Reflexive polytopes, \textbf{Gorenstein polytopes}, and combinatorial mirror symmetry

Benjamin Nill

U Kentucky 10/04/10
Goals of this talk:

Convince you that (reflexive &) Gorenstein polytopes

1. turn up naturally
2. consist of interesting examples
3. have fascinating and not yet understood properties
Goals of this talk:

Convince you that (reflexive &) Gorenstein polytopes

1. turn up naturally
2. consist of interesting examples
3. have fascinating and not yet understood properties
4. have relations to
 Combinatorics,
Goals of this talk:

Convince you that (reflexive &) Gorenstein polytopes

1. turn up naturally
2. consist of interesting examples
3. have fascinating and not yet understood properties
4. have relations to
 Combinatorics, Algebraic Geometry,
Goals of this talk:

Convince you that (reflexive &) Gorenstein polytopes

1. turn up naturally
2. consist of interesting examples
3. have fascinating and not yet understood properties
4. have relations to

Combinatorics, Algebraic Geometry, Topology,

Statistics
Goals of this talk:

Convince you that (reflexive &) Gorenstein polytopes

1. turn up naturally
2. consist of interesting examples
3. have fascinating and not yet understood properties
4. have relations to

Combinatorics, Algebraic Geometry, Topology, Statistics
I. Reflexive polytopes
Combinatorial polytopes and duality

Combinatorial types of polytopes

Isomorphisms: combinatorially isomorphic face posets
Combinatorial polytopes and duality

Combinatorial types of polytopes

Isomorphisms: combinatorially isomorphic face posets
Realized polytopes and duality

Embedded polytopes: $P \subset \mathbb{R}^d$

Isomorphisms: affine isomorphisms
Realized polytopes and duality

Embedded polytopes: \(P \subset \mathbb{R}^d \)

Isomorphisms: affine isomorphisms

\(P \subset \mathbb{R}^d \) \(d \)-polytope with interior point 0 \(\implies \)

\[
P^* := \{ y \in (\mathbb{R}^d)^* : \langle y, x \rangle \geq -1 \ \forall \ x \in P \}
\]
Lattice polytopes and duality

Lattice polytopes: \(P = \text{conv}(m_1, \ldots, m_k) \) for \(m_i \in \mathbb{Z}^d \)

isomorphisms: affine lattice isomorphisms of \(\mathbb{Z}^d \) (unimodular equivalence)

Definition (Batyrev '94)

A reflexive polytope is a lattice polytope \(P \) with \(0 \in \text{int}(P) \) such that \(P^* \) is also a lattice polytope.
Lattice polytopes and duality

Lattice polytopes: $P = \text{conv}(m_1, \ldots, m_k)$ for $m_i \in \mathbb{Z}^d$

Isomorphisms: affine lattice isomorphisms of \mathbb{Z}^d (unimodular equivalence)

Definition (Batyrev '94)

A reflexive polytope is a lattice polytope P with $0 \in \text{int}(P)$ such that P^* is also a lattice polytope.
Lattice polytopes and duality

Lattice polytopes: \(P = \text{conv}(m_1, \ldots, m_k) \) for \(m_i \in \mathbb{Z}^d \)

Isomorphisms: affine lattice isomorphisms of \(\mathbb{Z}^d \) (unimodular equivalence)

Definition (Batyrev '94)

A **reflexive polytope** is a lattice polytope \(P \) with \(0 \in \text{int}(P) \) such that \(P^* \) is also a lattice polytope.

\(\leadsto \) origin only interior lattice point.
Reflexive polytopes

Facts

1. [Lagarias/Ziegler ’91]: In each dimension only finitely many reflexive polytopes up to lattice isomorphisms.

2. [Haase/Melnikov ’06]: Any lattice polytope is a face of a (higher-dimensional) reflexive polytope.

3. [Kreuzer/Skarke ’98-00]: Tons of them: $d_2^3 = 16, 473,800,776$

4. Even basic questions are open: maximal number of vertices?

$d_2^3 = 6, 14, 36$
Reflexive polytopes

Facts

1. [Lagarias/Ziegler ’91]: In each dimension only finitely many reflexive polytopes up to lattice isomorphisms.

2. [Haase/Melnikov ’06]: Any lattice polytope is a face of a (higher-dimensional) reflexive polytope.
Reflexive polytopes

Facts

1. [Lagarias/Ziegler ’91]: In each dimension only finitely many reflexive polytopes up to lattice isomorphisms.
2. [Haase/Melnikov ’06]: Any lattice polytope is a face of a (higher-dimensional) reflexive polytope.
3. [Kreuzer/Skarke ’98-00]: Tons of them:

\[\begin{array}{c|c|c|c}
\text{d} & 2 & 3 & 4 \\
\# & 16 & 4,319 & 473,800,776 \\
\end{array} \]
Reflexive polytopes

Facts

1. [Lagarias/Ziegler '91]: In each dimension only finitely many reflexive polytopes up to lattice isomorphisms.

2. [Haase/Melnikov '06]: Any lattice polytope is a face of a (higher-dimensional) reflexive polytope.

3. [Kreuzer/Skarke '98-00]: Tons of them:

<table>
<thead>
<tr>
<th>d</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>16</td>
<td>4,319</td>
<td>473,800,776</td>
</tr>
</tbody>
</table>

4. Even basic questions are open:
Reflexive polytopes

Facts

1. [Lagarias/Ziegler '91]: In each dimension only \textit{finitely} many reflexive polytopes up to lattice isomorphisms.

2. [Haase/Melnikov '06]: Any lattice polytope is a \textit{face} of a (higher-dimensional) reflexive polytope.

3. [Kreuzer/Skarke '98-00]: \textit{Tons} of them:

\[
\begin{array}{c|c|c|c}
\text{d} & 2 & 3 & 4 \\
\# & 16 & 4,319 & 473,800,776 \\
\end{array}
\]

4. Even basic questions are open: maximal number of vertices?
Reflexive polytopes

Facts

1. [Lagarias/Ziegler '91]: In each dimension only finitely many reflexive polytopes up to lattice isomorphisms.

2. [Haase/Melnikov '06]: Any lattice polytope is a face of a (higher-dimensional) reflexive polytope.

