

Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle

Fast-food, square magic and polyhedra.

Benjamin Nill (& Christian Haase) Research Group Lattice Polytopes - FU Berlin

IMA Minneapolis, October 2, 2007

Chicken McNuggets

Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle

How many ways are there to order 200 Chicken McNuggets? (Available: 6, 9, 20.)

$$= t^{10} , n^{20}t , sn^{6}t^{7} , s^{2}n^{12}t^{4} s^{3}n^{18}t , s^{4}n^{4}t^{7} , s^{5}n^{10}t^{4} , s^{6}n^{16}t s^{7}n^{2}t^{7} , s^{8}n^{8}t^{4} , s^{9}n^{14}t , s^{10}t^{7} s^{11}n^{6}t^{4} , s^{12}n^{12}t , s^{14}n^{4}t^{4} , s^{15}n^{10}t s^{17}n^{2}t^{4} , s^{18}n^{8}t , s^{20}t^{4} , s^{21}n^{6}t s^{24}n^{4}t , s^{27}n^{2}t , s^{30}t$$

... twenty three possibilities.

Exercise. Determine the largest impossible order (Frobenius number).

On planet Qkargogg they have Value Menus with 12'223, 12'224, 36'674, 61'119, and 85'569 Chicken McNuggets each.

Chicken McNuggets

Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle

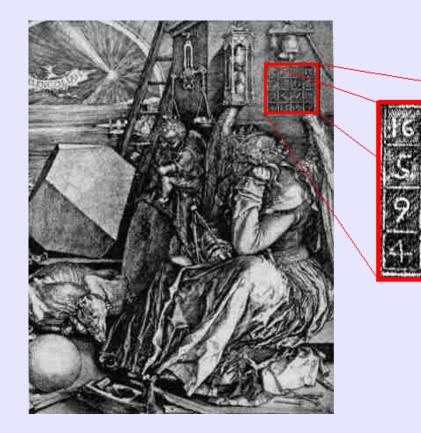
How many ways are there to order 89'643'482 Chicken McNuggets?

 $12223x_1 + 12224x_2 + 36674x_3 + 61119x_4 + 85569x_5 = 89643482$

How many NON-NEGATIVE, INTEGRAL solutions?

Chicken McNuggets
Square magic
Polyhedra
The art of bookkeeping
The magic unravelled
Barvinok's algorithm
Closing the circle

2. Square magic



A magic square is a matrix with all row sums, column sums and diagonal sums equal to the magic constant.

Chicken McNuggets Square magic Polyhedra The art of bookkeeping The magic unravelled Barvinok's algorithm Closing the circle $\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{bmatrix}$

Γ	1	30	41	54	23	12	63	36
	47	52	7	28	57	38	17	14
	21	10	61	34	3	32	43	56
	59	40	19	16	45	50	5	26
	42	53	2	29	64	35	24	11
	8	27	48	51	18	13	58	37
	62	33	22	9	44	55	4	31
	20	15	60	39	6	25	46	49

Exercise. Determine the magic constant, if all entries are different.

$$\left[\begin{array}{cccc} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & x_9 \end{array}\right]$$

Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle

 $x_1 + x_2 + x_3 = \text{mc} \ x_4 + x_5 + x_6 = \text{mc} \ x_7 + x_8 + x_9 = \text{mc}$ $x_1 + x_4 + x_7 = \text{mc} \ x_2 + x_5 + x_8 = \text{mc} \ x_3 + x_6 + x_9 = \text{mc}$ $x_1 + x_5 + x_9 = \text{mc} \ x_3 + x_5 + x_7 = \text{mc}$

How many NON-NEGATIVE, INTEGRAL solutions?

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle

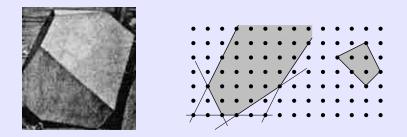
Square magic

Polyhedra

3. Polyhedra

3.1. Definition

The set of (real) solutions to finitely many linear (in)equalities is a **polyhedron**. The convex hull of finitely many points is a **polytope**.



