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1. Chicken McNuggets

How many ways are there to order 200 Chicken McNuggets?

(Available: 6, 9, 20.)

= t10 , n20t , sn6t7 , s2n12t4

s3n18t , s4n4t7 , s5n10t4, s6n16t

s7n2t7 , s8n8t4 , s9n14t , s10t7

s11n6t4, s12n12t, s14n4t4, s15n10t

s17n2t4, s18n8t , s20t4 , s21n6t

s24n4t , s27n2t , s30t

. . . twenty three possibilities.

Exercise. Determine the largest impossible order

(Frobenius number).
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On planet Qkargogg they have Value Menus with

12’223, 12’224, 36’674, 61’119, and 85’569

Chicken McNuggets each.

How many ways are there to order 89’643’482
Chicken McNuggets?

12223x1+12224x2+36674x3+61119x4+85569x5 = 89643482

How many NON-NEGATIVE, INTEGRAL solutions?
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2. Square magic
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A magic square is a matrix with all row sums, column sums
and diagonal sums equal to the magic constant.

[
3 3
3 3

]  8 1 6
3 5 7
4 9 2




1 30 41 54 23 12 63 36
47 52 7 28 57 38 17 14
21 10 61 34 3 32 43 56
59 40 19 16 45 50 5 26
42 53 2 29 64 35 24 11
8 27 48 51 18 13 58 37
62 33 22 9 44 55 4 31
20 15 60 39 6 25 46 49


Exercise. Determine the magic constant, if all entries are
different.
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 x1 x2 x3

x4 x5 x6

x7 x8 x9


x1 + x2 + x3 = mc x4 + x5 + x6 = mc x7 + x8 + x9 = mc

x1 + x4 + x7 = mc x2 + x5 + x8 = mc x3 + x6 + x9 = mc

x1 + x5 + x9 = mc x3 + x5 + x7 = mc

How many NON-NEGATIVE, INTEGRAL solutions?



Chicken McNuggets

Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok’s algorithm

Closing the circle

3. Polyhedra

3.1. Definition

The set of (real) solutions to finitely many linear (in)equalities

is a polyhedron. The convex hull of finitely many points

is a polytope.

Theorem. bounded polyhedron = polytope

Lattice points in Rn are elements in the lattice Zn.
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3.2. Polytope of Sudokus

5 8 4 1 7 3 2 9 6

6 9 3 5 4 2 7 1 8

7 1 2 8 6 9 5 3 4

4 5 8 7 2 1 9 6 3

1 3 9 6 5 4 8 2 7

2 7 6 9 3 8 4 5 1

8 2 5 3 1 7 6 4 9

3 6 7 4 9 5 1 8 2

9 4 1 2 8 6 3 7 5

Counting number of Sudokus

= counting lattice points in a polytope?!
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Polytope in R9×9×9 given by :

• Any entry between 0 and 1.

• Sum over each tower equals 1.

• Sum over each floor of row/column/square equals 1.
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46

0
0
0

0
0
0
0
0

1

0
0
0
0
0
1
0
0
0

Polytope in R9×9×9 given by :

• Any entry between 0 and 1.

• Sum over each tower equals 1.

• Sum over each floor of row/column/square equals 1.
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6 9 3 5 4 2 7 1 8

1
0
0

0
0
0
0
0

0

0
0
0

0
0
0
0
0

1

0
0
0

0
0
1
0
0

0

0
0
0
0
1
0
0
0
0

0
0
0

0
1
0
0
0

0

0
0
0

0
0
0
1
0

0

0
0
1

0
0
0
0
0

0

0
0
0

0
0
0

1

0

0
1
0

0
0
0
0
0

0

0

Polytope in R9×9×9 given by :

• Any entry between 0 and 1.

• Sum over each tower equals 1.

• Sum over each floor of row/column/square equals 1.