3. [Kreuzer/Skarke '98-00]: Tons of them:
 \[
 \begin{array}{|c|c|c|c|}
 \hline
 d & 2 & 3 & 4 \\
 \# & 16 & 4,319 & 473,800,776 \\
 \hline
 \end{array}
 \]

4. Even basic questions are open: maximal number of vertices?
 \[
 \begin{array}{|c|c|c|}
 \hline
 d & 2 & 3 & 4 \\
 \text{vertices} \leq & 6 & 14 & 36 \\
 \hline
 \end{array}
 \]
Reflexive polytopes

Let P be a lattice polytope with 0 in its interior.
Reflexive polytopes

Let P be a lattice polytope with 0 in its interior.

Definition

P is reflexive if and only if

- each facet F has lattice distance 1 from the origin,
- each vertex is a primitive lattice point.
Reflexive polytopes

Let P be a lattice polytope with 0 in its interior.

Definition

P is reflexive of **Gorenstein index** 1 if and only if

- each facet F has *lattice distance* 1 from the origin,
- each vertex is a primitive lattice point.
Reflexive polytopes of higher index! (Joint work with A. Kasprzyk)

Let P be a lattice polytope with 0 in its interior.

Definition (Kasprzyk/N. ’10)

P is reflexive of **Gorenstein index** ℓ if and only if

- each facet F has *lattice distance* ℓ from the origin,
- each vertex is a primitive lattice point.
Reflexive polytopes of higher index! (Joint work with A. Kasprzyk)

Let P be a lattice polytope with 0 in its interior.

Definition (Kasprzyk/N. ’10)

P is reflexive of **Gorenstein index** ℓ if and only if
- each facet F has *lattice distance* ℓ from the origin,
- each vertex is a primitive lattice point.

$\Rightarrow \ell P^* \text{ ℓ-reflexive}$
Reflexive polytopes of higher index! (Joint work with A. Kasprzyk)

Let P be a lattice polytope with 0 in its interior.

Definition (Kasprzyk/N. ’10)

P is reflexive of Gorenstein index ℓ if and only if

- each facet F has lattice distance ℓ from the origin,
- each vertex is a primitive lattice point.

\rightsquigarrow

ℓP^* is ℓ-reflexive and $P = \ell(\ell P^*)^*$.

Duality of ℓ-reflexive polytopes!
Examples of ℓ-reflexive polygons!

$l=2$: No!

$l=3$:
Classification of \(\ell \)-reflexive polygons (Joint work with A. Kasprzyk)

Theorem

\(P \) \(\ell \)-reflexive polygon; \(\Lambda \) := \(\langle \partial P \cap \mathbb{Z}^2 \rangle_\mathbb{Z} \) \(\implies \) \(P \) is 1-reflexive w.r.t. \(\Lambda \).
Classification of ℓ-reflexive polygons (Joint work with A. Kasprzyk)

Theorem

P ℓ-reflexive polygon; $\Lambda := \langle \partial P \cap \mathbb{Z}^2 \rangle_{\mathbb{Z}} \implies P$ is 1-reflexive w.r.t. Λ.

Applications

- No ℓ-reflexive polygons for ℓ odd.

Yields fast classification algorithm: ℓ

\begin{align*}
&1, 3, 5, 7, 9, 11, 13, 15, 17, \cdots \\
&1, 13, 29, 1, 61, 81, 1, 113, \cdots
\end{align*}
Classification of \(\ell \)-reflexive polygons (Joint work with A. Kasprzyk)

Theorem

\[P \ \ell \text{-reflexive polygon; } \Lambda := \langle \partial P \cap \mathbb{Z}^2 \rangle_{\mathbb{Z}} \Rightarrow P \text{ is 1-reflexive w.r.t. } \Lambda. \]

Applications

- No \(\ell \)-reflexive polygons for \(\ell \) odd.
- Yields fast classification algorithm:
Classification of ℓ-reflexive polygons (Joint work with A. Kasprzyk)

Theorem

\[P \text{ } \ell\text{-reflexive polygon}; \quad \Lambda := \langle \partial P \cap \mathbb{Z}^2 \rangle_{\mathbb{Z}} \Rightarrow \]

P is 1-reflexive w.r.t. Λ.

Applications

- No ℓ-reflexive polygons for ℓ odd.
- Yields fast classification algorithm:

<table>
<thead>
<tr>
<th>ℓ</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
<th>17</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>$#$</td>
<td>16</td>
<td>1</td>
<td>12</td>
<td>29</td>
<td>1</td>
<td>61</td>
<td>81</td>
<td>1</td>
<td>113</td>
<td>\ldots</td>
</tr>
</tbody>
</table>
The “number 12”

\[
\# \mathcal{P} \cap \mathbb{Z}^2 = 7 \quad \# \mathcal{P} \cap \mathbb{Z}^2 = 5
\]
The "number 12"

\[\# \partial P \cap \mathbb{Z}^2 = 9 \]

\[\# \partial P \cap \mathbb{Z}^2 = 3 \]
The “number 12”

12-Property

P reflexive polygon \implies

$$|\partial P \cap \mathbb{Z}^2| + |\partial P^* \cap \mathbb{Z}^2| = 12.$$
The “number 12” generalizes! (Joint work with A. Kasprzyk)

12-Property

\[P \text{ } \ell \text{-reflexive polygon} \implies \]

\[|\partial P \cap \mathbb{Z}^2| + |\partial P^* \cap \mathbb{Z}^2| = 12. \]
The “number 12” generalizes! (Joint work with A. Kasprzyk)

12-Property

\[P \text{ } \ell\text{-reflexive polygon} \implies |\partial P \cap \mathbb{Z}^2| + |\partial P^* \cap \mathbb{Z}^2| = 12. \]

What else can be generalized?
What about higher dimensions?
What about algebro-geometric implications?
II. Gorenstein polytopes
Definition and duality

Def. [Batyrev/Borisov ’97] A **Gorenstein polytope of codegree** \(r \) is a lattice polytope \(P \) such that \(rP \) is a reflexive polytope (up to lattice translation).
Definition and duality

Let \(C_P := \mathbb{R}_{\geq 0}(P \times 1) \).

Proposition (Batyrev/Borisov '97)

\(P \) is a Gorenstein polytope if and only if

\[(C_P)^* \cong C_Q\]

for some lattice polytope \(Q \).

