## Fast-food, square magic and polyhedra.

Benjamin Nill<br>(\& Christian Haase)

Research Group Lattice Polytopes - FU Berlin
IMA Minneapolis, October 2, 2007


## 1. Chicken McNuggets

How many ways are there to order 200 Chicken McNuggets?
(Available: 6, 9, 20.)

$$
\begin{array}{rlll}
=t^{10}, & n^{20} t, & s n^{6} t^{7}, & s^{2} n^{12} t^{4} \\
s^{3} n^{18} t, & s^{4} n^{4} t^{7}, & s^{5} n^{10} t^{4}, & s^{6} n^{16} t \\
s^{7} n^{2} t^{7}, & s^{8} n^{8} t^{4}, & s^{9} n^{14} t, & s^{10} t^{7} \\
s^{11} n^{6} t^{4}, & s^{12} n^{12} t, & s^{14} n^{4} t^{4}, & s^{15} n^{10} t \\
s^{17} n^{2} t^{4}, & s^{18} n^{8} t, & s^{20} t^{4}, & s^{21} n^{6} t \\
s^{24} n^{4} t, & s^{27} n^{2} t, & s^{30} t &
\end{array}
$$

... twenty three possibilities.
Exercise. Determine the largest impossible order (Frobenius number).

On planet Qkargogg they have Value Menus with
12'223, 12'224, 36'674, 61'119, and 85'569
Chicken McNuggets each.

## Chicken McNuggets

How many ways are there to order $89^{\prime} 643^{\prime} 482$ Chicken McNuggets?
$12223 x_{1}+12224 x_{2}+36674 x_{3}+61119 x_{4}+85569 x_{5}=89643482$
How many NON-NEGATIVE, INTEGRAL solutions?

## 2. Square magic

## Chicken McNuggets

## Square magic

Polyhedra

The art of bookkeeping

The magic unravelled

Barvinok's algorithm

Closing the circle


A magic square is a matrix with all row sums, column sums and diagonal sums equal to the magic constant.

$$
\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right]\left[\begin{array}{lll}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{array}\right]\left[\begin{array}{cccccccc}
1 & 30 & 41 & 54 & 23 & 12 & 63 & 36 \\
47 & 52 & 7 & 28 & 57 & 38 & 17 & 14 \\
21 & 10 & 61 & 34 & 3 & 32 & 43 & 56 \\
59 & 40 & 19 & 16 & 45 & 50 & 5 & 26 \\
42 & 53 & 2 & 29 & 64 & 35 & 24 & 11 \\
8 & 27 & 48 & 51 & 18 & 13 & 58 & 37 \\
62 & 33 & 22 & 9 & 44 & 55 & 4 & 31 \\
20 & 15 & 60 & 39 & 6 & 25 & 46 & 49
\end{array}\right]
$$

Exercise. Determine the magic constant, if all entries are different.

How many NON-NEGATIVE, INTEGRAL solutions?

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=\mathrm{mc} x_{4}+x_{5}+x_{6}=\mathrm{mc} x_{7}+x_{8}+x_{9}=\mathrm{mc} \\
& x_{1}+x_{4}+x_{7}=\mathrm{mc} x_{2}+x_{5}+x_{8}=\mathrm{mc} x_{3}+x_{6}+x_{9}=\mathrm{mc} \\
& x_{1}+x_{5}+x_{9}=\mathrm{mc} x_{3}+x_{5}+x_{7}=\mathrm{mc}
\end{aligned}
$$

3. Polyhedra

### 3.1. Definition

The set of (real) solutions to finitely many linear (in)equalities is a polyhedron. The convex hull of finitely many points is a polytope.


Theorem. bounded polyhedron $=$ polytope

Lattice points in $\mathbb{R}^{n}$ are elements in the lattice $\mathbb{Z}^{n}$.

### 3.2. Polytope of Sudokus

| 5 | 8 | 4 | 1 | 7 | 3 | 2 | 9 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 9 | 3 | 5 | 4 | 2 | 7 | 1 | 8 |
| 7 | 1 | 2 | 8 | 6 | 9 | 5 | 3 | 4 |
| 4 | 5 | 8 | 7 | 2 | 1 | 9 | 6 | 3 |
| 1 | 3 | 9 | 6 | 5 | 4 | 8 | 2 | 7 |
| 2 | 7 | 6 | 9 | 3 | 8 | 4 | 5 | 1 |
| 8 | 2 | 5 | 3 | 1 | 7 | 6 | 4 | 9 |
| 3 | 6 | 7 | 4 | 9 | 5 | 1 | 8 | 2 |
| 9 | 4 | 1 | 2 | 8 | 6 | 3 | 7 | 5 |

Counting number of Sudokus
$=$ counting lattice points in a polytope?!

