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New title for changed contents: 

Sketch-theoretic reformulations of Michael Batanin's concept of 
weak higher category and its variants

1. Sketches. Charles Ehresmann's concept of sketch deserves more 

attention than  has been accorded it. The big bang in the theory of 
sketches was Christian Lair's 1981 theorem that says: “a category is 

sketchable iff it is accessible”:  any accessible category (one that is 
equivalent, for some cardinal kappa, to the category of  Set-valued 

kappa-filtered colimit-preserving functors on a small category) is 
equivalent to the category of models of a small (Ehresmann) small-

colimit-small-limit sketch  –--  and conversely. With Bob Pare, we 
rediscovered Lair theorem in 1985, and used it, among others, to 

prove the limit theorem for accessible categories: any small pseudo-
limit of a diagram of accessible categories and accessible functors 

calculated in the standard 2-category of (possibly large) categories is
itself accessible. An essential element of our proof of the limit 

theorem was the use of the category of sketches. 

In the middle 1990's, I developed a theory of something I called 
generalized sketches  – which I am going to call simply sketches, 

with various qualifiers when needed –-, and used them, among 
others, for a framework of categorical completeness theorems, in 

which the category of sketches of a specific kind is the main 
ingredient. 

Sketch theory is a categorical approach to logical syntax. The 

sketches (the objects of the category) correspond (quite closely, in 
fact) to the formulas of logic. The morphisms stand for logical 



axioms and theorems, and also figure in certain infinite colimits 
which are the theory-categories of a particular “doctrine”, say that of

regular category. This last use of the morphisms of sketches is the 
important one for my present goals. I introduce a new kind of sketch 

and the category of them, to obtain a tool to talk about equational 
theories of weak higher-dimensional categories, or more specifically,

monads over the category of globular sets (omega graphs) whose 
algebras are such weak higher categories.  

I make some further introductory remarks. Take the most well-

known kind of sketch, finite-limit sketch, and, on the other hand, the 
concept of finite-limit category (category having all finite limits). In 

particular, the notion of category is a finite-limit notion: there is a 
small finite-limit category whose models  (finite-limit-preserving 

functors  to Set) are exactly the (small) categories. But how do we 
know this? I submit that we only know this because (1) we have a 

finite-limit sketch  S-sub-cat whose models are categories, and (2) 
we know that for any (small) finite-limit sketch S, there is a finite-

limit category  <S> that has the same (equivalent) category of 
models as S. Category theorists usually will not take the sketch  S-

sub-cat seriously, and will be satisfied with talking about the finite-
limit theory T-sub-cat = <S-sub-cat> of categories being 

“presented” in an informal sense by some prescription. This 
prescription is indeed necessary to write out in detail when the 

category theorist has to define a category object in a (finite-limit) 
category  –  but they will probably still not use the word  “sketch” to 

name the prescription when doing so. 

 Even if the category theorist admits that there is a sketch involved, 
they will still (correctly) argue that, whereas the theory T-sub-cat is 



essentially uniquely determined (by Gabriel-Ulmer duality), the 
sketch  S-sub-cat is far from being unique – it is a mere 

“presentation”, and the essential entity T-sub-cat has, of course, 
many different presentations; the presentation is a second-class 

entity, and it is best to avoid it when possible. This last point is 
where I disagree with the category theorist.  In fact, I am bound to 

say that I want the sketch, and don't want the theory, since the sketch
already tells me what the models (algebras) are, and that's enough. 

But, suppose we agree that there are sketches and we should use 

them. How do we know fact (2) above about the completion <S> of 
S? An obvious attempt at the answer is that <S> is the value of the 

left adjoint of the inclusion of the category Lex of finite-limit 
categories into the category LexSketch of finite-limit sketches. Thus, 

the category of finite-limit sketches appears on the scene. However, 
there are problems with the argument: said left adjoint does not exist,

basically because Lex is not a good category; it does not have limits,
for instance. We have to go to 2-categories and pseudo-limits and the

like to make the argument stick. But there is another, more 
elementary, solution, which I will now describe, since the method 

involved in it is the one that I need for my talk. 