\(\Rightarrow \) Natural duality of Gorenstein polytopes!
Definition and duality

Let $C_P := \mathbb{R}_{\geq 0}(P \times 1)$.

Proposition (Batyrev/Borisov '97)

P is a Gorenstein polytope if and only if

$$(C_P)^* \cong C_Q$$

for some lattice polytope Q. Then Q is called **dual Gorenstein polytope** P^*.

$$\text{codeg}(P) = \text{codeg}(P^*).$$
Definition and duality

Let $C_P := \mathbb{R}_{\geq 0}(P \times 1)$.

Proposition (Batyrev/Borisov ’97)

P is a Gorenstein polytope if and only if

$$(C_P)^* \cong C_Q$$

for some lattice polytope Q. Then Q is called **dual Gorenstein polytope** P^*.

$$\text{codeg}(P) = \text{codeg}(P^*).$$

∽ Natural duality of Gorenstein polytopes!
Characterization via Commutative Algebra

Facts (see Bruns & Gubeladze, Miller & Sturmfels)

If P is a lattice d-polytope, then $S_P := \mathbb{C}[C_P \cap \mathbb{Z}^{d+1}]$ is a positively graded normal Cohen-Macaulay ring,

$$\omega_{S_P} = \langle x^m : m \in \text{int}(C_P) \cap \mathbb{Z}^{d+1} \rangle.$$

T.f.a.e. P Gorenstein polytope there exists $x \in \text{int}(C_P) \cap \mathbb{Z}^{d+1}$ s.t. $x + C_P \cap \mathbb{Z}^{d+1} = \text{int}(C_P) \cap \mathbb{Z}^{d+1}$.

S_P Gorenstein ring the Hilbert series $H_{S_P}(t)$ satisfies

$$H_{S_P}(t) = (-1)^{d+1} H_{S_P}(t-1).$$
Characterization via Commutative Algebra

Facts (see Bruns & Gubeladze, Miller & Sturmfels)

If P is a lattice d-polytope, then $S_P := \mathbb{C}[C_P \cap \mathbb{Z}^{d+1}]$ is a positively graded normal Cohen-Macaulay ring, and R has a canonical module ω_R:

$$\omega_{S_P} = \langle x^m : m \in \text{int}(C_P) \cap \mathbb{Z}^{d+1} \rangle$$
Characterization via Commutative Algebra

Facts (see Bruns & Gubeladze, Miller & Sturmfels)

If P is a lattice d-polytope, then $S_P := \mathbb{C}[C_P \cap \mathbb{Z}^{d+1}]$ is a positively graded normal Cohen-Macaulay ring, and R has a canonical module ω_R:

$$\omega_{S_P} = \langle x^m : m \in \text{int}(C_P) \cap \mathbb{Z}^{d+1} \rangle$$

T.f.a.e.

- P Gorenstein polytope
Characterization via Commutative Algebra

Facts (see Bruns & Gubeladze, Miller & Sturmfels)

If P is a lattice d-polytope, then $S_P := \mathbb{C}[C_P \cap \mathbb{Z}^{d+1}]$ is a positively graded normal Cohen-Macaulay ring, and R has a canonical module ω_R:

$$\omega_S = \langle x^m : m \in \text{int}(C_P) \cap \mathbb{Z}^{d+1} \rangle$$

T.f.a.e.

- P Gorenstein polytope
- there exists $x \in \text{int}(C_P) \cap \mathbb{Z}^{d+1}$ s.t.

$$x + C_P \cap \mathbb{Z}^{d+1} = \text{int}(C_P) \cap \mathbb{Z}^{d+1}.$$
Characterization via Commutative Algebra

Facts (see Bruns & Gubeladze, Miller & Sturmfels)

If P is a lattice d-polytope, then $S_P := \mathbb{C}[C_P \cap \mathbb{Z}^{d+1}]$ is a positively graded normal Cohen-Macaulay ring, and R has a canonical module ω_R:

$$\omega_{S_P} = \langle x^m : m \in \text{int}(C_P) \cap \mathbb{Z}^{d+1} \rangle$$

T.f.a.e.

- P Gorenstein polytope
- there exists $x \in \text{int}(C_P) \cap \mathbb{Z}^{d+1}$ s.t.
 $$x + C_P \cap \mathbb{Z}^{d+1} = \text{int}(C_P) \cap \mathbb{Z}^{d+1}.$$

- S_P Gorenstein ring
Characterization via Commutative Algebra

Facts (see Bruns & Gubeladze, Miller & Sturmfels)

If P is a lattice d-polytope, then $S_P := \mathbb{C}[C_P \cap \mathbb{Z}^{d+1}]$ is a positively graded normal Cohen-Macaulay ring, and R has a canonical module ω_R:

$$\omega_{S_P} = \langle x^m : m \in \text{int}(C_P) \cap \mathbb{Z}^{d+1} \rangle$$

T.f.a.e.

- P Gorenstein polytope
- there exists $x \in \text{int}(C_P) \cap \mathbb{Z}^{d+1}$ s.t.
 $$x + C_P \cap \mathbb{Z}^{d+1} = \text{int}(C_P) \cap \mathbb{Z}^{d+1}.$$

- S_P Gorenstein ring
- the Hilbert series $H_{S_P}(t)$ satisfies
 $$H_{S_P}(t) = (-1)^{d+1} H_{S_P}(t^{-1}).$$
Characterization via Lattice-Point-Enumeration

P lattice d-polytope.

\[
\sum_{k \geq 0} |C_P \cap (\mathbb{Z}^d \times k)| \ t^k = \frac{h^*(t)}{(1 - t)^{d+1}},
\]

where $h^*(t)$ is a polynomial with nonnegative integer coefficients of degree $\leq d$.
Characterization via Lattice-Point-Enumeration

P lattice d-polytope.

\[
\sum_{k \geq 0} |kP \cap \mathbb{Z}^d| \; t^k = \frac{h^*(t)}{(1 - t)^{d+1}},
\]

where $h^*(t)$ is a polynomial with nonnegative integer coefficients of degree $\leq d$.