## Square magic

## Polyhedra



Polytope in $\mathbb{R}^{9 \times 9 \times 9}$ given by :

- Any entry between 0 and 1 .
- Sum over each tower equals 1.
- Sum over each floor of row/column/square equals 1 .



Polytope in $\mathbb{R}^{9 \times 9 \times 9}$ given by :

- Any entry between 0 and 1 .
- Sum over each tower equals 1 .
- Sum over each floor of row/column/square equals 1 .


Polytope in $\mathbb{R}^{9 \times 9 \times 9}$ given by :

- Any entry between 0 and 1 .
- Sum over each tower equals 1.
- Sum over each floor of row/column/square equals 1 .


### 3.3. Ehrhart polynomials

## Theorem. [Ehrhart 1967]

Let $P$ be a polytope whose vertices have rational coordinates. Define for a natural number $k$

$$
L(k):=\text { number of lattice points in } k P .
$$

Then $k \mapsto L(k)$ is a quasi-polynomial (of period $N$ ), i.e., it becomes polynomial on the set of numbers with the same remainder modulo $N$.

## Example:

The number of $4 \times 4$ magic squares with magic constant $c$ equals
$\begin{cases}\frac{1}{48 c^{7}}+\frac{7}{240} c^{6}+\frac{89}{480} c^{5}+\frac{11}{16} c^{4}+\frac{49}{30} c^{3}+\frac{38}{15} c^{2}+\frac{71}{30} c+1 & \text { if } c \text { is even, } \\ \frac{1}{480} c^{7}+\frac{7}{240} c^{6}+\frac{89}{480} c^{5}+\frac{11}{16} c^{4}+\frac{779}{4800} c^{3}+\frac{593}{240} c^{2}+\frac{1051}{480} c+\frac{13}{16} & \text { if } c \text { is odd. }\end{cases}$
3.4. Other applications

## Counting lattice points in polyhedra

turns up in

- graph theory/integer linear programming (colorings and flows)
- statistics (contingency tables)
- representation theory (Kostka and LittlewoodRichardson coefficients, saturation conjecture)
- algebraic geometry (global sections, Todd classes)
- string theory (stringy Hodge numbers)

4. The art of bookkeeping

Throughout all polyhedra are given by rational inequalities.
4.1. Why rational functions are nice

List all lattice points in the polyhedron $[0,3]$.

- 0,1,2,3
- $g_{[0,3]}=1+x+x^{2}+x^{3}$
- $g_{[0,3]}=\frac{1-x^{4}}{1-x}$

List all lattice points in the polyhedron [ 0,10000 ].

- 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,2
- $1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{8}+x^{9}+x^{10}+x^{11}+$
- $g_{[0,10000]}=\frac{1-x^{10001}}{1-x}$


## Polyhedra

List all lattice points in the polyhedron [ 0,10000 ].

- $0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,2$
- $1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{8}+x^{9}+x^{10}+x^{11}+$
- $g_{[0,10000]}=\frac{1-x^{10001}}{1-x}$
$\ldots$ in the polyhedron $[0, \infty)$


### 4.2. Why simple cones are simple

Simple cones in dimension 1,2,3:

How to enumerate lattice points?


## Chicken McNuggets

## Square magic

## Polyhedra

The art of bookkeeping
The magic unravelled

## Barvinok's algorithm

## Closing the circle

$$
1+x / y+x^{2} / y^{2}+\ldots=\sum_{k \geq 0}(x / y)^{k}=\frac{1}{1-x / y}
$$



## Chicken McNuggets

## Square magic

## Polyhedra



$$
\begin{gathered}
\\
\substack{x^{2} y \cdot 1} \\
1 \cdot x / y \\
1 \cdot(x / y)^{2} y \cdot x / y \\
x^{2} y \cdot(x / y)^{2}
\end{gathered}
$$

## Chicken McNuggets

## Square magic

## Polyhedra



$$
\frac{y^{2}+x y^{2}+x^{2} y^{2}}{(1-x / y)\left(1-x^{2} y\right)}
$$

$C$ a simple cone in $\mathbb{R}^{n} \Rightarrow$

$$
g_{C}=\sum_{x \in C \cap \mathbb{Z}^{n}} x
$$

rational function of this form.