Theorem. bounded polyhedron = polytope

Lattice points in \mathbb{R}^n are elements in the lattice \mathbb{Z}^n .

3.2. Polytope of Sudokus

Chicken McNuggets

Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle

5	8	4	1	7	3	2	9	6
6	9	3	5	4	2	7	1	8
7	1	2	8	6	9	5	3	4
4	5	8	7	2	1	9	6	3
1	3	9	6	5	4	8	2	7
2	7	6	9	3	8	4	5	1
8	2	5	3	1	7	6	4	9
3	6	7	4	9	5	1	8	2
9	4	1	2	8	6	3	7	5

Counting number of Sudokus = counting lattice points in a polytope?!

Square magic

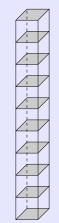
Polyhedra

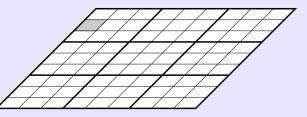
The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle





Polytope in $\mathbb{R}^{9\times9\times9}$ given by :

- Any entry between 0 and 1.
- Sum over each tower equals 1.
- Sum over each floor of row/column/square equals 1.

Square magic

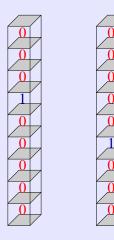
Polyhedra

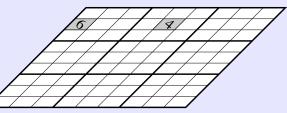
The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle





Polytope in $\mathbb{R}^{9\times9\times9}$ given by :

- Any entry between 0 and 1.
- Sum over each tower equals 1.
- Sum over each floor of row/column/square equals 1.

Square magic

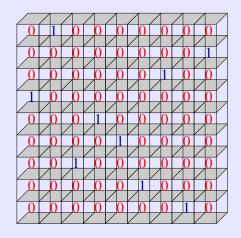
Polyhedra

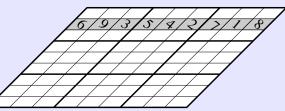
The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle





Polytope in $\mathbb{R}^{9\times9\times9}$ given by :

- Any entry between 0 and 1.
- Sum over each tower equals 1.
- Sum over each floor of row/column/square equals 1.

Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle

3.3. Ehrhart polynomials

Theorem. [Ehrhart 1967]

Let ${\cal P}$ be a polytope whose vertices have rational coordinates. Define for a natural number k

L(k) := number of lattice points in kP.

Then $k \mapsto L(k)$ is a **quasi-polynomial** (of period N), i.e., it becomes polynomial on the set of numbers with the same remainder modulo N.

Example:

The number of 4×4 magic squares with magic constant c equals

$$\left(\begin{array}{c} \frac{1}{480}c^7 + \frac{7}{240}c^6 + \frac{89}{480}c^5 + \frac{11}{16}c^4 + \frac{49}{30}c^3 + \frac{38}{15}c^2 + \frac{71}{30}c + 1 \\ \frac{1}{480}c^7 + \frac{7}{240}c^6 + \frac{89}{480}c^5 + \frac{11}{16}c^4 + \frac{779}{4800}c^3 + \frac{593}{240}c^2 + \frac{1051}{480}c + \frac{13}{16} \end{array} \right)$$
 if c is odd.

Chicken	McNuggets

Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle

3.4. Other applications

Counting lattice points in polyhedra

turns up in

- graph theory/integer linear programming (colorings and flows)
- statistics (contingency tables)
- representation theory (Kostka and Littlewood-Richardson coefficients, saturation conjecture)
- algebraic geometry (global sections, Todd classes)
- string theory (stringy Hodge numbers)

4. The art of bookkeeping

Throughout all polyhedra are given by *rational* inequalities.

4.1. Why rational functions are nice

List all lattice points in the polyhedron [0, 3].

