Polyhedral Adjunction Theory

Benjamin Nill
with Sandra Di Rocco, Christian Haase, and Andreas Paffenholz

AMS New Orleans 2011
I. Classical Adjunction Theory
Polarized varieties

Polarized variety

\((X, L)\) where

- \(X\) is a normal projective variety of dimension \(n\)
- \(L\) ample line bundle on \(X\)
Polarized varieties

Polarized variety

\((X, L)\) where

- \(X\) is a normal projective variety of dimension \(n\)
- \(L\) ample line bundle on \(X\)

Adjunction theory = study of adjoint bundles \(tL + K_X\)
Polarized varieties

Polarized variety

(X, L) where

- X is a normal projective variety of dimension n
- L ample line bundle on X

Adjunction theory = study of adjoint bundles $L + c \ K_X$
Polarized varieties

Polarized variety

(X, L) where

- X is a normal projective variety of dimension n
- L ample line bundle on X

Adjunction theory = study of adjoint bundles $L + c K_X$

Minimal assumption

X is \mathbb{Q}-Gorenstein, i.e., K_X is \mathbb{Q}-Cartier.
Two algebro-geometric invariants

The unnormalized spectral value μ

$$\mu = \sup\{ c \in \mathbb{R} : L + c \ K_X \ \text{big} \}^{-1}$$

The nef-value τ

$$\tau = \sup\{ c \in \mathbb{R} : L + c \ K_X \ \text{nef} \}^{-1}$$
Two algebro-geometric invariants

The unnormalized spectral value μ

$$\mu = \sup \{ c \in \mathbb{R} : L + c \ K_X \big \}^{-1}$$

$-\mu$ is also called *Kodaira energy*.

The nef-value τ

$$\tau = \sup \{ c \in \mathbb{R} : L + c \ K_X \text{ nef} \}^{-1}$$
Two algebro-geometric invariants

The unnormalized spectral value μ

$$\mu = \sup\{c \in \mathbb{R} : L + c \ K_X \ 	ext{big}\}^{-1}$$

$-\mu$ is also called *Kodaira energy*.

The nef-value τ

$$\tau = \sup\{c \in \mathbb{R} : L + c \ K_X \ 	ext{nef}\}^{-1}$$

$$\mu \leq \tau$$
Two algebro-geometric invariants
Two algebro-geometric invariants
Two algebro-geometric invariants

\[L + \frac{1}{t} K_X \]
Results and conjectures

Most work on polarized manifolds:

\[\tau \leq n + 1, \]

with equality only for \((\mathbb{P}^n, O(1))\).
Results and conjectures

Most work on polarized *manifolds*:

\[\tau \leq n + 1, \]

with equality only for \((\mathbb{P}^n, O(1))\).

Fujita, Beltrametti/Sommese, et. al: Classification for \(\tau > n - 3\).
Results and conjectures

Most work on polarized manifolds:

\[\tau \leq n + 1, \]

with equality only for \((\mathbb{P}^n, O(1))\).

Fujita, Beltrametti/Sommese, et. al: Classification for \(\tau > n - 3\).

Conjectures on polarized manifolds

- **Q-normality conjecture:**

\[\mu > \frac{n + 1}{2} \implies \mu = \tau \]
Results and conjectures

Most work on polarized manifolds:

\[\tau \leq n + 1, \]

with equality only for \((\mathbb{P}^n, O(1)) \).

Fujita, Beltrametti/Sommese, et. al: Classification for \(\tau > n - 3 \).

Conjectures on polarized manifolds

\begin{itemize}
 \item \textbf{\(\mathbb{Q} \)-normality conjecture:}
 \[\mu > \frac{n + 1}{2} \implies \mu = \tau \]
 \item \textbf{Spectrum conjecture:}
 For \(\varepsilon > 0 \), there are only finitely many \(\mu > \varepsilon \).
\end{itemize}
II. Polyhedral Adjunction Theory
The adjoint polytope

Study initiated by [Dickenstein, Di Rocco, Piene ’09].
The adjoint polytope

Study initiated by [Dickenstein, Di Rocco, Piene ’09].

