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A strictly predicative version of Hyland’s effective topos

The tripos-to-topos construction by Hyland-Johnstone-Pitts [2] provides a pow-
erful machinery in categorical logic to build examples of elementary toposes suit-
able for modelling various set theories. The most famous and seminal example
is Hyland’s effective topos [1] which hosts a model of IZF [3].

A predicative generalization of Hyland’s effective topos had been studied by
Moerdijk and van den Berg in [8] by referring to CZF as the set theory to be
modelled.

Here we generalize the notion of tripos-to-topos to a strictly predicative
version (à la Feferman) to build a categorical universe for the (extensional level
of the) Minimalist Foundation (for short MF) conceived by Maietti-Sambin in
2005 [6] and completed in 2009 in [4].

We base our construction on a categorical presentation of the model for
the intensional level of MF in [7] that we call predicative effective tripos. The
adjective predicative refers to the fact that the tripos is formalized in Feferman’s
theory of inductive definitions ÎD1 and the adjective effective to the fact that
the model validates the extended Church thesis.

Then we perform the elementary quotient completion in [5] on such a tripos
and the resulting category can be considered as a strictly predicative version of
Hyland’s effective topos.
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