Some general definitions. Let  A  be a locally presentable category, 
and SIGMA a (small) set of morphisms in A. An object A is SIGMA-

injective if 

                                                         [1]    (Oct 17, p.2). 

We also write  A |= SIGMA, and say  “A satisfies SIGMA”, for  A 
SIGMA-injective.

An arrow  a:A---->B  is SIGMA-cellular if it belongs to the least 



class  X  of arrows of A (the cellular closure of SIGMA, denoted 
cell(SIGMA)) which 

                          (i) contains SIGMA,

                         (ii) is closed under pushout 

[2]   (Oct 17. p. 2), 

and (iii) is closed under transfinite composition 

                                                      [3]    (Oct 17. p. 2),

or equivalently (having already condition (ii)), closed under good 

composition 

                                                      [4]    (Oct 17. p. 2)

(Jacob Lurie). 

Let us say that a class of arrows is cellular, or cellularly saturated, if

it is closed under pushout and transfinite composition. Thus, the 
cellular closure of SIGMA is the least cellular class containing 

SIGMA. 

(Remark: although this will not (yet?) play a role in what I am to say
here, I note that we  have the classical Gabriel-Zisman saturation, or

cellular-retract-closure, of SIGMA, denoted cell-rtr(SIGMA), which
is obtained by adding the condition of being closed under retracts of 

arrows (in the arrow category). The full small-object argument gives 
that the left-orthogonal closure of the right-orthogonal closure of 



SIGMA is cell-rtr(SIGMA): we have a combinatorial (weak) 
factorization system with cell-rtr(SIGMA) being the left class of the 

system. This structure is a part of a combinatorial Quillen model 
structure, where both the class TrCof of the trivial cofibrations, and 

the class Cof of the cofibrations are of the form
  

                 cell-rtr( SIGMA-sub-anod),
resp.,

                  cell-rtr( SIGMA-sub-cof)  .     )

 Call a:A--->B a SIGMA-completion of A if  a  is SIGMA cellular, 
and the codomain B is SIGMA-injective. A simple special case of the

so-called small-object argument yields

Proposition (A locally presentable,  SIGMA small) For any object  
A, a SIGMA completion 

gamma-sub-A:A---> A<SIGMA>

 exists. 

The completion is not unique in general, not even up to 

isomorphism. However,  if  f:A---->B  and  g:A--->C  are  SIGMA-
completions, then  there are (non-unique) morphisms h:B--->C and  

k:C---->B  such that  hf=g, kg=f . In significant special cases, the 
pair  (h,k) turns out to be an equivalence in a good sense of the two 

completions  (B,f), (C,g). 

Now, take  A to be the category LexSketch,  very “simple” category, 
locally finitely presentable, in fact, a presheaf category. There is a 

finite set SIGMA of finite morphisms in  A , the set of the “finite-
limit axioms”, such that, for any sketch S in A, any SIGMA-



completion  

                 g=gamma-sub-S:S--->S[SIGMA]  (=<S>)

 with domain S  has the usual universal property of the finite-limit-
category completion; in particular,  <S> is the underlying sketch of a

finite-limit category, and it has the same (equivalent) category of 
models as S. 

2. Linton sketches

In 2009 (see my web-site), I formulated a notion I called “Linton 

sketch”, to get a precise tool to present and specify algebraic 
theories, or  monads over essentially arbitrary categories. Just like 

sketches before, a Linton sketch has models, or algebras, via a direct 
definition that makes it unnecessary to pass to the monad whose 

presentation the Linton sketch is.  The name comes from the fact that
every monad gives rise to a canonical large Linton sketch (just like a

finite-limit category gives rise to a finite-limit sketch, without any 
loss of information), which is Linton's algebraic theory associated 

with the monad. In the same year, John Power gave a talk in 
Montreal about generalized Lawvere algebraic theories. He did not 

mention sketches; his algebraic theories are, however, the theory-
Linton sketches, the completions of the Linton sketches.

