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Abstract6

In this note we remark on the problem of equality of objects in categories formalized in Martin-7

Löf’s constructive type theory. A standard notion of category in this system is E-category, where8

no such equality is specified. The main observation here is that there is no general extension of9

E-categories to categories with equality on objects, unless the principle Uniqueness of Identity10

Proofs (UIP) holds. We also introduce the notion of an H-category with equality on objects,11

which makes it easy to compare to the notion of univalent category proposed for Univalent Type12

Theory by Ahrens, Kapulkin and Shulman.13
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1 Introduction17

In this note we remark on the problem of equality of objects in categories formalized in18

Martin-Löf’s constructive type theory. A common notion of category in this system is19

E-category [1], where no such equality is specified. The main observation here is that there20

is no general extension of E-categories to categories with equality on objects, unless the21

principle Uniqueness of Identity Proofs (UIP) holds. In fact, for every type A, there is an22

E-groupoid Aι which cannot be so extended. We also introduce the notion of an H-category,23

a variant of category, which makes it easy to compare to the notion of univalent category24

proposed in Univalent Type Theory [9].25

When formalizing mathematical structures in constructive type theory it is common to
interpret the notion of set as a type together with an equivalence relation, and the notion
of function between sets as a function or operation that preserves the equivalence relations.
Such functions are called extensional functions. This way of interpreting sets was adopted
in Bishop’s seminal book [4] on constructive analysis from 1967. In type theory literature
[3, 6, 8, 10] such sets are called setoids. Formally a setoid X = (|X|,=X , eqX) consists of a
type |X| together with a binary relation =X , and a proof object eqX witnessing =X being an
equivalence relation. We usually suppress the proof object. An extensional function between
setoids f : X → Y consists of a type-theoretic function |f | : |X| → |Y |, and a proof that f
respects the equivalence relations, i.e. |f |(x) =Y |f |(u) whenever x =X u. One writes x : X
for x : |X|, and f(x) for |f |(x) to simplify notation. Every type A comes with a minimal
equivalence relation IA(·, ·), the so-called identity type for A. We sometimes write a .= b for
IA(a, b), when the type can be inferred. The principle of Uniqueness of Identity Proofs (UIP)
for a type A states that

(UIPA) (∀a, b : A)(∀p, q : a .= b)p .= q

(using the propostions-as-types convention that ∀ is Π, ∃ is Σ etc.) This principle is not26

assumed in basic type theory, but can be proved for types A where IA(·, ·) is a decidable27
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8:2 On equality of objects in categories in constructive type theory

relation (Hedberg’s Theorem [9]). Another essential notion used in this paper is that of28

family of setoids indexed by a setoid. There are several choices that can be made but the one29

corresponding to fibers {f−1(a)}a∈A of an extensional function f : B → A between setoids30

is the notion of a proof-irrelevant family. Let A be a setoid. A proof-irrelevant family B31

of setoids over A, assigns to each a : |A|, a setoid B(a) = (|B(a)|,=B(a), eqB(a)), and to32

each proof object p : a =A b an extensional function B(p) : B(a)→ B(b) (the transport map33

associated with p). The transport maps should satisfy the following conditions34

B(p)(x) =B(a) x for all x : B(a) and p : a =A a (identity)35

B(p)(x) =B(b) B(q)(x) for all x : B(a) and p, q : a =A b (proof-irrelevance)36

B(q)(B(p)(x)) =B(c) B(r)(x) for all x : B(a) and p : a =A b, q : b =A c, r : a =A c37

(functoriality)38

From these conditions follows easily that each B(p) is an isomorphism which is independent39

of the proof object p. Hence proof-irrelevance. (An equivalent definition is obtained by40

considering A as a discrete E-category A# (whose objects are elements of |A| and whose41

hom-setoids are Hom(a, b) = (a =A b,∼) with p ∼ q always true) and B as a functor from42

this category to the E-category of setoids. This uses concepts only defined below.)43