Let $P \subseteq \mathbb{R}^n$ be n-dimensional lattice polytope

Polyhedral adjunction: “Move facets simultaneously inwards”
The adjoint polytope

Study initiated by [Dickenstein, Di Rocco, Piene ’09].

Let \(P \subseteq \mathbb{R}^n \) be \(n \)-dimensional lattice polytope

Adjunct polytope

\(P^{(c)} \) is the set of points in \(P \) having lattice distance \(\geq c \) from each facet.
The adjoint polytope

Study initiated by [Dickenstein, Di Rocco, Piene ’09].

Let \(P \subseteq \mathbb{R}^n \) be \(n \)-dimensional lattice polytope

Adjoint polytope

\(P^{(c)} \) is the set of points in \(P \) having lattice distance \(\geq c \) from each facet.

If \(P \) is given by \(m \) facet-inequalities

\[
P = \{ x \in \mathbb{R}^n : A_i x \geq b_i \text{ for } i = 1, \ldots, m \}
\]

where \(A_i \in \mathbb{Z}^n \) primitive and \(b_i \in \mathbb{Z} \)
The adjoint polytope

Study initiated by [Dickenstein, Di Rocco, Piene '09].

Let \(P \subseteq \mathbb{R}^n \) be \(n \)-dimensional lattice polytope

Adjoint polytope

\(P(c) \) is the set of points in \(P \) having lattice distance \(\geq c \) from each facet.

If \(P \) is given by \(m \) facet-inequalities

\[
P = \{ x \in \mathbb{R}^n : A_i x \geq b_i \text{ for } i = 1, \ldots, m \}
\]

where \(A_i \in \mathbb{Z}^n \) primitive and \(b_i \in \mathbb{Z} \), then

\[
P(c) = \{ x \in \mathbb{R}^n : A_i x \geq b_i + c \text{ for } i = 1, \ldots, m \}.
\]
The adjoint polytope

Study initiated by [Dickenstein, Di Rocco, Piene ’09].

Let \(P \subseteq \mathbb{R}^n \) be \(n \)-dimensional lattice polytope

Adjoint polytope

\(P(c) \) is the set of points in \(P \) having lattice distance \(\geq c \) from each facet.

If \(P \) is given by \(m \) facet-inequalities

\[
P = \{ x \in \mathbb{R}^n : A_i x \geq b_i \text{ for } i = 1, \ldots, m \}
\]

where \(A_i \in \mathbb{Z}^n \) primitive and \(b_i \in \mathbb{Z} \), then

\[
P(c) = \{ x \in \mathbb{R}^n : A_i x \geq b_i + c \text{ for } i = 1, \ldots, m \}.
\]

Polyhedral adjunction: ”Move facets simultaneously inwards”
The adjoint polytope

\[P = P^{(0)} \]
The adjoint polytope

\[P(0.1) \]
The adjoint polytope

\(P(0.2) \)
The adjoint polytope

$P(0.3)$
The adjoint polytope

\[P(0.4) \]
The adjoint polytope

\[P(0.5) \]
The adjoint polytope

$P(0.6)$
The adjoint polytope

\[P(0.7) \]
The adjoint polytope

\[P(0.8) \]
The adjoint polytope

$P(0.9)$
The adjoint polytope

\[P^{(1)} \text{ point} \]
The adjoint polytope

\[P(c) = \emptyset \text{ for } c > 1 \]
The adjoint polytope

\[P = P^{(0)} \]
The adjoint polytope

\[P(0.2) \]
The adjoint polytope

\[P^{(0.4)} \]
The adjoint polytope

\[P(0.6) \]
The adjoint polytope

\[P(0.8) \]
The adjoint polytope

$P^{(1)}$ combinatorics changes!
The adjoint polytope

\[P(1.2) \]
The adjoint polytope

$P(1.4)$
The adjoint polytope

\[P(1.6) \]
The adjoint polytope

\[\mathcal{P}(1.8) \]
The adjoint polytope

$P^{(2)}$ interval
The adjoint polytope

\[P(c) = \emptyset \text{ for } c > 2 \]
μ, τ for polarized toric varieties

(X_P, L_P) polarized toric variety.
\(\mu, \tau \) for polarized toric varieties

\((X_P, L_P)\) polarized toric variety. Assume \(X_P\) \(\mathbb{Q}\)-Gorenstein. Then

\[P^{(c)} \cap \mathbb{Z}^n \iff \text{global sections of } \quad L_P + cK_{X_P} \]
\(\mu, \tau \) for polarized toric varieties

