γ in
Pt(R), the diagram

X × [α, β] X × [α, γ]
1X×E1

//

X

X × [α, β]

〈1X ,β̂〉

��

X X × [β, γ]
〈1X ,β̂〉 // X × [β, γ]

X × [α, γ]

1X×E2

��

(1)

is a pushout diagram in FTop. Here E1 and E2 are the obvious
embeddings of subspaces.
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The following lemma is used in the proof. It may be regarded as a
(harmless) point-free version of the trichotomy principle for real
numbers.

Lemma For any point β of the formal reals R let

Tβ = {(a, b) ∈ R : b < β or (a, b) ∈ β or β < a}.

Then for any U ⊆ R we have

U ∼R U≤ ∩ Tβ.

Here V ∼R W means that V CRW and W CRV .
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Proof. The covering U≤ ∩ Tβ CRU is clear by the axioms (Tra)
and (Ext).

To prove the converse covering, suppose that (a, b) ∈ U. Then it
suffices by axiom (G1) to show (c , d)CRU≤ ∩ Tβ for any
a < c < d < b. For any such c, d we have β < c or a < β, by the
co-transitivity principle for real numbers. In the former case,
(c , d) ∈ U≤ ∩ Tβ, so suppose a < β. Similarly comparing d , b to β
we get d < β, in which case (c , d) ∈ U≤ ∩Tβ, or we get β < b. In
the latter case we have (a, b) ∈ U≤ ∩ Tβ, so in particular
(c , d)CU≤ ∩ Tβ.
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Exercise/Research problem: For a formal topology X , what is a
reasonable notion of fundamental group or fundament groupoid?
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Constructivity of the Fundamental Adjunction ?

By the adjunction

Ω : Top // Loc −| Pt : Loc // Top

the functor Ω gives a full and faithful embedding of all Hausdorff
spaces into locales.

However, the functor Ω yields only point-wise covers in Loc, so
Ω({0, 1}ω) is not compact, (unless e.g. the Fan Theorem is
assumed). The localic version of the Cantor is compact, as we
have seen.

To embed the locally compact metric spaces used in BISH we need
a more refined functor.

59 / 101



Part 1: Constructive approaches to topology
Part 2: Point-free construction of spaces

Part 3: Metric Spaces and Formal Topology

Localic completion
Transferring results between FCA and FT
Applications of positivity

Localic completion

For any metric space (X , d) its localic completion (Vickers 2005,
2009) M =MX is a formal topology (M,≤M, CM) where M is
the set of formal ball symbols

{b(x , δ) : x ∈ X , δ ∈ Q+}.

These symbols are ordered by formal inclusion

I b(x , δ) ≤M b(y , ε)⇐⇒ d(x , y) + δ ≤ ε
I b(x , δ) <M b(y , ε)⇐⇒ d(x , y) + δ < ε.
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The cover is generated by

(M1) p C {q ∈ M : q < p}, for any p ∈ M,

(M2) M C {b(x , δ) : x ∈ X} for any δ ∈ Q+,

The points of MX form a metric completion of X . There is a
metric embedding

jX = j : X // Pt(MX )

given by
j(u) = {b(y , δ) : d(u, y) < δ}.

Moreover, jX is an isometry in case X is already complete.

For X = Q, we get the formal real numbers modulo notation for
intervals b(x , δ) = (x − δ, x + δ).
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Remarks Countable choice is used to prove the isometry.

The covering relation is, in the case when X is the Baire space,
given by an infinite wellfounded tree. Must allow generalised
inductive definitions in the meta theory.
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Theorem (Vickers) Let X be a complete metric space. Then: X
is compact iff MX is compact.

Theorem (P.) If X = (X , d) is locally compact, thenMX is locally
compact as a formal topology, i.e. p C {q ∈ M : q � p} for any p.

Here the way below relation is

q � p iff for every U: p CU implies there is some finitely
enumerable (f.e.) U0 ⊆ U with q CU0.
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Elementary characterisation of the cover of MX

Refined cover relations

U ≤ V ⇐⇒df (∀p ∈ U)(∃q ∈ V )p ≤ q

Note: If U ≤ V , then U CV . (Similar extension for <)

p vε U ⇔df (∀q ≤ p)[radius(q) ≤ ε⇒ {q} ≤ U]

Write p v U iff p vε U for some ε ∈ Q+.