In Univalent Type Theory [9] the identity type is axiomatized so as to allow quotients,44

and many other constructions. This makes it possible to avoid the extra complexity of setoids45

and their defined equivalence relations.46

These two approaches to type theory, may lead to different developments of category47

theory. In both cases there are notions of categories, E-categories and precategories, which48

are incomplete in some sense.49

2 Categories in standard type theory50

Categories [5] are commonly formalized in set theory in two ways, one is the essentially51

algebraic formulation, where objects, arrows, and composable arrows each form sets (or52

classes), with appropriate operations, and the other one is via objects and hom-sets (hom-53

classes). Set theory gives automatically a notion of equality on objects imposed by the54

equality of the theory. These definitions can be carried over to type theory and setoids, by55

taking care to make all constructions extensional.56

In type theory, an essentially algebraically presented category, or EA-category for short, is
formulated as follows. It consists of three setoids Ob(C), Arr(C) and Cmp(C) of objects, arrows
and composable pairs of arrows, respectively. Objects are thus supposed to be equipped with
equality. There are extensional functions, providing identity arrows to objects, 1 : Ob→ Arr,
providing domains and codomains to arrows dom, cod : Arr→ Ob, a composition function
cmp : Cmp→ Arr, and selection functions fst, snd : Cmp→ Arr satisfying familiar equations,
with the axiom that for a pair of arrows f , g:

cod(g) = dom(f)⇐⇒ (∃u : Cmp) g = fst(u) ∧ f = snd(u)

In this case cmp(u) will be the composition f ◦ g. See [5, 8] for axioms and details.57

The hom-set formulation in type theory is the following [7]: A hom-family presented58

category C, or just HF-category, consists of a setoid C of objects, and a (proof irrelevant)59

setoid family of homomorphisms Hom indexed by the product setoid C × C. We have60

1a : Hom(a, a), and an extensional composition ◦a,b,c : Hom(b, c)× Hom(a, b) → Hom(a, c)61

satisfying62

f ◦a,a,b 1a =Hom(a,b) f 1b ◦a,b,b f = f , if f : Hom(a, b),63

f ◦a,c,d (g◦a,b,ch) =Hom(a,d) (f ◦b,c,dg)◦a,b,dh, if f : Hom(c, d), g : Hom(b, c), h : Hom(a, b).64
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For p : a =C c and q : b =C d, the transport map goes as follows

Hom(p, q) : Hom(a, b)→ Hom(c, d).

The transport maps have to satisfy the following coherence conditions:65

Hom(p, p)(1a) =Hom(a′,a′) 1a′ for p : a =C a′66

Hom(p, r)(f ◦a,b,c g) =Hom(a′,c′) Hom(q, r)(f) ◦a′,b′,c′ Hom(p, q)(g) for p : a =C a′, q :67

b =C b′, r : c =C c′, f : Hom(b, c) and g : Hom(a, b).68

I Remark. The coherence conditions can be captured more briefly by just stating that 1 and69

◦ are elements in the following dependent product setoids70

(a) 1 : Π(C,Hom〈idC , idC〉)71

(b) ◦ : Π(C3,Hom〈π2, π3〉 ×Hom〈π1, π2〉 → Hom〈π1, π3〉).72

In more detail, the product setoids in (a) and (b) are made using the following construc-73

tions:74

Let Fam(A) denote the type of proof irrelevant families over the setoid A. Such families75

are closed under the following pointwise operations:76

If F,G : Fam(A), then F ×G : Fam(A) and F → G : Fam(A).77

If F : Fam(A), and f : B → A is extensional, then the composition Ff : Fam(B).78

The cartesian product Π(A,F ) of a family F : Fam(A) consists of pairs f = (|f |, extf )
where f : (Πx : |A|)|F (x)| and extf is a proof object that witnesses that |f | is extensional,
that is

extf : (∀x, y : A)(∀p : x =A y)[F (p)(|f |(x)) =F (y) |f |(y)].