\((X_P, L_P)\) polarized toric variety. Assume \(X_P\) \(\mathbb{Q}\)-Gorenstein. Then

\[(\text{multiples of}) \ P^{(c)} \cap \mathbb{Z}^n \iff \text{global sections of (multiples of)} \ L_P + cK_{X_P}\]
μ, τ for polarized toric varieties

\((X_P, L_P)\) polarized toric variety. Assume \(X_P\) \(\mathbb{Q}\)-Gorenstein. Then

\[(\text{multiples of}) \ P^{(c)} \cap \mathbb{Z}^n \iff \text{global sections of (multiples of)} \ L_P + cK_{X_P}\]

\[\mu = (\sup\{c \in \mathbb{R} : L_P + cK_{X_P} \text{ big}\})^{-1}\]
\(\mu, \tau \) for polarized toric varieties

\((X_P, L_P)\) polarized toric variety. Assume \(X_P\) \(\mathbb{Q}\)-Gorenstein. Then

\[(\text{multiples of})\ P^{(c)} \cap \mathbb{Z}^n \iff \text{global sections of (multiples of)} \ L_P + cK_{X_P}\]

\(\mu \)

\[
\mu = \left(\sup \{ c > 0 : P^{(c)} \text{ full-dimensional} \} \right)^{-1}
\]
μ, τ for polarized toric varieties

(X_P, L_P) polarized toric variety. Assume $X_P \mathbb{Q}$-Gorenstein. Then

(multiples of) $P^{(c)} \cap \mathbb{Z}^n \iff$ global sections of (multiples of) $L_P + cK_{X_P}$

$$\mu = \left(\sup \{ c > 0 : P^{(c)} \neq \emptyset \} \right)^{-1}$$
\(\mu, \tau \) for polarized toric varieties

\((X_P, L_P)\) polarized toric variety. Assume \(X_P\) \(\mathbb{Q}\)-Gorenstein. Then

(multiples of) \(P^{(c)} \cap \mathbb{Z}^n \leftrightarrow \) global sections of (multiples of) \(L_P + cK_{X_P} \)

\(\mu\)

\[\mu = \left(\sup \{ c > 0 : P^{(c)} \neq \emptyset \} \right)^{-1} \]

\(\nu\)

\[\tau = \left(\sup \{ c \in \mathbb{R} : L_P + c K_{X_P} \text{ nef} \} \right)^{-1} \]
μ, τ for polarized toric varieties

\((X_P, L_P)\) polarized toric variety. Assume \(X_P \mathbb{Q}\)-Gorenstein. Then

\((\text{multiples of})\ P^{(c)} \cap \mathbb{Z}^n \iff \text{global sections of } (\text{multiples of})\ L_P + cK_{X_P}

\[\mu = \left(\sup\{c > 0 : P^{(c)} \neq \emptyset\}\right)^{-1}\]

\[\tau = \left(\sup\{c > 0 : P^{(c)} \text{ combinatorially equal to } P\}\right)^{-1}\]
Two polyhedral invariants

Definition makes sense for **general** lattice polytopes!

Definition

- $\mu_P := \left(\sup\{ c > 0 : P^{(c)} \neq \emptyset \} \right)^{-1}$
- $\tau_P := \left(\sup\{ c > 0 : P^{(c)} \text{ combinatorially equal to } P \} \right)^{-1}$
Two polyhedral invariants

Definition makes sense for **general** lattice polytopes!