Characterization via Lattice-Point-Enumeration

P lattice d-polytope.

\[
\sum_{k \geq 0} |kP \cap \mathbb{Z}^d| t^k = \frac{h^*(t)}{(1 - t)^{d+1}},
\]

where $h^*(t)$ is a polynomial with nonnegative integer coefficients of degree $\leq d$.

Ehrhart theory: $k \mapsto kP \cap \mathbb{Z}^d$ is a polynomial of degree d.
Characterization via Lattice-Point-Enumeration

P lattice d-polytope.

$$\sum_{k \geq 0} |kP \cap \mathbb{Z}^d| t^k = \frac{h^*(t)}{(1 - t)^{d+1}},$$

where $h^*(t)$ is a polynomial with nonnegative integer coefficients of degree $\leq d$.

Def.: The **degree** of P is defined as the degree of its h^*-polynomial.
Characterization via Lattice-Point-Enumeration

P lattice d-polytope.

$$\sum_{k \geq 0} |kP \cap \mathbb{Z}^d| \ t^k = \frac{h^*(t)}{(1 - t)^{d+1}},$$

where $h^*(t)$ is a polynomial with nonnegative integer coefficients of degree $\leq d$.

Def.: The **degree** of P is defined as the degree of its h^*-polynomial.

Def.: The **codegree** of P is the minimal k such that $kP \cap \mathbb{Z}^d \neq \emptyset$.
Characterization via Lattice-Point-Enumeration

P lattice d-polytope.

\[\sum_{k \geq 0} \left| kP \cap \mathbb{Z}^d \right| t^k = \frac{h^*(t)}{(1 - t)^{d+1}}, \]

where $h^*(t)$ is a polynomial with nonnegative integer coefficients of degree $\leq d$.

Def.: The **degree** of P is defined as the degree of its h^*-polynomial.

Def.: The **codegree** of P is the minimal k such that $kP \cap \mathbb{Z}^d \neq \emptyset$.

\[\implies \deg(P) = d + 1 - \text{codeg}(P). \]
Characterization via Lattice-Point-Enumeration

P lattice d-polytope.

$$\sum_{k \geq 0} |kP \cap \mathbb{Z}^d| t^k = \frac{h^*(t)}{(1 - t)^{d+1}},$$

where $h^*(t)$ is a polynomial with nonnegative integer coefficients of degree $\leq d$.

Proposition (Stanley)

T.f.a.e.

- P Gorenstein polytope (of codegree $\text{codeg}(P)$)
- h^*-polynomial of P is symmetric (of degree $\text{deg}(P)$)
Finiteness of Gorenstein polytopes

Observation: Lattice pyramids don’t change the h^*-polynomial.
Finiteness of Gorenstein polytopes

Observation: Lattice pyramids don’t change the h^*-polynomial.

Theorem (Batyrev/N. ’08; Haase/N./Payne ’09; Batyrev/Juny ’09)

There exist only *finitely* many Gorenstein polytopes of degree s that are not lattice pyramids.

$$S, h^*_s = h^*_0 = 1$$
Finiteness of Gorenstein polytopes

Observation: Lattice pyramids don’t change the h^*-polynomial.

Theorem (Batyrev/N. ’08; Haase/N./Payne ’09; Batyrev/Juny ’09)

There exist only finitely many Gorenstein polytopes of degree s that are not lattice pyramids.

<table>
<thead>
<tr>
<th>s</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>1</td>
<td>1</td>
<td>37</td>
</tr>
</tbody>
</table>
Gorenstein polytopes in algebraic and polyhedral combinatorics

- Toric ideals of Gorenstein polytopes are “classical”; “Nice initial complexes on some classical ideals” (Conca/Hosten/Thomas ’06).

Order polytope of a pure poset is Gorenstein (Hibi, Stanley)

Tropically & ordinarily convex polytopes are associated to Gorenstein products of simplices (Joswig/Kulas ’08)
Gorenstein polytopes in algebraic and polyhedral combinatorics

- Toric ideals of Gorenstein polytopes are “classical”; “Nice initial complexes on some classical ideals” (Conca/Hosten/Thomas ’06).
- Order polytope of a pure poset is Gorenstein (Hibi, Stanley)
Gorenstein polytopes in algebraic and polyhedral combinatorics

- Toric ideals of Gorenstein polytopes are “classical”; “Nice initial complexes on some classical ideals” (Conca/Hosten/Thomas ’06).
- Order polytope of a pure poset is Gorenstein (Hibi, Stanley)
- Tropically & ordinarily convex polytopes are associated to Gorenstein products of simplices (Joswig/Kulas ’08)
Gorenstein polytopes in algebraic and polyhedral combinatorics

- Toric ideals of Gorenstein polytopes are “classical”; “Nice initial complexes on some classical ideals” (Conca/Hosten/Thomas ’06).
- Order polytope of a pure poset is Gorenstein (Hibi, Stanley)
- Tropically & ordinarily convex polytopes are associated to Gorenstein products of simplices (Joswig/Kulas ’08)
- ...
'The’ example of a Gorenstein polytope: the Birkhoff polytope

Def.: An $n \times n$ matrix is called **doubly stochastic**, if any entry is ≥ 0 and the row and column sums equal 1.
'The' example of a Gorenstein polytope: the Birkhoff polytope

Def.: An $n \times n$ matrix is called *doubly stochastic*, if any entry is ≥ 0 and the row and column sums equal 1.

$$
\begin{pmatrix}
0.5 & 0.25 & 0.25 \\
0.25 & 0.5 & 0.25 \\
0.25 & 0.25 & 0.5 \\
\end{pmatrix}
$$
'The' example of a Gorenstein polytope: the Birkhoff polytope

Def. An $n \times n$ matrix is called *doubly stochastic*, if any entry is ≥ 0 and the row and column sums equal 1.

$$
\begin{pmatrix}
0.5 & 0.25 & 0.25 \\
0.25 & 0.5 & 0.25 \\
0.25 & 0.25 & 0.5 \\
\end{pmatrix}
$$

Birkhoff-von Neumann theorem

The set of $n \times n$ matrix of *doubly stochastic matrices* is the convex hull of the $n!$ permutation matrices:
'The' example of a Gorenstein polytope: the Birkhoff polytope

Def.: An $n \times n$ matrix is called *doubly stochastic*, if any entry is ≥ 0 and the row and column sums equal 1.

