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Abstract. In 70’s A.A. Kirillov interpreted the (stationary) Sturm–Liouville operator

L2 = d
2

dx2 + F as an element of the dual space ĝ∗ of the nontrivial central extension ĝ = vir,

called the Virasoro algebra, of the Witt algebra witt = der C[x−1, x]. He interpreted the

(stationary) KdV operator L3 = d
3

dx3 + d

dx
F + F d

dx
in terms of the stabilizer of L2. He also

found a supersymmetry that reduces solutions of L3f = 0 to solutions of L2g = 0 by study-
ing the nontrivial central extension of a simplest super analog of the Virasoro algebra, the
Neveu–Schwarz superalgebra. Kirillov also wrote the first superversion of KdV equation.

I extend Kirillov’s results and show how to find all supersymmetric extension of the
Sturm–Liouville and Korteveg–de Vries operators associated with the 10 distinguished stringy
superalgebras, i.e., all the simple stringy superalgebras that possess a nontrivial central ex-
tension. There are 12 or 14 such extensions, depending on the point of view. I only consider
scalar models.

Khesin and Malikov extended Drinfeld–Sokolov’s reduction to pseudodifferential opera-
tors and related the complex powers of Sturm–Liouville operators with the superized KdV-
type hierarchies labelled by complex parameter. Similar approach to our Sturm–Liouville
operators is also possible.

Introduction

A. A. Kirillov [Ki1] associated the (stationary) KdV operator

L3 =
d3

dx3
+

d

dx
F + F

d

dx
(KdV )

and the (stationary) Sturm–Liouville operator

L2 =
d2

dx2
+ F (Sch)

with the cocycle that determines the nontrivial central extension ĝ = vir — the Virasoro
algebra — of the Witt algebra g = witt = derC[x−1, x]. Moreover, he found an explanation
of the commonly known useful fact that the product of two solutions f1, f2 of the Sturm–
Liouville equation L2(f) = 0 satisfies L3(f1f2) = 0. Kirillov’s explanation is the existence of
a supersymmetry [Ki2].

Kirillov also classified the orbits of the coadjoint representation of vir and clarified its
equivalence to the following important classification problems: the classification of symplec-
tic leaves of the second Gelfand–Dickey structure on the second order differential operators,
of projective structures on the circle, and of Hill equation (i.e., (Sch) with periodic poten-
tial F ). Kirillov’s approach clarifies some earlier results by Poincaré, Kuiper, Lazutkin and
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Pankratova. The recent announcement of the classification of the simple stringy superalge-
bras and their central extensions [GLS] describes the scope of the problem: there are exactly
12 (or 14, depending on the interpretation) ways to superize the above results of Kirillov.

Kirillov himself partly considered one of these 12 or 14 possibilities, sseveral more were
considered by Kuperschmidt, Chaichian–Kulish, P. Mathieu, Khovanova, V. Ovsienko and
O. Ovsienko, Khesin, Ivanov–Krivonos–Bellucci–Delduc–Toppan, and many others; from
the sea of results we point out [Ku1]-[Ku3], [Kh], [KM], [BIK], [DI], [DIK], [IKT]. So far,
the examples of N -extended superKdV equations are only connected with a part of the
distinguished stringy superalgebras.

In this paper I do not consider all the cases either: only scalar ones. The four vector-valued
cases are much more difficult technically and will be considered elsewhere.

Our (Kirillov’s) construction brings the KdV-type equations directly in the Lax form
(analog of Euler’s equation for a solid body) guaranteeing their complete integrability, cf.
[Ku1], [OKh]. One should not forget here that the most profound dynamics, as Shander
showed [Sh], is obtained with the help of 1|1-dimensional time.

0.1. Kirillov’s interpretation of the Sturm–Liouville and Korteveg–de Vries op-
erators. Let g = witt = derC[x−1, x] and let ĝ = vir be the nontrivial central extension of
g given by the bracket

[f
d

dx
+ az, g

d

dx
+ bz] = (fg′ − f ′g)

d

dx
+ c · Resfg′′′ · z for c ∈ C,

where z is the generator of the center of ĝ. Let F = C[x−1, x] be the algebra of functions;
let Fλ for λ ∈ C be the rank 1 module over F spanned by dxλ, where the λth power of dx
is determined via analiticity of the formula for the g-action:

(f
d

dx
)(dxλ) = λf ′dxλ.