Definition

- \(\mu_P := (\sup\{ c > 0 : P^{(c)} \neq \emptyset \})^{-1} \)
- \(\tau_P := (\sup\{ c > 0 : P^{(c)} \text{ combinatorially equal to } P \})^{-1} \), with \((\sup\{\})^{-1} := \infty \).
Two polyhedral invariants

\[P = P^{(0)} \]
Two polyhedral invariants

$p(0.2)$
Two polyhedral invariants

\[p(0.4) \]
Two polyhedral invariants

$P(0.6)$
Two polyhedral invariants

\[p(0.8) \]
Two polyhedral invariants

\[P^{(1)} \text{ combinatorics changes} \implies \tau_P = 1^{-1} = 1 \]
Two polyhedral invariants

$p^{(1.2)}$
Two polyhedral invariants

$p(1.4)$
Two polyhedral invariants

\(p(1.6) \)
Two polyhedral invariants

$p(1.8)$
Two polyhedral invariants

\[p^{(2)} \text{ point} \implies \mu_P = 2^{-1} = \frac{1}{2} \]
Two polyhedral invariants

\[P = P^{(0)} \text{ combinatorics changes immediately} \implies \tau = \infty \]
Two polyhedral invariants

$p(0.05)$
Two polyhedral invariants

\(P(0.1) \)
Two polyhedral invariants

$p(0.15)$
Two polyhedral invariants

\[p(0.2) \]
Two polyhedral invariants

\[p(0.25) \]
Two polyhedral invariants

\(p(0.3) \)
Two polyhedral invariants

\(p(0.35) \)
Two polyhedral invariants

\[p(0.4) \]
Two polyhedral invariants

\(p(0.45) \)
Two polyhedral invariants

\[P^{(0.5)} \text{ polygon } \implies \mu_P = 0.5^{-1} = 2 \]
Two polyhedral invariants

Criterion

\[\tau_P < \infty \]
Two polyhedral invariants

Criterion

\[\tau_P < \infty \iff X_P \text{ is } \mathbb{Q}\text{-Gorenstein} \]

(i.e., generators of each maximal cone lie in affine hyperplane)
Two polyhedral invariants

Criterion

\[\tau_P < \infty \iff X_P \text{ is } \mathbb{Q}\text{-Gorenstein} \]
(i.e., generators of each maximal cone lie in affine hyperplane)

Polyhedral approach allows to deal with \(\mu_P \) even if \(\tau_P = \infty \).
Two polyhedral invariants

Criterion

\[\tau_P < \infty \iff X_P \text{ is } \mathbb{Q}\text{-Gorenstein} \]
(i.e., generators of each maximal cone lie in affine hyperplane)

Polyhedral approach allows to deal with \(\mu_P \) even if \(\tau_P = \infty \).

Polyhedral adjunction theory

\[\supset \]

Adjunction theory of polarized toric varieties
III. The Main Theorem
Large μ_P implies P flat

Theorem [Di Rocco, Haase, N., Paffenholz ’11]

$$\mu_P \geq \frac{n + 2}{2} \implies P \text{ has lattice width one.}$$
Large μ_P implies P flat

Theorem [Di Rocco, Haase, N., Paffenholz ’11]

$\mu_P \geq \frac{n + 2}{2} \iff P$ has lattice width one.

“If you cannot move the facets of P very far, then P has to be flat.”
Large \(\mu_P \) implies \(P \) flat

Theorem [Di Rocco, Haase, N., Paffenholz ’11]

\[
\mu_P \geq \frac{n + 2}{2} \implies P \text{ has lattice width one.}
\]

“If you cannot move the facets of \(P \) very far, then \(P \) has to be flat.”

Theorem is sharp: \((\mathbb{P}^n, O(2)), \mu = \frac{n+1}{2}, \text{ lattice width} > 1\)
Large μ_P implies P flat

Theorem [Di Rocco, Haase, N., Paffenholz ’11]

$$\mu_P \geq \frac{n + 2}{2} \implies P \text{ has lattice width one.}$$

“If you cannot move the facets of P very far, then P has to be flat.”