$$
\begin{pmatrix}
0.5 & 0.25 & 0.25 \\
0.25 & 0.5 & 0.25 \\
0.25 & 0.25 & 0.5 \\
\end{pmatrix}
$$

Birkhoff-von Neumann theorem

The set of $n \times n$ matrix of *doubly stochastic matrices* is the convex hull of the $n!$ permutation matrices: the **Birkhoff polytope** B_n.
The example of a Gorenstein polytope: the Birkhoff polytope

Facts

\[B_n \subseteq \mathbb{R}^{n^2} \] is a lattice polytope

- dimension: \((n - 1)^2\)
'The' example of a Gorenstein polytope: the Birkhoff polytope

Facts

\[B_n \subseteq \mathbb{R}^{n^2} \] is a lattice polytope

- dimension: \((n-1)^2\)
- number of facets: \(n^2\) (inequalities: \(x_{i,j} \geq 0\))
'The' example of a Gorenstein polytope: the Birkhoff polytope

Facts

\[B_n \subseteq \mathbb{R}^{n^2} \] is a lattice polytope

- dimension: \((n - 1)^2\)
- number of facets: \(n^2\) (inequalities: \(x_{i,j} \geq 0\))

A point in \(kB_n \cap \mathbb{Z}^{n^2}\) is \(n \times n\)-matrix with entries in \(\{0, \ldots, k\}\) and row and column sum \(k\): **semi-magic square with magic number** \(k\).

\[\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix} \]

Lattice distance of \(x\) equals 1 from any facet \(\Rightarrow B_n\) is reflexive.
'The' example of a Gorenstein polytope: the Birkhoff polytope

Facts

\[B_n \subseteq \mathbb{R}^{n^2} \] is a lattice polytope

- **Dimension:** \((n - 1)^2\)
- **Number of facets:** \(n^2\) (inequalities: \(x_{i,j} \geq 0\))

A point in \(kB_n \cap \mathbb{Z}^{n^2}\) is \(n \times n\)-matrix with entries in \(\{0, \ldots, n\}\) and row and column sum \(k\): **semi-magic square with magic number** \(k\).

A semi-magic square is in the interior of \(kB_n\) if and only if any entry is \(\neq 0\).
'The' example of a Gorenstein polytope: the Birkhoff polytope

Facts

\(B_n \subseteq \mathbb{R}^{n^2} \) is a lattice polytope
- dimension: \((n - 1)^2\)
- number of facets: \(n^2\) (inequalities: \(x_{i,j} \geq 0\))

A point in \(kB_n \cap \mathbb{Z}^{n^2} \) is \(n \times n\)-matrix with entries in \(\{0, \ldots, n\}\) and row and column sum \(k\): **semi-magic square with magic number** \(k\).

A semi-magic square is in the interior of \(kB_n\) if and only if any entry is \(\neq 0\).

Semi-magic square \(x\) in interior with smallest magic number:

\[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{pmatrix}
\]
'The' example of a Gorenstein polytope: the Birkhoff polytope

Facts

\(B_n \subseteq \mathbb{R}^{n^2} \) is a lattice polytope
- dimension: \((n - 1)^2\)
- number of facets: \(n^2\) (inequalities: \(x_{i,j} \geq 0\))

A point in \(kB_n \cap \mathbb{Z}^{n^2} \) is \(n \times n\)-matrix with entries in \(\{0, \ldots, n\}\) and row and column sum \(k\): semi-magic square with magic number \(k\).

A semi-magic square is in the interior of \(kB_n\) if and only if any entry is \(\neq 0\).

Semi-magic square \(x\) in interior with smallest magic number:
\[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{pmatrix}
\]

Lattice distance of \(x\) equals 1 from any facet \(\implies nB_n\) is reflexive.
'The' example of a Gorenstein polytope: the Birkhoff polytope

Facts

\(B_n \subseteq \mathbb{R}^{n^2} \) is a **Gorenstein** polytope of codegree \(n \)

- dimension: \((n - 1)^2\)
- number of facets: \(n^2\) (inequalities: \(x_{i,j} \geq 0\))

A point in \(kB_n \cap \mathbb{Z}^{n^2} \) is \(n \times n\)-matrix with entries in \(\{0, \ldots, n\}\) and row and column sum \(k\): **semi-magic square with magic number** \(k\).

A semi-magic square is in the interior of \(kB_n\) if and only if any entry is \(\neq 0\).

Semi-magic square \(x\) in interior with smallest magic number:

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{bmatrix}
\]

Lattice distance of \(x\) equals 1 from any facet \(\implies nB_n\) is reflexive.
Athanasiadis’ proof of Stanley’s conjecture

Def.: The coefficient vector \((h_0^*, \ldots, h_s^*)\) is unimodal, if

\[h_0^* \leq h_1^* \leq \cdots \geq \cdots \geq h_s^*. \]

Theorem (Athanasiadis ’03)

The \(h^*\)-vector of the Birkhoff polytope is unimodal.
Athanasiadis’ proof of Stanley’s conjecture

Def.: The coefficient vector \((h_0^*, \ldots, h_s^*)\) is **unimodal**, if

\[h_0^* \leq h_1^* \leq \cdots \geq \cdots \geq h_s^*. \]

Theorem (Athanasiadis ’03)

The \(h^*\)-vector of the Birkhoff polytope is unimodal.

Theorem (Bruns-Roemer ’05)

The \(h^*\)-vector of a Gorenstein polytope \(P\) is unimodal
Athanasiadis’ proof of Stanley’s conjecture

Def.: The coefficient vector \((h^*_0, \ldots, h^*_s)\) is **unimodal**, if

\[
h^*_0 \leq h^*_1 \leq \cdots \geq \cdots \geq h^*_s.
\]

Theorem (Athanasiadis ’03)

The \(h^*\)-vector of the Birkhoff polytope is unimodal.

Theorem (Bruns-Roemer ’05)

The \(h^*\)-vector of a Gorenstein polytope \(P\) is unimodal, if \(P\) admits a regular unimodular triangulation.
Def.: The coefficient vector \((h_0^*, \ldots, h_s^*)\) is unimodal, if
\[
h_0^* \leq h_1^* \leq \cdots \geq \cdots \geq h_s^*.
\]

Theorem (Athanasiadis '03)
The \(h^*\)-vector of the Birkhoff polytope is unimodal.