Note: If p v V , then p CV .
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Any sufficiently small disc included in the inner left disc “slips”
into one of the dashed discs.
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Elementary characterisation of the cover of MX

Lemma 4 Let X be locally compact. Let δ ∈ Q+. For any formal
balls p < q there is a finitely enumerable C such that

p v C < q

where all balls in C have radius < δ.

Remark: In fact, this is as well a sufficient condition for local
compactness.

Let A(p, q) = {C ∈ Pfin.enum.(MX ) : p v C < q}.
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Elementary characterisation of the cover of MX

The following cover relation is generalising the one introduced by
Vermeulen and Coquand for R:

alU ⇔df (∀b < c < a) (∃U0 ∈ A(b, c)) U0 < U.

Theorem If X is a locally compact metric space, then

aCU ⇐⇒ alU

(⇐ holds for any metric X space.)
Proof of ⇒ goes by verifying that l is a cover relation satisfying
(M1) and (M2).
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Let f : X // Y be a function between complete metric spaces.
Define the relation Af ⊆ MX ×MY by

a Af b ⇐⇒df aC {p : (∃q < b)f [p∗] ⊆ q∗}

Here b(x , δ)∗ = B(x , δ).

Lemma Af :MX
//MY is a continuous morphism between

formal topologies, whenever X is locally compact and f is
continuous.

Define thus M(f ) :MX
//MY as Af

Remark Classically, a Af b is equivalent to f [a∗] ⊆ b∗. However,
this definition does not work constructively.
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Embedding Theorem

Embedding Theorem: The functor M : LCM // FTop is a full
and faithful functor from the category of locally compact metric
spaces to the category of formal topologies. It preserves finite
products.

Explanation: Suppose that X and Y are locally compact metric
spaces.
M faithful means: For f , g : X // Y continuous functions

f = g ⇐⇒M(f ) =M(g)

M full means: any continuous mapping F :M(X ) //M(Y ) is
the comes from some (unique) continuous function f : X // Y :

F =M(f ).
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That M preserves binary products means e.g. that if

X oo
π1

X × Y
π2 // Y

is a product diagram, then so is:

M(X ) oo
M(π1) M(X × Y )

M(π2) //M(Y ).

Hence
M(X × Y ) ∼=M(X )×M(Y ).

Since we have M(R) ∼= R we may then lift any continuous
operation f : Rn // R from Cauchy reals to formal reals
M(f ) : Rn // R.
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Theorem For F ,G : Rn // R and f = Pt(F), g = Pt(G) : Rn

// R we have

F ≤ G ⇐⇒ (∀x̄)f (x̄) ≤ g(x̄).

Here F ≤ G is defined via factorization through a closed sublocale,
as follows: For F ,G : A // R continuous we say that F ≤ G iff
〈G ,F 〉 : A // R2 factorizes through

R2 \ V ↪→ R2

where V = {((a, b), (c , d)) ∈ R2 : b < c}.
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There is a characterisation of maps into closed subspaces. For a
set of neighbourhoods W ⊆ Y let Y \W denote the corresponding
closed sublocale, and let E−W : Y \W ↪→ Y be the embedding.

Let F : X // Y be a continuous morphism. TFAE:

I F factors through E−W .

I F−1W C X∅.
I F : X // (Y \W ) is continuous.

Def F : X // R is non-negative if it factorises through R \ N,
where N is the set of b(x , δ) with x < δ.
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The previous theorem may be used prove equalities and inequalities
(≤) for formal real numbers by standard point-wise proofs. Results
of constructive analysis are readily reused.
More generally we have

Theorem Let X be a locally compact metric space. For
F ,G :M(X ) // R and f = Pt(F), g = Pt(G) : X // R we
have

F ≤ G ⇐⇒ (∀x ∈ X )f (x) ≤ g(x).
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It would also be desirable to reuse results about strict inequalities
(<). There is however no such straightforward ”transfer theorem”
as for ≤.

This is connected to the problem of localising infima of continuous
functions [0, 1] // R, which we consider as a preparation.
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The infimum problem on compact sets

Problem: In BISH find a positive uniform lower bound of a
uniformly continuous function f : [0, 1] // (0,∞).

This is impossible by results of Specker 1949, Julian & Richman
1984 using a recursive (computable) interpretation.

(Classically, f attains its minimum.)