Let  G  be any category – soon we will make some mild assumptions

on G. The first example is, of course,  Set; the second one is Graph, 
the category of graphs (in the category-theoretic sense). The 

important example is  omega-Graph, or Glob, the category of 
omega-graphs, or globular sets.

A Linton sketch  S  over  G , simply a “sketch” from now on,  has an 



(i)  underlying graph (always ordinary graph!), denoted |S| ;
        (ii)  a subgraph  P  (=P[S], “P-of-S”) of  |S|, the “scaffolding” of

S, with the same objects as  |S|;
        (iii)  a sketch-for-categories structure on the graph |S|, i.e., 

commutative diagram specifications, including equality spec's of 
parallel arrows.

It is required that P also be a subgraph of the underlying graph of the
category  G  (it would be enough to have a diagram  P--->G as 

additional structure, but it is simpler to handle the present 
definition). (End of definition of “Linton sketch”.)

A morphism  phi:S--->T of sketches is a map phi:|S|--->|T| of graphs 

that acts as the identity on objects (phi(U)=U for all U in Ob(S)) and 
all arrows of P[S], and which, furthermore, is a morphism of 

category sketches (takes commutative diagrams to commutative 
diagrams). We have the category Linton[G] of small Linton sketches

over the category  G. 

Sometimes it is convenient to assume that  S is not just a sketch-for-

categories, but also a category itself (the underlying sketch-for-
categories of a category). Such a sketch we call c-closed. It is clear 

what the c-closure, cS, of any S is; it comes with a morphism  
                         S--->cS  

which is the identity on objects. cS  is determined up to isomorphism
in Linton[G] under S. 

Examples: the sketch for the notion of category over  G = Graph, 

and other related examples 

                                           [5]       (slides)



A model, or algebra, M, of the sketch S consists of an object |M| of 
G, and further structure: 

                                               [6]    (slides)

Returning to the examples:

                                              [7]    (slides)

A morphism (homomorphism) of algebras of  S :  h:M---->N  is, by 

definition, an arrow  h:|M|------>|N|  such that

[8]    (slides)

We have the category  Alg(S)  of algebras of  S, with the faithful, 
isomorphism-reflecting forgetful functor

                  U=U-sub-S : Alg (S) ----> G

U creates limits (from those in G), in the precise sense Mac Lane 

meant; thus, if  G has small limits, so does Alg (S), and U preserves 
them. 

Now assume that  

           G is locally presentable (accessible, complete, cocomplete), 

           and the Linton sketch S is small. 

Then Alg(S) is also locally presentable, since it can be seen to be the 
same as (equivalent to)  the category of G-valued models of a small 



finite-limits sketch. Moreover,

Proposition. For G and S as above,  U:Alg(S)---->G  has a left 
adjoint, and  U  is monadic.

The proof (outlined in my 2009 posting “Lintonism”) is via Beck 

monadicity theorem, and copies Mac Lane's proof (“Categories 
for ...”) of the special case for the ordinary algebraic case.

Let   mon(S)  be the name for the monad associated with the 

monadic functor   U:Alg(S)---->G . 

  
Taking the category of models is obviously functorial:

              Alg  :   (Linton[G[)^op  -------->  CAT ;

for  phi:S----T, a morphism of sketches,

  
              (-)|phi = Alg (phi) :  Alg (T)---> Alg (S)

takes a model M to its phi-reduct  M|phi, with the same underlying 

object as M, and operations 

              M|phi( f) : |M|^V  --->  |M|^U

for  f:U--->V  in  S  as  M|phi( f) = M(phi(f))  (remember that  
phi(U)=U, phi(V)=V ; thus   phi(f):U--->V still!). 

Moreover,  U-sub-(-): Alg(-) ---> 'G'  (constant-G functor) is a 

natural transformation:  for  phi:S--->T, the diagrams



                                         [9]  (slide)

commutes.

Let us call a sketch-morphism  phi:S---->T  tautological (thinking of
sketch-morphisms as “axioms”)  if the associated functor

  
                    Alg (phi) : Alg(T)--->Alg(S)

is an isomorphism of categories. One notes easily that the class of 

tautological morphisms of Linton[G] is cellular(ly closed) (see 
above); in fact, even also retract closed.  Next, we specify certain 

specific tautological sketch-morphisms. 