• 0,1,2,3

- $g_{[0,3]} = 1 + x + x^2 + x^3$
- $g_{[0,3]} = \frac{1-x^4}{1-x}$

Chicken McNuggets

Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle

List all lattice points in the polyhedron [0, 10000].

• 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,2 • $1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^{10} + x^{11} + g_{[0,1000]} = \frac{1 - x^{10001}}{1 - x}$

emenen menuggets
Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

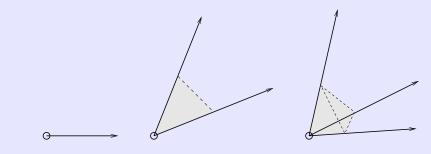
Closing the circle

List all lattice points in the polyhedron [0, 10000].

- 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,2 • $1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^{10} + x^{11} + g_{[0,10000]} = \frac{1 - x^{10001}}{1 - x}$
- ... in the polyhedron $[0,\infty)$

• $g_{[0,\infty)} = \frac{1}{1-x}$

4.2. Why simple cones are *simple*Simple cones in dimension 1,2,3:



Square magic Polyhedra

Chicken McNuggets

The art of bookkeeping

The magic unravelled

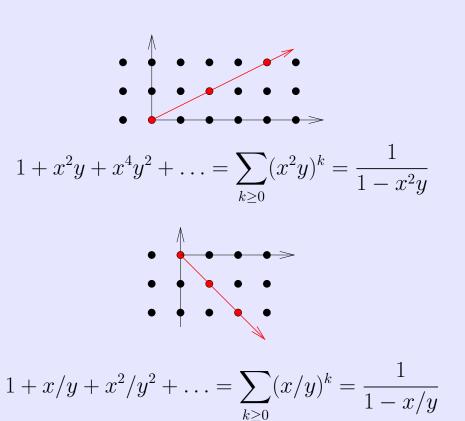
Barvinok's algorithm

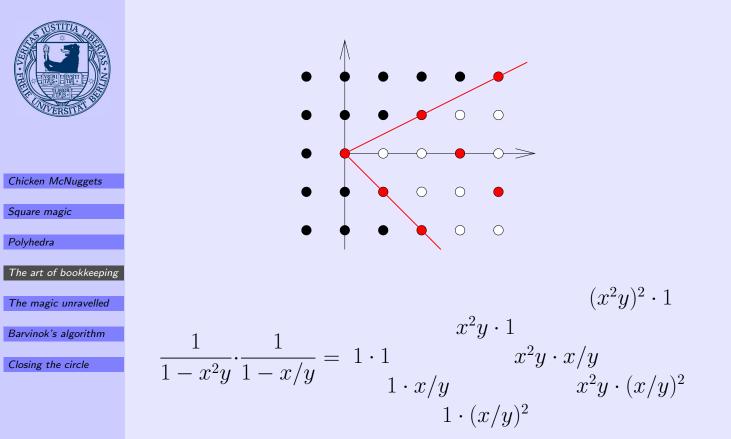
Closing the circle

How to enumerate lattice points?



Barvinok's algorithm



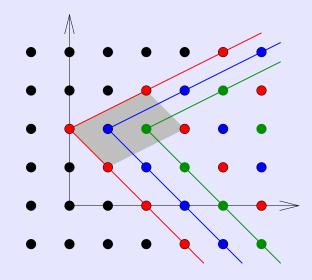


Chicken McNuggets	
Square magic	
Polyhedra	
The art of bookkeeping	
The magic unravelled	

