

Combinatorial aspects of mirror symmetry

Benjamin Nill - FU Berlin

AMS Meeting, Rutgers University, October 7, 2007

Reflexive polytopes

Nef-partitions

Gorenstein polytopes

Nef-partitions - 2.0

V.V. Batyrev, B. Nill: *Combinatorial aspects of mirror symmetry*, math/0703456 (Proceedings of AMS-conference on integer points at Snowbird 2006)

Nef-partitions

Gorenstein polytopes

Nef-partitions - 2.0

1. Reflexive polytopes

M, N dual lattice of rank d.

Let $P \subseteq M_{\mathbb{R}} := M \otimes_{\mathbb{Z}} \mathbb{R}$ be a d-dimensional lattice polytope containing 0 in its interior.

Definition:

$$P^* := \{ y \in N_{\mathbb{R}} : \langle x, y \rangle \ge -1 \ \forall x \in P \}.$$
$$(P^*)^* = P.$$

Definition: P **reflexive** : $\iff P^*$ lattice polytope.

P reflexive $\iff P^*$ reflexive

Reflexive polytopes turn up in dual pairs!

Nef-partitions

Gorenstein polytopes

Nef-partitions - 2.0

 $P \subseteq M_{\mathbb{R}}$ a lattice polytope \Rightarrow

$$\sigma_P := \operatorname{pos}(P \times \{1\}) \subseteq M_{\mathbb{R}} \oplus \mathbb{R},$$

$$S_P := \sigma_P \cap (M \oplus \mathbb{Z}),$$

$$X_P := \operatorname{Proj} \mathbb{C}[S_P].$$

Bijection (of isomorphism classes):

Reflexive polytopes P, P^*

 \longrightarrow

Gorenstein toric Fano varieties X_P , X_{P^*}

(i.e., projective toric varieties with ample anticanonical Cartier divisor)

Nef-partitions

Gorenstein polytopes

Nef-partitions - 2.0

Let $P \subseteq M_{\mathbb{R}}$ be reflexive.

Definition: Let Y_P denote generic anticanonical *hyper-surface* in (a crepant resolution of) X_P .

Theorem. [Batyrev 1994] Let P be reflexive. Y_P , Y_{P^*} are mirror-symmetric CY's on the level of stringy Hodge numbers:

$$h_{\text{str}}^{p,q} = h_{\text{str}}^{(d-1)-p,q} \quad \forall \ 0 \le p, q \le d-1.$$

There are explicit formulas for computing stringy Hodge numbers in terms of the reflexive polytopes P, P^* !

Nef-partitions

Gorenstein polytopes

Nef-partitions - 2.0

2. Nef-partitions

Let X be a Gorenstein toric Fano variety.

Definition: A **nef-partition** is a partition of the torus-invariant prime divisors of X into effective nef Cartier divisors D_1, \ldots, D_r , i.e.,

$$-K_X = D_1 + \dots + D_r.$$

Then the associated generic anticanonical complete intersection in (crepant resolution of) X is a (singular) CY.

Theorem. [Borisov 93] Exists duality of nef-partitions.

Theorem. [Batyrev, Borisov 96] The associated complete intersections are mirror-symmetric CY's on the level of stringy Hodge numbers.

Nef-partitions

Gorenstein polytopes

Nef-partitions - 2.0

Combinatorial characterization

• Nef-partitions correspond to Minkowski sums

$$P_1 + \cdots + P_r$$
 reflexive,

where P_i are lattice polytopes containing 0.

- Duality of nef-partitions can be characterized as follows:
 - 1. $\Delta := P_1 + \cdots + P_r \subseteq M_{\mathbb{R}}$ reflexive, $\nabla := Q_1 + \cdots + Q_r \subseteq N_{\mathbb{R}}$ reflexive,
 - 2. $\nabla^* = \operatorname{conv}(P_1, \dots, P_r)$, $\Delta^* = \operatorname{conv}(Q_1, \dots, Q_r)$,
 - 3. $\langle P_i, Q_j \rangle \geq -\delta_{i,j}$.

Nef-partitions

Gorenstein polytopes

Nef-partitions - 2.0

3. Gorenstein polytopes

Let $P \subseteq M_{\mathbb{R}}$ be d-dimensional lattice polytope.

Definition:

- Gorenstein cones are cones of the form σ_P .
- P is called **Gorenstein polytope** of index r: $\iff rP$ reflexive.

Proposition. [Batyrev, Borisov 97]

P Gorenstein polytope $\Leftrightarrow \sigma_P^{^{\vee}}$ Gorenstein cone

Then the dual Gorenstein polytope P^* defined via

$$\sigma_{P^*} \cong \sigma^{\vee}$$
.

The index of P^* equals the index of P.

Example: d = 3 (index r = 2)

Reflexive polytopes

Nef-partitions

Gorenstein polytopes

Nef-partitions - 2.0

The lattice point $q=n_\sigma$ in $\sigma^{^ee}$ with

$$\langle q, P \times \{1\} \rangle = 1$$

is the unique interior lattice point of rP^* .

Nef-partitions

Gorenstein polytopes

Nef-partitions - 2.0

Back to complete intersections

Let $P_1, \ldots, P_r \subseteq M_{\mathbb{R}}$ be lattice polytopes.