First, there is the set  

SIGMA-sub-cat                                        (1)

 of those axioms (arrows of Linton[G] ) that are designed so that the 
SIGMA-sub-cat completion of S is cS; I will skip the details. 

I then have the axioms of the form

           empty-sketch  -----> subgraph  X  of G,

that, when applied (injectivity …), simply attaches X  as new parts 

of the scaffolding P. They are obviously tautological.  Call said 
sketch-arrow

  
               SIGMA-sub-scaf [X]                                    (2)

(  X  denotes a (small) graph of  G )



Then, more interestingly, we have the set  

              SIGMA-sub-colimit.                               (3)

Before giving details, I will give you the effect of the set  

  SIGMA-sub-taut =def  union of (1) , (2) and (3).

(I suppressed the dependence on  X.)

The SIGMA-sub-taut-completion  S[SIGMA]  (see above) of a 
sketch  S is now determined up to isomorphism, and it is the theory-

completion of  S, denoted  th(S)  for short. It is obtained by 
extending the scaffolding “executing” the prescriptions 

(commutativities) of  S together with the (commutativities and) the 
colimits consisting of objects and arrows of  P[S], colimits meant in 

the category  G ; remember that  P[S] is a sub-graph of G.   Since 
the arrows in  SIGMA-sub-taut are all tautological (as we will see), 

the canonical morphisms

                        gamma :  S -------->S[SIGMA-sub-taut] 

is, by being  SIGMA-sub-taut- cellular, a tautological extension 
itself. 

We call a Linton sketch of the form  th(S) (equivalently,  S  such that
S=th(S)) a Linton theory. 

The extensions S1--->S2, S2--->S4 under [5] are tautological, 
because they are SIGMA-sub-taut cellular (some commutativities 



are omitted in the notations). 

For any colimit diagram  D  in G, we define  PHI[D]^ex,  and  
PHI[D]^un, arrows in Linton[G], to be the elements of SIGMA-sub-

colimit . For the first,  abbreviated  PHI:A--->B, we have

                                              [10]1
It is tautological because: 

                                              [10]2

The Linton theory  th(S ) associated with the sketch  S  contains all 
the equational consequences of the axioms of  S,  together with their 

proofs. Consider, for instance, the sketch  S3, the axiom-system for 
“category”. From the associative law  h(gf)=(hg)f, for composable  

triples (f,g,h), one derives the equalities

i(h(gf))  =  (ih)(gf) = ((ih)g)f , and  
i(h(gf))  = i((hg)f) = (i(hg))f = ((ih)g)f ,

thus  i(h(gf))  = ((ih)g)f  “in two different ways”. 

All this is displayed in the structure of  th(S3). It will use the 
additional graph <4>, ceratin colimits in Graph, and the equalities 

will become equalities of (already parallel)  arrows of the form  

                                       <4>----><1>

3. Batanin sketches

From now on, the category  G  is Glob, the category of globular sets.
The decisive discovery of Michael Batanin's is his description of the 

monad  T  on Glob whose algebras are the strict omega-categories. 
For any omega-graph  G,  T(G), the underlying omega-graph of the 



free omega-category  <G> on G is described by Batanin  by the use 
(countable) set of particular omega-graphs, called here Batanin cells,

or B-cells for short.

For an omega-graph  H, a composite of H (if any) is any non-identity
element  x of  <H> such that for any proper sub-omega-graph  K  of 

H, x is not in <K>, a sub-omega category of <H> : “x uses all of G”.
x  is a unique composite if it is the only composite of  H. The 

abstract definition says that the omega-graph B  is a B-cell  if it has a
unique composite, which we denote as  mu-sub-B. It is obvious that 

B-cells are finite omega graphs. We select a representative of each 
isomorphism class, and by a “B-cell” we always mean the fixed 

representative. The dimension of a B-cell B is the dimension of its 
unique composite,  also equal to the maximum dimension of the 

elements of  the omega-graph B. 