Two such pairs f and f ′ are extensionally equally if and only if |f |(x) =F (x) |f ′|(x) for all79

x : A. Then it is straightforward to check that Π(A,F ) is a setoid.80

3 E-categories and H-categories in standard type theory81

According to the philosophy of category theory, truly categorical notions should not refer to82

equality of objects. This has a very natural realization in type theory, since there, unlike in83

set theory, we can choose not to impose an equality on a type. This leads to the notion of84

E-category [1], which is essentially an HF-category with equality on objects taken away, and85

the corresponding transport maps removed.86

An E-category C = (C,Hom, ◦, 1) is the formulation of a category where there is a type
C of objects, but no imposed equality, and for each pair of objects a, b there is a setoid
Hom(a, b) of morphisms from a to b. The composition is an extensional function

◦ : Hom(b, c)×Hom(a, b)→ HomC(a, c).

satisfying the familiar laws of associativity and identity. A functor or an E-functor between87

E-categories is defined as usual, but the object part does not need to respect any equality of88

objects (because there is none).89

Now an interesting question is whether we can impose an equality of objects onto an90

E-category which is compatible with composition, so as to obtain an HF-category? We may91

consider an intermediate structure on E-categories as follows.92

Define an H-category C = (C,=C ,Hom, ◦, 1, τ) to be an E-category with an equivalence93

relation =C on the objects C, and a family of isomorphisms τa,b,p ∈ Hom(a, b), for each proof94

p : a =C b. The morphisms should satisfy the conditions95

(H1) τa,a,p = 1a for any p : a =C a96
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(H2) τa,b,p = τa,b,q for any p, q : a =C b97

(H3) τb,c,q ◦ τa,b,p = τa,c,r for any p : a =C b, q : b =C c and r : a =C c.98

Axioms (H1) and (H3) can be replaced by the special cases τa,a,ref(a) = 1a, and τb,c,q ◦τa,b,p =99

τa,c,tr(q,p) where ref and tr are specific proofs of reflexivity and transitivity. Note that by100

these axioms, it follows that each τa,b,p is indeed an isomorphism.101

A functor between H-categories C = (C,=C ,Hom, ◦, 1, τ) and D = (D,=D Hom′, ◦′, 1′, σ)102

is an E-functor F from (C,Hom, ◦, 1) to (D,Hom′, ◦′, 1′) such that a =C b implies F (a) =D103

F (b) and F (τa,b,p) = σF (a),F (b),q for p : a =C b and q : F (a) =D F (b).104

An H-category C is called skeletal if a =C b whenever a and b are isomorphic in C.105

To pass between H- and HF-categories we proceed as follows:106

For an H-category C = (C,=C ,Hom, ◦, 1, τ), define a transportation function

Hom(p, q) : Hom(a, b)→ Hom(a′, b′)

for p : a =C a′ and q : b =C b′, by

Hom(p, q)(f) = τb,b′,q ◦ f ◦ τa′,a,p−1 .

It is straightforward to check that this defines an HF-category.107

Conversely, an HF-category C = (C,Hom, ◦, 1) yields an E-category (|C|,Hom, ◦, 1) and
we can define, an H-structure on it by, for p : a =C b,

τa,b,p = Hom(r(a), p)(1a) : Hom(a, b).

These constructions are inverses to each other, though they do not form an equivalence,108

since the two categories have different notions of functors.109

4 E-categories are proper generalizations of H-categories110

The existence of some H-structure on any E-category turns out to be equivalent to UIP.111

I Theorem 1. If UIP holds for the type C, then any E-category with objects C can be112

extended to an H-category.113

Proof. The equivalence relation on C will be IC(·, ·). Using induction on identity one defines
τa,b,p ∈ Hom(a, b) for p ∈ I(C, a, b) by

τa,a,ref(a) =def ida.