Definition: The **Cayley polytope** $P_1 * \cdots * P_r$ is defined as

$$\operatorname{conv}(P_1 \times \{e_1\}, \dots, P_r \times \{e_r\}) \subseteq M_{\mathbb{R}} \oplus \mathbb{Z}^r,$$

where e_1, \ldots, e_r is a lattice basis of \mathbb{Z}^r .

Proposition. [Batyrev, Borisov 97]

$$P:=P_1*\cdots*P_r$$
 Gorenstein polytope of index $r\iff P_1+\cdots+P_r$ reflexive.

Then the Gorenstein cone σ_P is called **completely split**.

Nef-partitions

Gorenstein polytopes

Nef-partitions - 2.0

Stringy E-functions

Definition: Let P be a Gorenstein polytope of index r.

$$E_{\text{str}}(P; u, v) := (uv)^{-r} \sum_{\emptyset < F < P} (-u)^{\dim(F) + 1} \ \widetilde{S}(F, u^{-1}v) \ \widetilde{S}(F^*, uv),$$

where
$$\widetilde{S}(P,t) := \sum_{\emptyset < F < P} (-1)^{\dim(P) - \dim(F)} \ h_F^*(t) \ g_{[F,P]}(t).$$

Theorem. [Batyrev, Borisov 96; Borisov, Mavlyutov 03] Let $P=P_1*\cdots*P_r$ be Gorenstein polytope of index r. Then

$$E_{\text{str}}(P; u, v) = E_{\text{str}}(Y; u, v) = \sum_{p,q} (-1)^{p+q} h_{\text{str}}^{p,q}(Y) u^p v^q$$

for associated generic complete intersection $Y \subset X_{P_1+\cdots+P_r}$.

Reciprocity (Mirror symmetry):

$$E_{\text{str}}(P^*; u, v) = (-u)^{d+1-2r} E_{\text{str}}(P; u^{-1}, v).$$

Nef-partitions

Gorenstein polytopes

Nef-partitions - 2.0

Conjectures:

- The stringy E-function of any Gorenstein polytope is a **polynomial** of degree 2(d+1-2r) with non-negative integers.
- \bullet Up to scalar there are only **finitely** many polynomials of given degree occuring as $E_{\rm str}$ -functions of Gorenstein polytopes.

Nef-partitions

Gorenstein polytopes

Nef-partitions - 2.0

4. Nef-partitions - 2.0

Let $P \subseteq M_{\mathbb{R}}$ be a d-dimensional lattice polytope.

Proposition. [Batyrev, N. 07]

Cayley polytope structures of $P = P_1 * \cdots * P_r$

 $q=q_1+\cdots+q_r$, where q_i are non-zero lattice points in σ_P^{\vee} .

Given q_1, \ldots, q_r we define

 $P_i := \{ p \in P : \langle (p, 1), q_i \rangle = 1 \}$ for $i = 1, \dots, r$.

Nef-partitions

Gorenstein polytopes

Nef-partitions - 2.0

Corollary. [Batyrev, N. 07] Let P be a Gorenstein polytope of index r. T.f.a.e.:

- P is a Cayley polytope of length r
- σ_P is completely split
- $q = q_1 + \cdots + q_r$ for lattice points q_i in P^*
- \bullet P^* has an $(r-1)\mbox{-dimensional lattice simplex }R$ not in the boundary of P^*
- P^* has a **special lattice simplex** R (i.e., has r vertices, any facet of P^* contains r-1 vertices of R

Nef-partitions

Gorenstein polytopes

Nef-partitions - 2.0

Proposition. [Batyrev, Borisov 97]

Cayley polytopes of dual nef-partitions are dual to each other Gorenstein polytopes.

Definition: A **Gorenstein-nef-partition** is a dual pair of Gorenstein polytopes P, P^* together with choices of special lattice simplices $R \subseteq P$ and $R' \subseteq P^*$.

Exist if and only if σ_P and σ_P^{\vee} are completely split.

Cayley polytopes of dual nef-partitions form Gorenstein-nefpartitions.

Nef-partitions

Gorenstein polytopes

Nef-partitions - 2.0

Back to (dual) nef-partitions

Let dual Gorenstein polytopes P,P^{\ast} of index r be given, admitting Gorenstein-nef-partitions.

The choice of a special lattice simplex $R' \subseteq P^*$ yields lattice polytopes P_1, \ldots, P_r such that $P = P_1 * \cdots * P_r$, i.e.,

$$P_1 + \cdots + P_r$$
 is reflexive.

There is a correspondence between

- special lattice simplices $R \subseteq P$
- lattice points $p_i \in P_i$ such that $p_1 + \cdots + p_r = 0$

Then $P_1 - p_1, \dots, P_r - p_r$ is a nef-partition. The associated Cayley polytope structure of P^*

$$P^* = Q_1 * \cdots * Q_r,$$

yields the dual nef-partition Q_1, \ldots, Q_r .

The choice matters

Different choices of the special lattice simplex $R \subseteq P$ may yield extremely different dual nef-partitions!

Still, all corresponding dual CYs have the same stringy Hodge numbers!

Questions: Are they birationally isomorphic? Are their derived categories of coherent sheaves related?

Reflexive polytopes

Nef-partitions

Gorenstein polytopes

Nef-partitions - 2.0