The description of <G>  says that every non-unit element (n-cell, for 
n any integer)  x  of  <G>  is associated uniquely (!) by a pair  (B,xi),

where  B  is a B-cell, an  xi  is a graph-map  xi;B---->G , the 
association given by the equality  <xi>(mu-sub-B) = x, where

<xi> :  <B> –----> <G>

is the canonical map. B is the “type” (“shape”) of  x;  x is the result 

of realizing  B  by the omega-graph map xi. 

A unit-element is given a B-cell B, and a number  k=1,2,...; the pair 
(B,k) will give the k-fold unit (identity) element on the non-unit 

element  x  (x is also regarded as the element given by the pair  
(B,0)). We have that  the set of  n-cells of  <G>  is  in a bijective 

correspondence with the disjoint union



DU of hom(B,G) over all  B-cells with dim(B)<=n

The reason why we are concerned here with the Batanin cells is that,
in Batanin's “operadic” definition of weak omega category, they are  

the “arities” of the operations. In our terminology here this means 
that the operations, in an algebra  M, are all of the form

|M|^B   ------->  |M|-sub-(k) ,

with  k>=dim(B) , where  |M|-sub-(k) is the set of  k-cells of the 

omega-graph  |M|. The restriction to such Batanin-type operations 
seems enough to prevent the algebras from becoming strict higher 

dimensional categories unless one makes explicit identifications to 
force strictness. 

For my present versions of Batanin's definition, the Batanin cells are 

the objects of the scaffolding  P[S]  of  G-sketches  S, objects of 
Linton[G] . 

Let  B  denote the full subcategory of Glob with objects the B-cells. I

note that all morphisms of B are monomorphisms. 

Let us say that a Batanin-sketch (B-sketch) is any Linton sketch  S  
over G = Glob such that the “scaffolding” of S, P[S], is a sub-graph 

of  B. All the examples shown before are B-sketches. In other words:
the category of B-sketches is Linton[B], with B the category of B-

cells. However, note that models of a sketch in Linton[B] will still 
have arbitrary omega-graphs, not just objects of  B.

I introduce two B-sketches,  S-sub-magma, and S-sub-strict.  Both 

are defined to have  scaffolding  P = B :  all Batanin cells and their 
morphisms in Glob. S-sub-magma consists of the primitive 



operations of strict omega-categories, with the domain-and-
codomain laws, but without the other laws.  S-sub-strict is the 

extension of S-sub-magma obtained by adding the rest of the laws of
omega-categories. Of the examples above,  S-sub-2, together with 

the domain-codomain laws shown for S-sub-3, is the first fragment 
(sub-sketch) of S-sub-magma, the part that concerns ordinary 

categories. S-sub-3 is a fragment of S-sub-strict. The details of these 
sketches can be chosen in different ways. (In my paper “The word 

problem for computads” (see my website) I introduced primitive 
operations and laws for strict omega-categories, different from the 

usual ones. ) Only some of the simplest Batanin-cells are necessary 
for the formulations; I added all of them to make the discussion 

simpler

By definition, the category of algebras,  Alg(S-sub-strict), is the 
category of (small) strict omega-categories. Let  T-sub-strict denote  

cc(S-sub-strict), the category-colimit closure (completion) of  S-sub-
strict. T-sub-strict is the Linton-Batanin theory of strict omega 

categories. 

To formulate a fact about T-sub-strict, I use some notation.

The globes are particular B-cells. The globe  gk   (k=0,1,2,...) is the 
shape of the individual k-cell, k=0,1,2,.... . Glob  is the presheaf 

category  Set^((gl)^op), with gl  having objects  (k) = (0), (1), 
(2),...and morphisms  d,c:(k)  –--> (k+1)  satisfying  the globular 

equalities  dd=cd, dc=cc .   gk is the representable functor  

gk = hom(-,(k)) : gl^op ----> Set .

We write  d,c:g(k+1) ----->gk  for the arrows  hom(-,d), hom(-,c).