Barvinok's algorithm

USTIT

Closing the circle



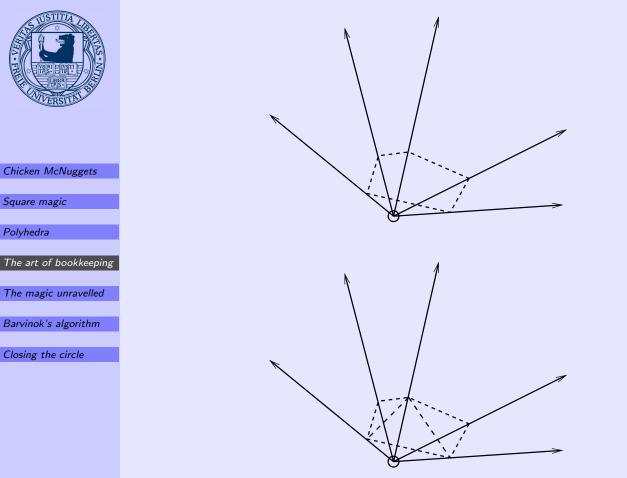
$$\frac{y^2 + xy^2 + x^2y^2}{(1 - x/y)(1 - x^2y)}$$

$$C$$
 a simple cone in $\mathbb{R}^n \quad \Rightarrow$

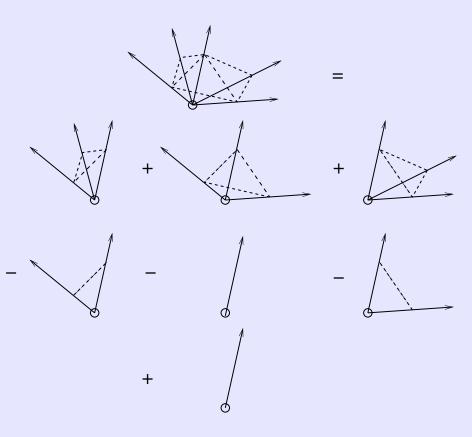
$$g_C = \sum_{x \in C \cap \mathbb{Z}^n} x$$

rational function of this form.

4.3. Cones triangulate into simple ones



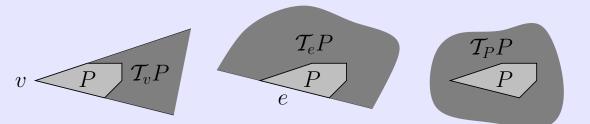
Chicken McNuggets
Chicken McNuggets
Chicken magic
Chicken magic
Chicken magic
Closing the circle



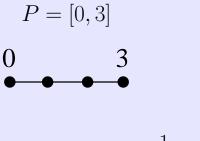
 $C \text{ cone } \Rightarrow g_C \text{ rational function}!$

Chicken McNuggets
Square magic
Polyhedra
The art of bookkeeping
The magic unravelled
Barvinok's algorithm
Closing the circle

4.4. So, what about polytopes? For a face F of a polytope P, define the tangent cone $\mathcal{T}_F P = \{f + x \in \mathbb{R}^d : f \in F \text{ and } f + \epsilon x \in P \text{ for some } \epsilon > 0\}$

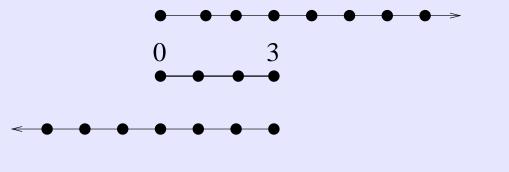


Our favourite example:



$$g_P = x^0 + x^1 + x^2 + x^3 = \frac{1 - x^4}{1 - x}$$

Look at the tangent cones:



 $\frac{\overline{1-x}}{x^3}$ $\frac{x^3}{1-1/x}$

$$g_{\mathcal{T}_0 P} = x^0 + x^1 + x^2 + x^3 + x^4 + x^5 + \dots =$$

$$g_{\mathcal{T}_3 P} = \dots + x^{-2} + x^{-1} + x^0 + x^1 + x^2 + x^3 =$$

Square magic Polyhedra

The art of bookkeeping

Chicken McNuggets

The magic unravelled

Barvinok's algorithm

A magic sum:

Chicken McNuggets
Square magic
Polyhedra
The art of bookkeeping
The magic unravelled

Barvinok's algorithm

$$g_{T_0P} = \frac{1}{1-x} + g_{T_3P} = \frac{x^3}{1-1/x} + g_{P} = \frac{1-x^4}{1-x}$$

Theorem. [Brion 1988] *P* polytope with rational vertex coordinates

$$\Rightarrow \quad g_P = \sum_{v \; ext{vertex of } P} g_{\mathcal{T}_v P}.$$

Chicken McNuggets

Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle

In particular, g_P is a rational function.