Theorem is sharp: $(\mathbb{P}^n, O(2)), \mu = \frac{n+1}{2}$, lattice width > 1
Relation to Ehrhart theory

[Dickenstein, Di Rocco, Piene ’09]: μ_P is called \mathbb{Q}-codegree of P.

$\text{codeg}(P) := \min\{k \in \mathbb{N} : \text{int}(kP) \cap \mathbb{Z}^n \neq \emptyset\}$

$\text{codeg}(P) \leq n + 1$, with equality only for unimodular n-simplex.

Proof follows from $\text{int}(kP) \cap \mathbb{Z}^n \subset (kP)_{\frac{1}{k}}$.
Relation to Ehrhart theory

[Dickenstein, Di Rocco, Piene ’09]: μ_P is called \mathbb{Q}-codegree of P.

Codegree

\[
\text{codeg}(P) := \min\{k \in \mathbb{N} : \text{int}(kP) \cap \mathbb{Z}^n \neq \emptyset\}
\]
Relation to Ehrhart theory

[Dickenstein, Di Rocco, Piene ’09]: μ_P is called \mathbb{Q}-codegree of P.

Codegree

$$\text{codeg}(P) := \min \{ k \in \mathbb{N} : \text{int}(kP) \cap \mathbb{Z}^n \neq \emptyset \}$$

$$\text{codeg}(P) \leq n + 1,$$

with equality only for unimodular n-simplex.
Relation to Ehrhart theory

[Dickenstein, Di Rocco, Piene ’09]: \(\mu_P \) is called \(\mathbb{Q} \)-codegree of \(P \).

Codegree

\[
\text{codeg}(P) := \min\{k \in \mathbb{N} : \text{int}(kP) \cap \mathbb{Z}^n \neq \emptyset\}
\]

\[
\text{codeg}(P) \leq n + 1,
\]

with equality only for unimodular \(n \)-simplex.

Relation to \(\mathbb{Q} \)-codegree

\[
\mu_P \leq \text{codeg}(P)
\]
Relation to Ehrhart theory

[Dickenstein, Di Rocco, Piene ’09]: \(\mu_P \) is called \textbf{Q-codegree} of \(P \).

\begin{itemize}
 \item \textbf{Codegree}

 \[
 \text{codeg}(P) := \min \{ k \in \mathbb{N} : \text{int}(kP) \cap \mathbb{Z}^n \neq \emptyset \}
 \]

 \[
 \text{codeg}(P) \leq n + 1,
 \]

 with equality only for unimodular \(n \)-simplex.

 \item \textbf{Relation to Q-codegree}

 \[
 \mu_P \leq \text{codeg}(P)
 \]

 Proof follows from

 \[
 \text{int}(kP) \cap \mathbb{Z}^n \subset (kP)^{(1)} = kP^{(\frac{1}{k})}.
 \]
\end{itemize}
Relation to Ehrhart theory

Cayley conjecture [Batyrev, N. ’07]

\[\text{codeg}(P) > \frac{n+2}{2} \implies P \text{ lattice width one.} \]
Relation to Ehrhart theory

Cayley conjecture [Batyrev, N. ’07]

\[\text{codeg}(P) > \frac{n+2}{2} \implies P \text{ lattice width one.} \]

Proofs for

- [Haase, N., Payne ’09] general \(P \), but weaker bound
Relation to Ehrhart theory

Cayley conjecture [Batyrev, N. ’07]

\[\text{codeg}(P) > \frac{n+2}{2} \implies P \text{ lattice width one.} \]

Proofs for

- [Haase, N., Payne ’09] general \(P \), but weaker bound
- [Dickenstein, Di Rocco, Piene ’09] \(X_P \) smooth with \(\mu = \tau \)
Relation to Ehrhart theory

Cayley conjecture [Batyrev, N. ’07]

\[\text{codeg}(P) > \frac{n+2}{2} \implies P \text{ lattice width one.} \]

Proofs for

- [Haase, N., Payne ’09] general \(P \), but weaker bound
- [Dickenstein, Di Rocco, Piene ’09] \(X_P \) smooth with \(\mu = \tau \)
- [Dickenstein, N. ’10] \(X_P \) smooth
Relation to Ehrhart theory