Proposition Let  B  be any B-cell, k>=dim(B).  Suppose that in the 

category T-sub-strict, we have the diagram

                                            [11] 1 (slides)

The hypothesis means that, in any model (algebra) of  T-sub-strict, 
and any  B-tuple  x:B--->|M|, the  k-cells  delta(x), gamma(x) are 

parallel k-cells:

                                            [11]2

“In omega-categories, all generic diagrams that can commute, will 
commute.”

The proof of the proposition uses, of course, Michael Batanin's work

“ ...”, and also our subsequent analysis (MM and Marek 
Zawadiwski: …), and it goes through an explicit  description of the 

structure of the category T-sub-strict. We may safely say that 
Batanin's (and Tom Leister's) operadic construction of the “theory” 

of weak omega-categories, as well as of related theories such as T-
su-strict, differs from my present one in the fact that I add to their 

operations the coprojections, arrows of the scaffolding P[S]  – with 
sticking to B-cells just as MB and TL do. Indeed, the normal form 

one can prove for arrows in T-sub-strict is that any arrow of the form
gk ----> B  in  T-sub-strict is uniquely factored as  

gk ----------> A --------->B

with  k>=n=dim(A), where the first factor is  mu[A,k] 

“corresponding” to the (n-k)-fold identity on the unique composite  
mu-sub-A, an  n-cell in <A>. For more general arrows



                    C ------->B
 in T-sub-strict, one uses  a “canonical” colimit representation of the 

domain  C  interms of globes. 

Next, I define my version of Batanin's definition of “weak omega-
category”,  in the form of a Linton-theory over  B, the category of B-

cells, denoted  T-sub-B. For a particular set,  SIGMA-sub-B, of 
sketch-axioms, T-sub-B is “the”  (SIGMA-sub-B)-completion of the 

sketch  S-sub-magma

                 T-sub-B        =      (S-sub-magma) < SIGMA-sub-B> 
                                     def

 

For each  B in B, and each integer  k>dim(B), I define an arrow

         PHI[B,k]  :  S1[B,k] ------> S2[B,k] ,

abbreviated  PHI : S1 ---> S2.  S1  and S2 are as follows;  PHI is the 
inclusion:

                                      [12] (slides)

To see the effect of the “axiom” PHI[B,k], assume that the sketch  S  

is PHI[B,k]-injective ( S |= PHI[B,k]).  This means that whenever we
have a pair of co-operations  

                    delta, gamma: gk ----->B

(with arity  B, and vale type  “k-cell”) in  S  which are “parallel”  –--

in particular, in a model  M  of  S, and for any B-tuple  x:B--->  |M|,  
delta(x), gamma(x) are parallel  k-cells in the usual sense –-- , we 



also have a co-operation  alpha   “contracting” delta and gamma;  
thus, in the model  M,

alpha(x) :  delta(x) ----> gamma(x). 

 SIGMA-sub-contr is defined to be the set of all  PHI[B,k]  where  B 

is in B, and k>dim(B). 

Let  SIGMA-sub-B  denote the union of  SIGMA-sub-taut  (defined 
above with an arbitrary base-category  G  in mind, which is now B) 

and SIGMA-sub-contr. Example  S5 above is a fragment of  
SIGMA-sub-B; it introduces the associativity constraint alpha. 

SIGMA-sub-B  =   SIGMA-sub-taut  (union)   SIGMA-sub-contr

Alg(SIGMA-sub-B) is the category of Batanin-weak omega 

categories,  T-sub-B, “the” completion of  SIGMA-sub-B, is the 
Batanin-Linton-theory of the same.

Proposition. There is a unique morphism of sketches

                 T-sub-B  –----->  T-sub-strict

that extends the identity on  S-sub-magma. 

The proof uses the previous proposition, and the well-ordered/ 

recursive nature of the definition of T-sub-B as  a cellular arrow.

Remember that T-sub-B is not unique, even up to isomorphism  – 
just like for Batanin, who has a weakly initial object in a category of 

operads. However, as we said above in a general context, we have 
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