Theorem. [Brianchon 1837, Gram 1874] $g_P = \sum_v g_{\mathcal{T}_v P} + \sum_F (-1)^{\dim F} g_{\mathcal{T}_F P}$

where F are faces of P with $\dim F > 0$.

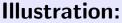
Square magic

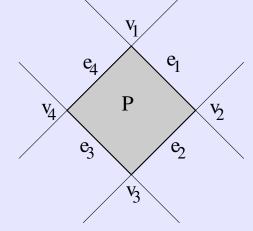
Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm





$$g_P = \sum_{i=1}^4 g_{\mathcal{T}_{v_i}P} - \sum_{j=1}^4 g_{\mathcal{T}_{e_j}P} + g_{\mathcal{T}_PP}$$

The magic trick:

Chicken McNuggets

Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle

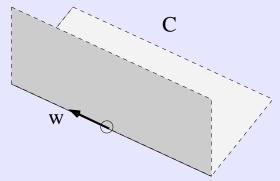
Claim:

C cone containing a line \Rightarrow $g_C = 0$ (as a rational function).

Corollary:

F is a face of positive dimension $\Rightarrow g_{\mathcal{T}_F P} = 0.$

Thus, Brion's theorem follows from Brianchon-Gram.



Proof of claim: Exists lattice point *w*:

w + C = C.

$$\Rightarrow x^w g_C = g_C$$

$$\Rightarrow (1-x^w)g_C = 0.$$

$$\Rightarrow g_C = 0,$$

since rational function $f \neq 0$ times polynomial $p \neq 0$ is rational function $f \cdot p \neq 0$.

Chicken McNuggets

Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle

6. Barvinok's algorithm

6.1. Our algorithm so far

Given a linear (in-)equality description of polytope P in \mathbb{R}^n .

- 1. Calculate vertices v.
- 2. Calculate $T_v P$.
- 3. Triangulate $T_v P$ into simple cones C_i .
- 4. Calculate rational function g_{C_i} .
- 5. Calculate rational function $g_{\mathcal{T}_v P}$.
- 6. Calculate rational function g_P by Brion's theorem.
- 7. Evaluate rational function

$$g_P(1,\ldots,1) = \sum_{x \in P \cap \mathbb{Z}^n} 1$$

to get number of lattice points in P.

Chicken McNuggets	
Square magic	
Polyhedra	
The art of bookkeeping	
	
The magic unravelled	
Barvinok's algorithm	

Closing the circle

Fix the dimension n. Given P with input size α . Bit input size: $\log(\alpha)$.

Goal: Enumeration complexity polynomial in $log(\alpha)$.

	0.2. Analyzing the algorithm
Chicken McNuggets	1. Calculate vertices v - polynomial
Square magic	2. Calculate $\mathcal{T}_v P$ - polynomial
Polyhedra	3. Triangulate $\mathcal{T}_v P$ into simple cones C_i - polynomial
The art of bookkeeping	4. Calculate rational function g_{C_i} - unclear
The magic unravelled	Dessibly MANY lattice points in nevallalaningdl
Barvinok's algorithm	Possibly MANY lattice points in parallelepiped!
Closing the circle	

6.2. Analyzing the algorithm

Chicken McNuggets	
Square magic	
Polyhedra	
The art of bookkeeping	
The magic unravelled	
Barvinok's algorithm	
Closing the circle	

5. Calculate rational function g_{T_vP} - polynomial

This can be done via inclusion-exclusion.

Nowadays, via *irrational decomposition* even disjoint union of lattice points in **full-dimensional** cones.