### 4.3. Cones triangulate into simple ones

## Chicken McNuggets

## Square magic

## Polyhedra





## Chicken McNuggets

## Square magic

## Polyhedra

The art of bookkeeping

$C$ cone $\quad \Rightarrow \quad g_{C}$ rational function!

## Chicken McNuggets

## Square magic

## Polyhedra

4.4. So, what about polytopes?

For a face $F$ of a polytope $P$, define the tangent cone
$\mathcal{T}_{F} P=\left\{f+x \in \mathbb{R}^{d}: f \in F\right.$ and $f+\epsilon x \in P$ for some $\left.\epsilon>0\right\}$


## Our favourite example:

## Chicken McNuggets

## Square magic

## Polyhedra

The art of bookkeeping

$$
P=[0,3]
$$



$$
g_{P}=x^{0}+x^{1}+x^{2}+x^{3}=\frac{1-x^{4}}{1-x}
$$

## Look at the tangent cones:



## Square magic

## Polyhedra

The art of bookkeeping

$$
\begin{aligned}
& g_{\mathcal{T}_{0} P}=x^{0}+x^{1}+x^{2}+x^{3}+x^{4}+x^{5}+\cdots=\frac{1}{1-x} \\
& g_{\mathcal{T}_{3} P}=\cdots+x^{-2}+x^{-1}+x^{0}+x^{1}+x^{2}+x^{3}=\frac{x^{3}}{1-1 / x}
\end{aligned}
$$

A magic sum:

## Square magic

## Polyhedra

The art of bookkeeping

The magic unravelled

$$
\begin{aligned}
g_{\mathcal{T}_{0} P} & =\frac{1}{1-x} \\
+g_{\mathcal{T}_{3} P} & =\frac{x^{3}}{1-1 / x} \\
g_{P} & =\frac{1-x^{4}}{1-x}
\end{aligned}
$$

Theorem. [Brion 1988]
$P$ polytope with rational vertex coordinates

$$
\Rightarrow \quad g_{P}=\sum_{v \text { vertex of } P} g_{\mathcal{T}_{v} P}
$$

In particular, $g_{P}$ is a rational function.
5. The magic unravelled

Theorem. [Brianchon 1837, Gram 1874]

$$
g_{P}=\sum_{v} g_{\mathcal{T}_{v} P}+\sum_{F}(-1)^{\operatorname{dim} F} g_{\mathcal{T}_{F} P}
$$

where $F$ are faces of $P$ with $\operatorname{dim} F>0$.

Illustration:


$$
g_{P}=\sum_{i=1}^{4} g_{\mathcal{T}_{v_{i}} P}-\sum_{j=1}^{4} g_{\mathcal{T}_{e_{j}} P}+g_{\mathcal{T}_{P} P}
$$

## The magic trick:

## Claim:

$C$ cone containing a line $\Rightarrow \quad g_{C}=0$ (as a rational function).

Corollary:
$F$ is a face of positive dimension $\Rightarrow g_{\mathcal{T}_{F} P}=0$.
Thus, Brion's theorem follows from Brianchon-Gram.


## Proof of claim:

Exists lattice point $w$ :

$$
\begin{gathered}
w+C=C . \\
\Rightarrow \quad x^{w} g_{C}=g_{C} . \\
\Rightarrow \quad\left(1-x^{w}\right) g_{C}=0 . \\
\Rightarrow \quad g_{C}=0
\end{gathered}
$$

since rational function $f \neq 0$ times polynomial $p \neq 0$ is rational function $f \cdot p \neq 0$.
6. Barvinok's algorithm
6.1. Our algorithm so far

Given a linear (in-)equality description of polytope $P$ in $\mathbb{R}^{n}$.

1. Calculate vertices $v$.
2. Calculate $\mathcal{T}_{v} P$.
3. Triangulate $\mathcal{T}_{v} P$ into simple cones $C_{i}$.
4. Calculate rational function $g_{C_{i}}$.
5. Calculate rational function $g_{\mathcal{T}_{v} P}$.
6. Calculate rational function $g_{P}$ by Brion's theorem.
7. Evaluate rational function

$$
g_{P}(1, \ldots, 1)=\sum_{x \in P \cap \mathbb{Z}^{n}} 1
$$

to get number of lattice points in $P$.