Theorem (Bruns-Roemer '05)
The \(h^*\)-vector of a Gorenstein polytope \(P\) is unimodal, if \(P\) admits a regular unimodular triangulation.

Proof relies on the notion of special simplices.
Special simplices

Let P be a Gorenstein d-polytope of codegree r.

Proposition (Batyrev/N. '07)

S is a *special* $(r - 1)$-simplex, if the vertices of S are r affinely independent lattice points of P such that

- any facet of P contains precisely $r - 1$ vertices of S,
- S is not contained in the boundary of P,
- the sum of the vertices of S sum up to unique interior lattice point x of rP.

Then S is unimodular.

Example: B_n contains special $(n - 1)$-simplex: permutation matrices corresponding to elements in cyclic subgroup generated by $(1 2 \cdots n)$.
Special simplices

Let P be a Gorenstein d-polytope of codegree r.

Proposition (Batyrev/N. ’07)

S is a **special** $(r - 1)$-simplex, if the vertices of S are r affinely independent lattice points of P such that

- any facet of P contains precisely $r - 1$ vertices of S, or
Special simplices

Let P be a Gorenstein d-polytope of codegree r.

Proposition (Batyrev/N. '07)

S is a **special** $(r - 1)$-simplex, if the vertices of S are r affinely independent lattice points of P such that

- any facet of P contains precisely $r - 1$ vertices of S, or
- S is not contained in the boundary of P, or
Special simplices

Let P be a Gorenstein d-polytope of codegree r.

Proposition (Batyrev/N. ’07)

S is a special $(r - 1)$-simplex, if the vertices of S are r affinely independent lattice points of P such that

- any facet of P contains precisely $r - 1$ vertices of S, or
- S is not contained in the boundary of P, or
- the sum of the vertices of S sum up to unique interior lattice point x of rP.

Example: B_n contains special $(n - 1)$-simplex: permutation matrices corresponding to elements in cyclic subgroup generated by $(1 \ 2 \ \cdots \ n)$.
Special simplices

Let P be a Gorenstein d-polytope of codegree r.

Proposition (Batyrev/N. ’07)

S is a special $(r - 1)$-simplex, if the vertices of S are r affinely independent lattice points of P such that

- any facet of P contains precisely $r - 1$ vertices of S, or
- S is not contained in the boundary of P, or
- the sum of the vertices of S sum up to unique interior lattice point x of rP.

Then S is unimodular.

Example: B_n contains special $(n - 1)$-simplex: permutation matrices corresponding to elements in cyclic subgroup generated by $(1\ 2 \cdots\ n)$.
Special simplices

Let P be a Gorenstein d-polytope of codegree r.

Proposition (Batyrev/N. ’07)

S is a **special** $(r - 1)$-simplex, if the vertices of S are r affinely independent lattice points of P such that

- any facet of P contains precisely $r - 1$ vertices of S, or
- S is not contained in the boundary of P, or
- the sum of the vertices of S sum up to unique interior lattice point x of rP.

Then S is unimodular.

Example: B_n contains special $(n - 1)$-simplex: permutation matrices corresponding to elements in cyclic subgroup generated by $(1\ 2\ \cdots\ n)$.
Special simplices

Proposition (Bruns/Roemer ’05; Batyrev/N.’07)

Projecting P along a special $(r - 1)$-simplex yields a reflexive polytope with the same h^*-polynomial.
Main open question
Main open question

Theorem (Bruns-Roemer ’05)

The h^*-vector of a Gorenstein polytope P is unimodal, if P admits a regular unimodular triangulation.

Theorem (Mustata/Payne ’05)

There exist reflexive 6-polytopes with non-unimodal h^*-vector.

Def.: P is normal, if $C_P \cap \mathbb{Z}^d_{+}$ is generated by lattice points in P.

Question: P normal Gorenstein polytope $\Rightarrow h^*P$ unimodal ?
Main open question

Theorem (Bruns-Roemer '05)
The h^*-vector of a Gorenstein polytope P is unimodal, if P admits a regular unimodular triangulation.

Theorem (Mustata/Payne '05)
There exist reflexive 6-polytopes with non-unimodal h^*-vector.

Def.: \mathcal{P} is normal, if $\mathcal{C}\mathcal{P} \cap \mathbb{Z}^d$ is generated by lattice points in \mathcal{P}. Question: \mathcal{P} normal Gorenstein polytope $\implies h^*P$ unimodal ?
Main open question

Theorem (Bruns-Roemer '05)
The h^*-vector of a Gorenstein polytope P is unimodal, if P admits a regular unimodular triangulation.

Theorem (Mustata/Payne '05)
There exist reflexive 6-polytopes with non-unimodal h^*-vector.

Def.: P is normal, if $C_P \cap \mathbb{Z}^{d+1}$ is generated by lattice points in P.
Main open question

Theorem (Bruns-Roemer ’05)

The h^*-vector of a Gorenstein polytope P is unimodal, if P admits a regular unimodular triangulation.

Theorem (Mustata/Payne ’05)

There exist reflexive 6-polytopes with *non*-unimodal h^*-vector.

Def.: P is **normal**, if $C_P \cap \mathbb{Z}^{d+1}$ is generated by lattice points in P.

Question: P normal Gorenstein polytope $\implies h^*_P$ unimodal?
III. Combinatorial mirror symmetry
Philosophy

Gorenstein polytopes are combinatorial models of Calabi-Yau varieties.
Mirror symmetry

Calabi-Yau n-fold, if its canonical divisor is trivial.
Mirror symmetry

A Calabi-Yau n-fold, if its canonical divisor is trivial.

Example: Let P be reflexive polygon. For generic coefficients $c_{(a,b)} \in \mathbb{C}^*$

$$Y := \{(x, y) \in (\mathbb{C}^*)^2 : \sum_{(a,b) \in P \cap \mathbb{Z}^2} c_{(a,b)} x^a y^b = 0\}$$
Mirror symmetry

A **Calabi-Yau** n-fold, if its canonical divisor is trivial.