Chicken McNuggets

Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok’s algorithm

Closing the circle

3.3. Ehrhart polynomials

Theorem. [Ehrhart 1967]
Let P be a polytope whose vertices have rational coordi-
nates. Define for a natural number k

L(k) := number of lattice points in kP.

Then k 7→ L(k) is a quasi-polynomial (of period N),
i.e., it becomes polynomial on the set of numbers with the
same remainder modulo N .

Example:
The number of 4× 4 magic squares with magic constant c
equals

1
480c

7 + 7
240c

6 + 89
480c

5 + 11
16c

4 + 49
30c

3 + 38
15c

2 + 71
30c+ 1 if c is even,

1
480c

7 + 7
240c

6 + 89
480c

5 + 11
16c

4 + 779
4800c

3 + 593
240c

2 + 1051
480 c+ 13

16 if c is odd.
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3.4. Other applications

Counting lattice points in polyhedra

turns up in

• graph theory/integer linear programming (colorings and
flows)

• statistics (contingency tables)

• representation theory (Kostka and Littlewood-
Richardson coefficients, saturation conjecture)

• algebraic geometry (global sections, Todd classes)

• string theory (stringy Hodge numbers)
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4. The art of bookkeeping

Throughout all polyhedra are given by rational inequalities.

4.1. Why rational functions are nice

List all lattice points in the polyhedron [0, 3].

• 0,1,2,3

• g[0,3] = 1 + x + x2 + x3

• g[0,3] =
1− x4

1− x
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List all lattice points in the polyhedron [0, 10000].

• 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,

• 1 + x + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15

• g[0,10000] =
1− x10001

1− x
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List all lattice points in the polyhedron [0, 10000].

• 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,

• 1 + x + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15

• g[0,10000] =
1− x10001

1− x

. . . in the polyhedron [0,∞)

•
•

• g[0,∞) =
1

1− x
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4.2. Why simple cones are simple

Simple cones in dimension 1,2,3:

How to enumerate lattice points?
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1 + x2y + x4y2 + . . . =
∑
k≥0

(x2y)k =
1

1− x2y

1 + x/y + x2/y2 + . . . =
∑
k≥0

(x/y)k =
1

1− x/y
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1

1− x2y
· 1

1− x/y
=

(x2y)2 · 1
x2y · 1

1 · 1 x2y · x/y
1 · x/y x2y · (x/y)2

1 · (x/y)2
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y2 + xy2 + x2y2

(1− x/y)(1− x2y)

C a simple cone in Rn ⇒

gC =
∑

x∈C∩Zn

x

rational function of this form.
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4.3. Cones triangulate into simple ones
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+

−−

+

−

=

+

C cone ⇒ gC rational function!
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4.4. So, what about polytopes?

For a face F of a polytope P , define the tangent cone

TFP = {f+x ∈ Rd : f ∈ F and f+εx ∈ P for some ε > 0}

TvP
e
P P

TeP TPP
Pv
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Our favourite example:

P = [0, 3]

0 3

gP = x0 + x1 + x2 + x3 =
1− x4

1− x
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Look at the tangent cones:

0 3

gT0P = x0 + x1 + x2 + x3 + x4 + x5 + · · · =
1

1− x

gT3P = · · · + x−2 + x−1 + x0 + x1 + x2 + x3 =
x3

1− 1/x
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A magic sum:

gT0P =
1

1− x

+ gT3P =
x3

1− 1/x

gP =
1− x4

1− x
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Theorem. [Brion 1988]
P polytope with rational vertex coordinates

⇒ gP =
∑

v vertex of P

gTvP .

In particular, gP is a rational function.
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5. The magic unravelled

Theorem. [Brianchon 1837, Gram 1874]

gP =
∑
v

gTvP +
∑
F

(−1)dimFgTFP

where F are faces of P with dimF > 0.

Illustration:

v1

v4

e1

e3

e4

e2

v2

v3

P

gP =
∑4

i=1 gTviP −
∑4

j=1 gTejP + gTPP .
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The magic trick:

Claim:

C cone containing a line ⇒ gC = 0 (as a rational function).