Cayley conjecture [Batyrev, N. ’07]

\[\text{codeg}(P) > \frac{n+2}{2} \implies P \text{ lattice width one.} \]

Proofs for

- [Haase, N., Payne ’09] general \(P \), but weaker bound
- [Dickenstein, Di Rocco, Piene ’09] \(X_P \) smooth with \(\mu = \tau \)
- [Dickenstein, N. ’10] \(X_P \) smooth
- [Main theorem] \(X_P \) Gorenstein and \(\mu = \tau \)
Relation to Ehrhart theory

Cayley conjecture [Batyrev, N. ’07]
\[
\text{codeg}(P) > \frac{n+2}{2} \implies P \text{ lattice width one.}
\]

Proofs for
- [Haase, N., Payne ’09] general P, but weaker bound
- [Dickenstein, Di Rocco, Piene ’09] X_P smooth with $\mu = \tau$
- [Dickenstein, N. ’10] X_P smooth
- [Main theorem] X_P Gorenstein and $\mu = \tau$

Philosophy: \mathbb{Q}-codegree is more tractable than codegree!
Relation to dual defective polarized manifolds

Dual defectivity

(X, L) is **dual defective**, if X^* is not a hypersurface.

[Beltrametti, Fania, Sommese '92] $\Rightarrow \mu = \tau > n + 2/2$.

[>Dickenstein, N. '10

Let X_P be smooth. $\mu_P > n + 2/2 \iff X_P$ is dual defective.

$\mu_P > n + 2/2 \Rightarrow \mu_P = \tau_P$.

This is (nearly) the Q-normality conjecture!
Relation to dual defective polarized manifolds

Dual defectivity

(X, L) is **dual defective**, if X^* is not a hypersurface.

[Beltrametti, Fania, Sommese '92] $\implies \mu = \tau > \frac{n + 2}{2}$.

This is (nearly) the Q-normality conjecture!
Relation to dual defective polarized manifolds

Dual defectivity

(X, L) is **dual defective**, if X^* is not a hypersurface.

[Beltrametti, Fania, Sommese ’92] \implies

\[\mu = \tau > \frac{n + 2}{2}. \]

[Dickenstein, N. ’10]

Let X_P be smooth.

\[\mu_P > \frac{n + 2}{2} \iff X_P \text{ dual defective.} \]
Relation to dual defective polarized manifolds

Dual defectivity

(X, L) is **dual defective**, if X^* is not a hypersurface.

[Beltrametti, Fania, Sommese ’92] \implies

\[\mu = \tau > \frac{n + 2}{2}. \]

[Dickenstein, N. ’10]

Let X_P be smooth.

\[\mu_P > \frac{n + 2}{2} \iff X_P \text{ dual defective}. \]

\[\mu_P > \frac{n + 2}{2} \implies \mu_P = \tau_P. \]

This is (nearly) the \mathbb{Q}-normality conjecture!
Relation to dual defective polarized manifolds

What about the singular situation?

\[\mu_P > n + 2 \implies X_P \text{ dual defective?} \]

Main theorem shows that this may be true!

\[\text{[Curran/Cattani'07, Esterov'08]} \]

\[X_P \text{ dual defective} = \implies P \text{ lattice width one.} \]

Main conjecture

\[\text{codeg}(P) > n + 2 \implies X_P \text{ dual defective.} \]
Relation to dual defective polarized manifolds

What about the singular situation?

Question

\[\mu_P > \frac{n + 2}{2} \implies X_P \text{ dual defective?} \]
Relation to dual defective polarized manifolds

What about the singular situation?

Question

\[\mu_P > \frac{n+2}{2} \implies X_P \text{ dual defective?} \]

Main theorem shows that this may be true!

[Curran/Cattani’07, Esterov’08]

\[X_P \text{ dual defective} \implies P \text{ lattice width one.} \]
Relation to dual defective polarized manifolds

What about the singular situation?