Example: Let P be reflexive polygon. For generic coefficients $c_{(a,b)} \in \mathbb{C}^*$

$$Y := \{(x, y) \in (\mathbb{C}^*)^2 : \sum_{(a,b) \in P \cap \mathbb{Z}^2} c_{(a,b)} x^a y^b = 0\}$$

is an elliptic curve (Calabi-Yau 1-fold).
Mirror symmetry

String Theory proposes mirror pairs of CY-n-folds Y, Y^*!

Topological mirror symmetry test

$$h^{p,q}(Y) = h^{p,n-q}(Y^*)$$

for Hodge numbers $h^{p,q} = h^q(Y, \Omega_Y^p)$.

$n=3$:

[Diagram of a complex network or graph]
Batyrev’s construction

Theorem (Batyrev ’94)

P, P^* dual reflexive polytopes \leadsto Calabi-Yau hypersurfaces Y_P, Y_{P^*} in Gorenstein toric Fano varieties whose stringy Hodge numbers satisfy the topological mirror symmetry test.
Batyrev-Borisov-construction

Theorem (Batyrev/Borisov ’96)

Dual *nef-partitions* \leadsto Calabi-Yau *complete intersections* in Gorenstein toric Fano varieties whose stringy Hodge numbers satisfy the topological mirror symmetry test.
Nef-partitions

Families of lattice polytopes \leadsto complete intersections Y.
Nef-partitions

Families of lattice polytopes \(\leadsto \) complete intersections \(Y \).

\(Y \) is Calabi-Yau, if \(Q_1 + \cdots + Q_r \) is reflexive.
Nef-partitions

Families of lattice polytopes \leadsto complete intersections Y.

Y is Calabi-Yau, if $Q_1 + \cdots + Q_r$ is reflexive.

Q_1, \ldots, Q_r nef-partition, if $0 \in Q_1, \ldots, 0 \in Q_r$.

\begin{center}
\begin{tikzpicture}
 \fill[gray!20] (0,0) -- (1,1) -- (2,0) -- cycle;
 \fill[gray!20] (3,0) -- (4,1) -- (5,0) -- cycle;
 \fill[gray!20] (0,2) -- (1,3) -- (2,2) -- cycle;
 \fill[gray!20] (3,2) -- (4,3) -- (5,2) -- cycle;
\end{tikzpicture}
\end{center}
Gorenstein polytopes enter the picture

\[Q_1 + \cdots + Q_r \text{ reflexive} \]

\[\leadsto \]

Cayley-polytope is Gorenstein of codegree \(r \)!
Gorenstein polytopes enter the picture

Prop. (Batyrev/N. ’08)

P Gorenstein polytope of codegree r:

Cayley structures of length r on P \iff Special $(r-1)$-simplices of P^*
Gorenstein polytopes enter the picture

Prop. (Batyrev/N. ’08)

P Gorenstein polytope of codegree r:

Cayley structures of length r on P \longleftrightarrow Special $(r - 1)$-simplices of P^*
Duality of nef-partitions

\[P \] Cayley polytope of nef-partition
Duality of nef-partitions

\[P \text{ Cayley polytope of nef-partition} \]

\[\iff \]

\[P \text{ and } P^* \text{ have special } (r - 1)\text{-simplex} \]
Duality of nef-partitions

P Cayley polytope of nef-partition

\iff

P and P^* have special $(r-1)$-simplex

\iff

P^* Cayley polytope of nef-partition
The stringy E-polynomial of Y

Def.: Stringy E-polynomial:

$$E_{st}(Y; u, v) := \sum_{p, q} (-1)^{p+q} h_{st}^{p,q}(Y) \ u^p \ v^q.$$
The stringy E-polynomial of Y

Def. Stringy E-polynomial:

$$E_{st}(Y; u, v) := \sum_{p,q} (-1)^{p+q} h_{st}^{p,q}(Y) \ u^p \ v^q.$$

Theorem (Batyrev/Borisov ’96; Borisov/Mavlyutov ’03)

Given Gorenstein polytope P as Cayley polytope of length r and CY complete intersection Y:

$$E_{st}(Y; u, v) = (uv)^{-r} \ \sum_{\emptyset \leq F \leq P} (-u)^{\dim(F)+1} \tilde{S}(F, u^{-1}v) \tilde{S}(F^*, uv).$$
The stringy E-polynomial of Y

Def.: Stringy E-polynomial:

$$E_{st}(Y; u, v) := \sum_{p,q} (-1)^{p+q} h_{st}^{p,q}(Y) \ u^p \ v^q.$$

Theorem (Batyrev/Borisov ’96; Borisov/Mavlyutov ’03)

Given Gorenstein polytope P as Cayley polytope of length r and CY complete intersection Y:

$$E_{st}(Y; u, v) = (uv)^{-r} \sum_{\emptyset \leq F \leq \Delta} (-u)^{\dim(F)+1} \tilde{S}(F, u^{-1}v) \tilde{S}(F^*, uv)$$

where

$$\tilde{S}(F, t) := \sum_{\emptyset \leq G \leq F} (-1)^{\dim(F)-\dim(G)} h^*_G(t) \ g_{[G,F]}(t).$$
The stringy E-polynomial of Y

Def.: Stringy E-polynomial:

$$E_{st}(Y; u, v) := \sum_{p, q} (-1)^{p+q} h_{st}^{p,q}(Y) \ u^p \ v^q.$$

Theorem (Batyrev/Borisov ’96; Borisov/Mavlyutov ’03)

Given Gorenstein polytope P as Cayley polytope of length r and CY complete intersection Y:

$$E_{st}(Y; u, v) = (uv)^{-r} \sum_{\emptyset \leq F \leq \Delta} (-u)^{\dim(F)+1} \tilde{S}(F, u^{-1}v) \tilde{S}(F^*, uv)$$

where

$$\tilde{S}(F, t) := \sum_{\emptyset \leq G \leq F} (-1)^{\dim(F)-\dim(G)} h^*_G(t) \ g_{[G,F]}(t) \in \mathbb{Z}_{\geq 0}[t].$$
The stringy E-polynomial of P

Definition (Batyrev/N. ’08)

P Gorenstein d-polytope of codegree r. Then define

$$E_{st}(P; u, v) = (uv)^{-r} \sum_{\emptyset \leq F \leq \Delta} (-u)^{\dim(F)+1} \tilde{S}(F, u^{-1}v) \tilde{S}(F^*, uv).$$

Let us call $n := d + 1 - 2r$ the Calabi-Yau dimension of P.