However in Brouwerian intuitionism (INT), a uniform lower bound
can be found using the FAN theorem.
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In Bishop’s constructive analysis this phenomenon is serious
problem. ( P. Schuster: What is continuity, constructively?) We
ought to have
(*) The composition of two continuous functions is continuous.

Consider, however, the composition of f with the reciprocal:

[0, 1]
f // (0,∞)

1/(·) // R.

If 1/f is uniformly continuous, we can find an upper bound of the
function on the compact the compact interval [0, 1]. But this
means that we can also find a uniform lower bound of f .

One concludes that (*) fails. The two versions of continuity are
incompatible.

Point-free topology has a solution.
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Open subspaces

X|G — the open subspace of X given by a set of formal nbds G .
E|G : X|G // X — the associated embedding.

Lemma Let F : X // Y be a continuous morphism between
formal topologies. Let G ⊆ Y be a set of nbds. TFAE:

I F factorises through E|G : Y|G // Y
I X CF−1[G ]

I F : X // Y|G is continuous.

Def F : X // R is positive if it factorises through R|P , where P
is the set of b(x , δ) with x > δ.

The above Lemma gives several ways to prove positivity.
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Locally uniformly positive maps

Let X be a metric space. A function f : X // R is locally
uniformly positive (l.u.p) if for every x ∈ X and every δ > 0 there
is some ε > 0 so that for all y ∈ Y

d(y , x) < δ =⇒ f (y) > ε.

Theorem Let X be a locally compact metric space, and suppose
f : X // R is continuous. Then f is l.u.p. if, and only if,
M(f ) :M(X ) // R is positive.

Corollary M(f ) <M(g) ⇐⇒ g − f is l.u.p.

80 / 101



Part 1: Constructive approaches to topology
Part 2: Point-free construction of spaces

Part 3: Metric Spaces and Formal Topology

Localic completion
Transferring results between FCA and FT
Applications of positivity

Proof of Theorem (⇐): Suppose M(f ) is positive. Using Theorem
3 we obtain

M(X )lM(f )−1[G ].

Let x ∈ X and δ > 0. Then consider neighbourhoods
s = b(x , δ) < s ′ < p. Thus we have some p1, . . . , pn < s ′ with

s v {p1, . . . , pn} <M(f )−1[G ]

Thus there are qi > pi and ri ∈ G , i = 1, . . . , n, satisfying
f [(qi )

∗] ⊆ (ri )
∗. Thereby

f [s∗] = f [b(x , δ)∗] ⊆ f [p∗1] ∪ · · · ∪ f [p∗n] ⊆ (r1)∗ ∪ · · · ∪ (rn)∗.

From which follows

f [B(x , δ)] = f [b(x , δ)∗] ⊆ (ε,∞),

so f is indeed l.u.p.
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Thm Let X and Y be locally compact metric spaces. For formal
open (and saturated) A ⊆MX and B ⊆MY , a continuous
morphism

F : (MX )|A // (MY )|B

induces a point function f : A∗ // B∗ which satisfies the
following conditions: for every compact S <∗ A

K1) f is uniformly continuous on S and
K2) f [S ] <∗ B.

Here S <∗ A⇔def (∃ f.e. F ⊆MX ) S ⊆ F∗& F < A.

Remark: The continuity condition is equivalent to: for every
a < A: K1 & K2 where S = a∗.
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The continuity conditions K1-2 generalize the standard C1-2.

For any open U ⊆ X , there is a largest formal open saturated
H(U) = {a ∈MX : a∗ ⊆ U}. We have

Lemma: S <∗ H(U)⇐⇒ S b U.

We have a converse to the previous theorem.

Thm If f : A∗ // B∗ is K-continuous then Af : (MX )|A
// (MY )|B is a continuous mapping.
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Theorem (P. 2010) There is a full and faithful functor from
OLCM the category of open subspaces of locally compact metric
spaces to FTop induced by

(X ,U) 7→ (MX )|H(U)

Remark: For metric complements U = {x ∈ X : d(x , S) > 0} we
have H(U) = {b(x , δ) : x ∈ X , d(x ,S) ≥ δ}.
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Via the localic completion and the metric embedding jX : X
// Pt(M(X )), which is an isometry when X is complete, one

gets a canonical notion of continuity between metric spaces. A
function f : X // Y between complete metric spaces is then
called FT-continuous, or formally continuous, if there is a
(continuous) morphism of formal topologies F :M(X )

//M(Y ) such that the following diagram commutes

X Y
f

//

Pt(M(X ))

X

OO

jX

Pt(M(X )) Pt(M(Y ))
Pt(F ) // Pt(M(Y ))

Y

OO

jY

.