Question

$$\mu_P > \frac{n+2}{2} \implies X_P \text{ dual defective?}$$

Main theorem shows that this may be true!

[Curran/Cattani’07, Esterov’08]

$$X_P \text{ dual defective} \implies P \text{ lattice width one.}$$

Main conjecture

$$\text{codeg}(P) > \frac{n+2}{2} \implies X_P \text{ dual defective.}$$
Proof sketch

Let $\mu_P \geq \frac{n+2}{2}$.
Proof sketch

Let $\mu_P \geq \frac{n+2}{2}$.

1. The core of P: $P\left(\frac{1}{\mu}\right)$ is lower-dimensional.
Proof sketch

Let $\mu_P \geq \frac{n+2}{2}$.

1. The core of P: $P(\frac{1}{\mu})$ is lower-dimensional. Projecting along the core non-decreases μ.

2. Look at big facets of P that define the core.

Let $C \subset (\mathbb{R}^{n+1})^*$ be cone spanned by the big primitive normals.

3. Tricky part: in C the point $(0, 1)$ is a non-trivial sum of lattice points.

[Batyrev, N. '07] P has lattice width one.

Do methods also help to attack the Spectrum Conjecture?

Benjamin Nill (U Georgia)
Proof sketch

Let \(\mu_P \geq \frac{n+2}{2} \).

1. The core of \(P \): \(P(\frac{1}{\mu}) \) is lower-dimensional. Projecting along the core non-decreases \(\mu \).

\(\leadsto \) may assume core is a point.
Proof sketch

Let $\mu_P \geq \frac{n+2}{2}$.

1. **The core of P: $P(\frac{1}{\mu})$ is lower-dimensional.** Projecting along the core **non-decreases** μ.
 \Rightarrow may assume core is a point.

2. **Look at big facets of P that define the core.**
Proof sketch

Let $\mu_P \geq \frac{n+2}{2}$.

1. The core of P: $P(\frac{1}{\mu})$ is lower-dimensional. Projecting along the core non-decreases μ. \rightsquigarrow may assume core is a point.

2. Look at big facets of P that define the core.
 Let $C \subset (\mathbb{R}^{n+1})^*$ be cone spanned by the big primitive normals.

[Batyrev, N. '07] P has lattice width one.
Do methods also help to attack the Spectrum Conjecture?
Proof sketch

Let $\mu_P \geq \frac{n+2}{2}$.

1. The core of P: $P(\frac{1}{\mu})$ is lower-dimensional. Projecting along the core non-decreases μ. \Rightarrow we may assume core is a point.

2. Look at big facets of P that define the core. Let $C \subset (\mathbb{R}^{n+1})^*$ be cone spanned by the big primitive normals. *Tricky part:* in C the point $(0, 1)$ is a non-trivial sum of lattice points.

[Batyrev, N. '07] P has lattice width one. Do methods also help to attack the Spectrum Conjecture?

Benjamin Nill (U Georgia)
Proof sketch

Let $\mu_P \geq \frac{n+2}{2}$.

1. The core of P: $P(\frac{1}{\mu})$ is lower-dimensional. Projecting along the core non-decreases μ. \Rightarrow may assume core is a point.

2. Look at big facets of P that define the core. Let $C \subset (\mathbb{R}^{n+1})^*$ be cone spanned by the big primitive normals. *Tricky part*: in C the point $(0,1)$ is a non-trivial sum of lattice points.

3. [Batyrev, N. ’07] P has lattice width one.
Proof sketch

Let $\mu_P \geq \frac{n+2}{2}$.

1. The core of P: $P\left(\frac{1}{\mu}\right)$ is lower-dimensional. Projecting along the core non-decreases μ. \Rightarrow may assume core is a point.

2. Look at big facets of P that define the core. Let $C \subset (\mathbb{R}^{n+1})^*$ be cone spanned by the big primitive normals. Tricky part: in C the point $(0, 1)$ is a non-trivial sum of lattice points.

3. [Batyrev, N. ’07] P has lattice width one.

Do methods also help to attack the Spectrum Conjecture?