Beautiful facts (Batyrev/Borisov ’96; Borisov/Mavlyutov ’03)

- **”Hodge duality”:** $E_{st}(P; u, v) = E_{st}(P; v, u)$.
- **”Poincare duality”:** $E_{st}(P; u, v) = (uv)^n E_{st}(P; u-1, v-1)$.
- **”Mirror symmetry”:** $E_{st}(P; u, v) = (-u)^n E_{st}(P^*; u^{-1}, v^{-1})$.

Benjamin Nill (U Georgia)

Gorenstein polytopes
The stringy E-polynomial of P

Definition (Batyrev/N. '08)

P Gorenstein d-polytope of codegree r. Then define

$$E_{st}(P; u, v) = (uv)^{-r} \sum_{\emptyset \leq F \leq \Delta} (-u)^{\dim(F)+1} \tilde{S}(F, u^{-1}v) \tilde{S}(F^*, uv).$$

Let us call $n := d + 1 - 2r$ the **Calabi-Yau dimension** of P.
The stringy E-polynomial of P

Definition (Batyrev/N. ’08)

P Gorenstein d-polytope of codegree r. Then define

$$E_{st}(P; u, v) = (uv)^{-r} \sum_{\emptyset \leq F \leq \Delta} (-u)^{\dim(F)+1} \tilde{S}(F, u^{-1}v) \tilde{S}(F^*, uv).$$

Let us call $n := d + 1 - 2r$ the **Calabi-Yau dimension** of P.

Beautiful facts (Batyrev/Borisov ’96; Borisov/Mavlyutov ’03)

1. ”Hodge duality”: $E_{st}(P; u, v) = E_{st}(P; v, u)$.
2. ”Poincare duality”: $E_{st}(P; u, v) = (uv)^n E_{st}(P; u - 1, v - 1)$.
3. ”Mirror symmetry”: $E_{st}(P; u, v) = (-u)^n E_{st}(P^*; u - 1, v)$.
The stringy E-polynomial of P

Definition (Batyrev/N. ’08)

P Gorenstein d-polytope of codegree r. Then define

\[
E_{st}(P; u, v) = (uv)^{-r} \sum_{\emptyset \leq F \leq \Delta} (-u)^{\dim(F)+1} \tilde{S}(F, u^{-1}v) \tilde{S}(F^*, uv).
\]

A priori just a Laurent polynomial!
The stringy E-polynomial of P

Definition (Batyrev/N. ’08)

A Gorenstein d-polytope of codegree r. Then define

$$E_{st}(P; u, v) = (uv)^{-r} \sum_{\emptyset \leq F \leq \Delta} (-u)^{\dim(F)+1} \tilde{S}(F, u^{-1}v) \tilde{S}(F^*, uv).$$

A priori just a Laurent polynomial!
The stringy E-polynomial of P

Theorem (N./Schepers '10)

$E_{st}(P; u, v)$ is a polynomial.

Proof relies on

Open: Is the degree of $E_{st}(P; u, v)$ \(\neq 2\)?
The stringy E-polynomial of P

Theorem (N./Schepers ’10)

$E_{st}(P; u, v)$ is a polynomial. Therefore, there are $h_{st}^{p, q} \in \mathbb{N}$ s.t.

$$E_{st}(P; u, v) = \sum_{p, q} (-1)^{p+q} h_{st}^{p, q}(P) \ u^p \ v^q.$$
The stringy E-polynomial of P

Theorem (N./Schepers '10)

$E_{st}(P; u, ν)$ is a polynomial. Therefore, there are $h_{st}^{p,q} \in \mathbb{N}$ s.t.

$$E_{st}(P; u, ν) = \sum_{p,q} (-1)^{p+q} h_{st}^{p,q}(P) \ u^p \ ν^q.$$

Proof relies on

$$\deg(F) \leq \deg(P)$$
The stringy E-polynomial of P

Theorem (N./Schepers '10)

$E_{st}(P; u, v)$ is a polynomial. Therefore, there are $h_{st}^{p,q} \in \mathbb{N}$ s.t.

$$E_{st}(P; u, v) = \sum_{p,q} (-1)^{p+q} h_{st}^{p,q}(P) \ u^p \ v^q.$$

Proof relies on

$$\text{deg}(F) + \text{deg}(F^*) \leq \text{deg}(P)$$
The stringy E-polynomial of P

Theorem (N./Schepers ’10)

$E_{st}(P; u, v)$ is a polynomial. Therefore, there are $h_{st}^{p,q} \in \mathbb{N}$ s.t.

$$E_{st}(P; u, v) = \sum_{p,q} (-1)^{p+q} h_{st}^{p,q}(P) \ u^p \ v^q.$$

Proof relies on

$$\deg(F) + \deg(F^*) \leq \deg(P)$$

Open: Is the degree of $E_{st}(P; u, v) \neq 0$ equal to $2n$?
Finally, the main challenge

Conjecture (Batyrev/N. ’08)
There exist only *finitely* many stringy E-polynomials of Gorenstein polytopes with fixed Calabi-Yau dimension n and fixed constant coefficient.

Would imply the finiteness of Hodge numbers of irreducible CY-manifolds constructed via the Batyrev-Borisov-procedure.

Question (Yau): Only finitely many topological types of irreducible CY-3-folds?
Finally, the main challenge

Conjecture (Batyrev/N. ’08)

There exist only *finitely* many stringy E-polynomials of Gorenstein polytopes with fixed Calabi-Yau dimension n and fixed constant coefficient.

Would imply the finiteness of Hodge numbers of irreducible CY-manifolds constructed via the Batyrev-Borisov-procedure.
Finally, the main challenge

Conjecture (Batyrev/N. '08)

There exist only \textit{finitely} many stringy E-polynomials of Gorenstein polytopes with fixed Calabi-Yau dimension n and fixed constant coefficient.

Would imply the finiteness of Hodge numbers of irreducible CY-manifolds constructed via the Batyrev-Borisov-procedure.

Question (Yau):

Only finitely many topological types of irreducible CY-3-folds?