In general F is not uniquely determined by f .
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This results shows that FT-continuity is stronger than Bishop’s
general notion of continuity

Thm (P 2012) An FT-continuous function f : X // Y between
complete metric spaces is uniformly continuous near each compact
image.
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Overtness and subspaces of localic completions

We must require something more than compactness of M \ U to
guarantee that Pt(M \ U) is compact in the metric sense.

The notion of overtness may be used to get a localic counterpart
to Bishop’s notion of compactness (P. Taylor 2000). See also T.
Coquand and B. Spitters (2007) Computable sets: located and
overt locales.

87 / 101



Part 1: Constructive approaches to topology
Part 2: Point-free construction of spaces

Part 3: Metric Spaces and Formal Topology

Localic completion
Transferring results between FCA and FT
Applications of positivity

A formal topology X = (X ,≤, C ) is overt if there is a set P ⊆ X
of neighbourhoods that are positive, which means

I P is inhabited,

I aCU, a ∈ P ⇒ U ∩ P is inhabited,

I U CU ∩ P.

This P is necessarily unique if it exists.
P is usually called a positivity predicate for X .

Remark. In classical set theory, any formal topology X is overt,
provided it hasa least one neighbourhood which is not covered by
∅. We may take

P = {a ∈ X : ¬aC ∅}.

The notion is thus exclusively of constructive interest.
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The following was already implicit in (Coquand and Spitters 2007).
See (Coquand, P., and Spitters 2011) for a presentation.

Theorem Let X be a metric space and let M =M(X ) be its
localic completion. Let U ⊆ M be such that M \U is compact and
overt. Then Pt(M \ U) is compact in the metric sense.

To prove it we use:

Lemma: Let U ⊆ M be such that M \ U is overt. If a is a positive
neighbourhood of M \ U, then α ∈ a∗ for some α ∈ Pt(M \ U).
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Proof of Lemma: Suppose that P is the positivity predicate of
M \ U. Denote the cover relation of M \ U by C ′.
Suppose a = b(x , δ) ∈ P. Let a1 = a. Suppose we have
constructed in P:

a1 ≥ a2 ≥ · · · ≥ an,

so that radius(ak+1) ≤ radius(ak)/2.
By (M1) and localisation we get

an C
′{an} ∧ {b(y , ρ) : y ∈ X}

where ρ = radius(an)/2. Since an ∈ P we obtain some
b ∈ {an} ∧ {b(y , ρ) : y ∈ X} with b ∈ P. Clearly
radius(b) ≤ radius(an)/2. Let an+1 = b.
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Let
α = {p ∈ M : (∃n)an ≤ p}

Since the radii of an are shrinking, this defines a point in Pt(M).
(Note that we used Dependent Choice.)

We claim that α ∈ Pt(M \ U) = Pt(M) \ U∗. Suppose that
α ∈ U∗, i.e. for some c ∈ U: c ∈ α. Hence there is n with an ≤ c .
Thus an CU, that is an C ′∅. But since an is positive, this is
impossible! So α ∈ Pt(M \ U).
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Proof of Theorem: Let P and C ′ be as in the proof of Lemma.
Let ε > 0 be given. Then by axiom M2 and positivity

M C ′{b(x , ε/2) : x ∈ X}C ′{b(x , ε/2) : x ∈ X} ∩ P.

By compactness there is some finitely enumerable
F = {b(x1, ε/2), . . . , b(xn, ε/2)} ⊆ {b(x , ε/2) : x ∈ X} ∩ P so that

M C ′F . (2)

Since each b(xi , ε/2) is positive there is by Lemma some
αi ∈ b(xi , ε/2)∗ which is in Pt(M \ U). By (2) it follows that each
point in Pt(M \ U) has smaller distance than ε to some point αi .
Thus {α1, . . . , αn} is the required ε-net.
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Nice open sets - metric complements

Let X be a metric space and let S ⊆ X be a located subset. The
metric complement of S is defined by

−S = {x ∈ X : d(x ,S) > 0}

Theorem: Let X be locally compact. For formal open set
U ⊆ M(X ), Pt(U) is a metric complement of a located subset in
case the closed sublocale M(X ) \ U is overt.
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