Chicken McNuggets
Square magic
7.
Polyhedra
The art of bookkeeping
The magic unravelled
Barvinok's algorithm
Closing the circle

6. Calculate rational function g_P by Brion's theorem - polynomial

7. Evaluate $g_P(1, \ldots, 1)$ to get number of lattice points - polynomial

 $(1, \ldots, 1)$ is a pole of rational function g_P . Evaluation via complex methods.

Only problem left is: 4. Calculate rational function g_{C_i} - unclear

Chicken McNuggets

Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle

Approach: Triangulate simple cone as far as possible, into *unimodular* cones.

UNIMODULAR CONE = simple cone & parallepiped contains only apex.

Example:

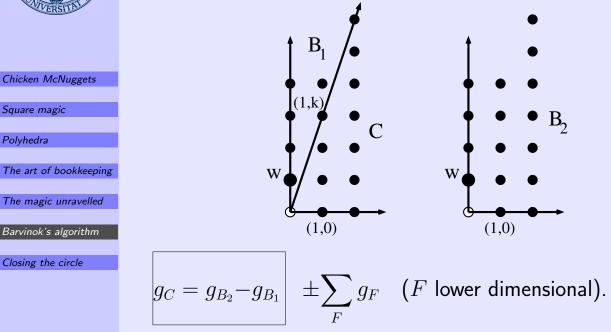
C cone given by directions (1,0) and (1,k). Decomposition into k unimodular cones:



complexity not polynomial $(k = e^{\log(k)})$!

6.3. Barvinok's trick

Write a signed decomposition " $C = B_2 - B_1$ " into unimodular cones B_1, B_2 :



Only 2 unimodular cones needed!

Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle

This idea works always:

Minkowski's lattice point theorem \Rightarrow exists lattice point $w \rightsquigarrow$ signed decomposition into "smaller" simple cones.

Theorem. [Barvinok 1994] Let n be fixed.

There exists a polynomial-time algorithm for computing the rational generating function g_P of a polyhedron $P \subseteq \mathbb{R}^n$ given by rational inequalities.

Chicken McNuggets Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle

7. Closing the circle

Let N be a natural number.

Theorem. [Jacobi 1829] The number of representations of N as sums of four squares equals 8 times the sum of all divisors of N that are not divisible by 4.

Example: Let $N = p \cdot q$ for different primes p, q. Number of representations of N as four squares =

8(1+p+q+N).

Application: Let $N = p \cdot q$ for different primes p, q.

Define

 $\mathbf{D}(\mathbf{\lambda}\tau)$

Chicken McNuggets

Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle

$$B(N) := \{x \in \mathbb{Z}^4 : x_1^2 + x_2^2 + x_3^2 + x_4^2 \le N\}$$
 set of lattice points in 4-dim. ball of radius \sqrt{N} .

$$|B(N)| - |B(N-1)|$$

= $|\{x \in \mathbb{Z}^4 : x_1^2 + x_2^2 + x_3^2 + x_4^2 = N\}|$
= $8(1 + p + q + N).$

In other words: N, |B(N)| - |B(N-1)| known \Leftrightarrow $p \cdot q, p + q$ known \Leftrightarrow p, q known.

Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle

RSA cryptosystem attack. [De Loera 2005]

IF we could count lattice points in 4-dim. balls *fast*, **THEN** we could factorize $N = p \cdot q$ *fast*.

Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle

References

The many aspects of counting lattice points in polytopes

De Loera, J.A. (Math. Semesterber. 52, 175–195, 2005)

LattE - Computations with Polyhedra De Loera, J.A.; et.al. (www.math.ucdavis.edu/~latte/)

Theorems of Brion, Lawrence, and Varchenko on rational generating functions for cones Beck, M.; Haase, C.; Sottile, F. (arXiv:math/0506466, 2005)

Computing the Continuous Discretely. Integer-point Enumeration in Polyhedra

Beck, M.; Robins, S. (Undergraduate Texts in Mathematics, Springer, 2007)