Fix the dimension $n$. Given $P$ with input size $\alpha$.
Bit input size: $\log (\alpha)$.
Goal: Enumeration complexity polynomial in $\log (\alpha)$.

### 6.2. Analyzing the algorithm

## Chicken McNuggets

Square magic

## Polyhedra

1. Calculate vertices $v$-polynomial
2. Calculate $\mathcal{T}_{v} P$ - polynomial
3. Triangulate $\mathcal{T}_{v} P$ into simple cones $C_{i}$ - polynomial
4. Calculate rational function $g_{C_{i}}$ - unclear

Possibly MANY lattice points in parallelepiped!
5. Calculate rational function $g_{\tau_{v} P}$ - polynomial

This can be done via inclusion-exclusion.
Nowadays, via irrational decomposition even disjoint union of lattice points in full-dimensional cones.

Only problem left is:
4. Calculate rational function $g_{C_{i}}$ - unclear
Chicken McNuggets

## Polyhedra

Approach: Triangulate simple cone as far as possible, into unimodular cones.

UNIMODULAR CONE = simple cone \& parallepiped contains only apex.

## Example:

C cone given by directions $(1,0)$ and $(1, k)$. Decomposition into $k$ unimodular cones:

## Chicken McNuggets

Square magic

## Polyhedra


complexity not polynomial $\left(k=e^{\log (k)}\right)$ !

### 6.3. Barvinok's trick

Write a signed decomposition " $C=B_{2}-B_{1}$ " into unimodular cones $B_{1}, B_{2}$ :

$g_{C}=g_{B_{2}}-g_{B_{1}} \pm \sum_{F} g_{F} \quad(F$ lower dimensional $)$.
Only 2 unimodular cones needed!

This idea works always:
Minkowski's lattice point theorem $\quad \Rightarrow$ exists lattice point $w \rightsquigarrow$ signed decomposition into "smaller" simple cones.

Theorem. [Barvinok 1994] Let $n$ be fixed. There exists a polynomial-time algorithm for computing the rational generating function $g_{P}$ of a polyhedron $P \subseteq \mathbb{R}^{n}$ given by rational inequalities.
7. Closing the circle

Let $N$ be a natural number.

Theorem. [Jacobi 1829] The number of representations of $N$ as sums of four squares equals 8 times the sum of all divisors of $N$ that are not divisible by 4 .

Example: Let $N=p \cdot q$ for different primes $p, q$. Number of representations of $N$ as four squares $=$

$$
8(1+p+q+N)
$$

Chicken McNuggets

## Square magic

## Polyhedra

## Application:

Let $N=p \cdot q$ for different primes $p, q$.
Define

$$
B(N):=\left\{x \in \mathbb{Z}^{4}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \leq N\right\}
$$

set of lattice points in 4-dim. ball of radius $\sqrt{N}$.

$$
\begin{aligned}
& |B(N)|-|B(N-1)| \\
= & \left|\left\{x \in \mathbb{Z}^{4}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=N\right\}\right| \\
= & 8(1+p+q+N) .
\end{aligned}
$$

In other words:
$N,|B(N)|-|B(N-1)|$ known $\Leftrightarrow$
$p \cdot q, p+q$ known $\Leftrightarrow$
$p, q$ known.

```
Chicken McNuggets
```

Square magic

## Polyhedra

The art of bookkeeping

## RSA cryptosystem attack. [De Loera 2005]

IF we could count lattice points in 4 -dim. balls fast, THEN we could factorize $N=p \cdot q$ fast.

## References

The many aspects of counting lattice points in polytopes
De Loera, J.A. (Math. Semesterber. 52, 175-195, 2005)
LattE - Computations with Polyhedra
De Loera, J.A.; et.al. (www.math.ucdavis.edu/ ${ }^{\text {ºlatte/) }}$
Theorems of Brion, Lawrence, and Varchenko on rational generating functions for cones
Beck, M.; Haase, C.; Sottile, F. (arXiv:math/0506466, 2005)
Computing the Continuous Discretely. Integer-point Enumeration in Polyhedra Beck, M.; Robins, S. (Undergraduate Texts in Mathematics, Springer, 2007)