The UIP property implies (H2). Property (H3) follows from transitivity and (H2). J114

I Remark. We recall that by Hedberg’s theorem, UIP holds for a type C, whenever IC(x, y)∨115

¬IC(x, y), for all x, y : C. This explains why the extension problem is trivial in a classical116

setting.117

Let A be an arbitrary type. Define the E-category Aι where A is the type of objects, and
hom setoids are given by

Hom(a, b) =def (IA(a, b),≈)

where p ≈ q holds if and only if IIA(a,b)(p, q) is inhabited. Let composition be given by the118

proof object transitivity, and the identity on a is ref(a). Then it is well-known that Aι is an119

E-groupoid.120
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I Theorem 2. Let A be a type. Suppose that the E-category Aι can be extended to an121

H-category. Then UIP holds for A.122

Proof. Suppose that =A, τ is an H-structure on Aι.123

Now since IA(a, b) is the minimal equivalence relation on A, there is a proof object124

f(p) : a =A b for each p : IA(a, b). Thus τa,b,f(p) : Hom(a, b) = IA(a, b). Let D(a, b, p) be the125

proposition126

τa,b,f(p) ≈ p. (1)127

By (H1) it holds that
τa,a,f(ref(a)) ≈ ref(a),

i.e. D(a, a, ref(a)). Hence by I-elimination (1) holds. On the other hand, (H1) gives for128

p : IA(a, a), that129

τa,a,f(p) ≈ ref(a). (2)130

With (1) this gives
p ≈ ref(a)

for any p : IA(a, a), which is equivalent to UIP for A. J131

I Corollary 3. Assuming any E-category with A as the type of objects can be extended to an132

H-category. Then UIP holds for A.133

In classical category theory any category may be equipped with isomorphism as equality134

of objects (see remark above). This is thus not possible in basic type theory, with the above135

Aι as counter examples.136

5 Categories in Univalent Type Theory137

In Univalent Type Theory [9], a set is a type that satisfies the UIP condition. A precategory
[9, Chapter 9.1] is a tuple C = (C,Hom, ◦, 1) where C is a type, Hom is a family of types
over C × C, such that Hom(a, b) is a set for all a, b : C. Moreover 1a : Hom(a, a) and

◦ : Hom(b, c)×Hom(a, b)→ Hom(a, c)

satisfy the associativity and unit laws up to I-equality.138

Such a precategory thus forms an E-category by considering the hom-set as the setoid139

(Hom(a, b), IHom(a,b)(·, ·)). We have moreover:140

I Theorem 4. Every precategory whose type of objects is a set is an H-category.141

Proof. Define a ∼= b to be the statement that a and b are isomorphic in C i.e.

(∃f : Hom(a, b))(∃g : Hom(b, a)) g ◦ f .= 1a ∧ f ◦ g
.= 1b.

By I-elimination one defines a function142

σa,b : a .= b→ a ∼= b (3)143

by σa,a(ref(a)) = (1a, (1a, (ref(1a), ref(1a)))). Define by taking the first projection τa,b,p =144

(σa,b(p))1 : Hom(a, b). By I-induction it follows that145

τa,a,ref(a)
.= 1a for any p : a .= a,146
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τb,c,q ◦ τa,b,p
.= τa,c,q◦p for any p : a .= b and q : b .= c.147

For a precategory where C is a set, it follows that for any p, q : a .= b such that p .= q

holds, so by substitution
τa,b,p = τa,b,q.

Thus τ gives an H-structure on C, so the precategory is in fact an H-category. J148

An univalent category, or UF-category, is a precategory where the function σa,b in (3) is149

an equivalence for any a, b : C; see [2] and [9, Chapter 9.1]. In particular, it means that if150

a ∼= b, then IC(a, b).151

I Example 5. An example of a precategory which is not a univalent category is given by152

C = N2 where Hom(m,n) = N1. Here 0 ∼= 1, but IC(0, 1) is false.153

I Remark. Note that a UF-category whose type of objects is a set, is a skeletal H-category.154

The reverse is however not true.155

I Example 6. Suppose that C is a skeletal precategory whose type of objects is a set. Is156

C necessarily a univalent category? No. Consider the group Z2 as a one object, skeletal157

precategory: Let the underlying set be N1 and Hom(0, 0) = N2 with 0 as unit and ◦ as158

addition. This is not a univalent category, compare Example 9.15 in [9]. Thus the standard159

multiplication table presentation of a nontrivial group is not a univalent category.160

6 Conclusion161

In conclusion, the notion of univalent category is too restrictive to cover many familiar162

examples. H-category is generalization of precategory and is a convenient version of E-163

category with equality on objects. The notion of E-category is still more general as shown164

here.165
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