Corollary:

F is a face of positive dimension ⇒ gTF P = 0.

Thus, Brion’s theorem follows from Brianchon-Gram.
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w

C

Proof of claim:
Exists lattice point w:

w + C = C.

⇒ xwgC = gC.

⇒ (1− xw)gC = 0.

⇒ gC = 0,

since rational function f 6= 0 times polynomial p 6= 0 is
rational function f · p 6= 0.
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6. Barvinok’s algorithm

6.1. Our algorithm so far

Given a linear (in-)equality description of polytope P in Rn.

1. Calculate vertices v.

2. Calculate TvP .

3. Triangulate TvP into simple cones Ci.

4. Calculate rational function gCi
.

5. Calculate rational function gTvP .

6. Calculate rational function gP by Brion’s theorem.

7. Evaluate rational function

gP (1, . . . , 1) =
∑

x∈P∩Zn

1

to get number of lattice points in P .
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Fix the dimension n. Given P with input size α.

Bit input size: log(α).

Goal: Enumeration complexity polynomial in log(α).
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6.2. Analyzing the algorithm

1. Calculate vertices v - polynomial
2. Calculate TvP - polynomial
3. Triangulate TvP into simple cones Ci - polynomial
4. Calculate rational function gCi

- unclear

Possibly MANY lattice points in parallelepiped!
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5. Calculate rational function gTvP - polynomial

This can be done via inclusion-exclusion.

Nowadays, via irrational decomposition even
disjoint union of lattice points in full-dimensional cones.
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6. Calculate rational function gP by Brion’s theorem -
polynomial

7. Evaluate gP (1, . . . , 1) to get number of lattice points -
polynomial

(1, . . . , 1) is a pole of rational function gP .
Evaluation via complex methods.
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Only problem left is:
4. Calculate rational function gCi

- unclear

Approach: Triangulate simple cone as far as possible,
into unimodular cones.

UNIMODULAR CONE =
simple cone & parallepiped contains only apex.
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Example:
C cone given by directions (1, 0) and (1, k).
Decomposition into k unimodular cones:

C1

Ck

C2(1,k)

(1,0)

complexity not polynomial (k = elog(k)) !
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6.3. Barvinok’s trick

Write a signed decomposition ”C = B2 − B1” into
unimodular cones B1, B2:

B1

B2

w

(1,0)

w

(1,k)

(1,0)

C

gC = gB2
−gB1

±
∑

F

gF (F lower dimensional).

Only 2 unimodular cones needed!
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This idea works always:

Minkowski’s lattice point theorem ⇒
exists lattice point w  signed decomposition into
”smaller” simple cones.

Theorem. [Barvinok 1994] Let n be fixed.
There exists a polynomial-time algorithm for computing the
rational generating function gP of a polyhedron P ⊆ Rn

given by rational inequalities.
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7. Closing the circle

Let N be a natural number.

Theorem. [Jacobi 1829] The number of representations

of N as sums of four squares equals 8 times the sum of all

divisors of N that are not divisible by 4.

Example: Let N = p · q for different primes p, q.

Number of representations of N as four squares =

8(1 + p + q +N).
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Application:
Let N = p · q for different primes p, q.

Define

B(N) := {x ∈ Z4 : x2
1 + x2

2 + x2
3 + x2

4 ≤ N},

set of lattice points in 4-dim. ball of radius
√
N .

|B(N)| − |B(N − 1)|
= |{x ∈ Z4 : x2

1 + x2
2 + x2

3 + x2
4 = N}|

= 8(1 + p + q +N).

In other words:
N , |B(N)| − |B(N − 1)| known ⇔
p · q, p + q known ⇔
p, q known.
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RSA cryptosystem attack. [De Loera 2005]

IF we could count lattice points in 4-dim. balls fast,
THEN we could factorize N = p · q fast.
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