In particular, g ∼= F−1, as g-modules. Since the module Vol of volume forms is F1, the module
dual to g is g∗ = F2: we use one dx to kill d

dx
and another dx to integrate the product of

functions. (We confine ourselves to regular generalized functions, i.e., we ignore the elements
from the space of functionals on g with 0-dimensional support, see [Ki1].) Explicitely,

F (dx)2(f
d

dx
) = Res Ff.

0.1.1. The Korteveg–de Vries operator. The Lie algebra of the stationary group of the
element F̂ = (F, c) ∈ ĝ∗ = (g∗, C · z∗) is

stF̂ = {X̂ ∈ ĝ : F̂ ([X̂, Ŷ ]) = 0 for any Ŷ ∈ ĝ}.

Let us describe stF̂ explicitely. Take X̂ = g d
dx

+ az, Ŷ = f d
dx

+ bz. Then

F̂ ([X̂, Ŷ ]) = F̂ [(fg′ − f ′g) d
dx

+ Resfg′′′ · z] =

Res[F (fg′ − f ′g) + cfg′′′]
(partial integration)

= Resf [Fg′ + (Fg)′ + cg′′′].

Hence, X̂ ∈ stF̂ if and only if g is a solution of the equation L3g = 0, where L3 is given by
formula (KdV) above. If c 6= 0 we can always rescale the equation and assume that

c = 1. (0.1.1)

In what follows this is understood. We call L3 the KdV operator, it is the famous operator
of the second Hamiltonian structure for the KdV. Explicitely, the KdV operator is of the
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form

L3 = (the cocycle operator that determines ĝ ) +
d

dx
F + F

d

dx
. (0.1.2)

In what follows we consider the 14 super analogs of this operator.

0.1.2. The Sturm–Liouville operator. The Sturm–Liouville operator L2 = d2

dx2 + F is,
clearly, selfadjoint. The factorization

F (dx)2 + a · z∗ = (dx)2(F + a
d2

dx2
z∗) (0.1.3)

suggests to ignore z∗ (this action must be BUT IS IT? justified by comparison of trans-
formation rules of L2 and F (dx)2 + a · z∗) and represent the elements of ĝ∗ as 2nd order
selfadjoint differential operators: Fλ −→ Fλ+2. The selfadjointness (i.e., 1 − (λ + 2) = λ)
fixes λ, namely, λ = −1

2
. In what follows we consider the 10 super analogs of this operator,

4 more will be considered elsewhere.

0.1.3. KdV hierarchy. Assume that F depends on time, t. The KdV hierarchy is the
series of evolution equations for L = L2 or, equivalently, for F :

L̇ = [L,Ak], where Ak = (
√

L
2k−1

)+ for k = 1, 3, 5, . . . . (0.1.4)

Here the subscript + singles out the differential part of the pseudodifferential operator. The
case k = 1 is trivial and k = 3 corresponds to the original KdV equation.
• Khesin and Malikov ([KM]) observed that we can also consider evolution equations for

psedodifferential operators thus arriving to a continuous KdV hierarchy. Such an approach
to evolution equations for L2 is, as we will see, even more natural in the supersetting, when
the Sturm–Liouville operator L2 itself becomes a pseudodifferential one.

0.2. Kirillov’s interpretation of supersymmetry of the Sturm–Liouville and
Korteveg–de Vries operators. (To better understand this subsection, the reader has to
know the technique of C-points, or superfields, see [L1], [L2] or [D]; Berezin called the set of
C-points the “Grassmann envelope”, [B].) Kirillov suggested to replace in the above scheme
g = witt with the Lie superalgebra g = kL(1|1) of contact vector fields on the 1|1-dimensional
supercircle associated with the trivial bundle. The superalgebra g has a nontrivial central
extension, called the Neveu–Schwarz superalgebra ns and the above scheme leads us to the
ns(1)-analog of the KdV operator

L5 = KθK
2
1 + 2FK1 + 2K1F + (−1)p(F )KθFKθ (0.2.1)

and the ns(1)-analog of the Sturm–Liouville operator

L3 = KθK1 + F. (0.2.2)

Here F ∈ Π(C[x−1, x, θ]) and Kf is the contact vector field generated by f ∈ C[x−1, x, θ],
see 1.4, and Π is the change of parity functor: e.g., in C[x−1, x, θ] there is a natural parity
defined on each monomial as the number of all θ’s, well, Π renames all even elements calling
them odd and the other way round.

Indeed, let us calculate the stabilizer of an element of ns(1)∗. In doing so we will use
the C-points of all objects encountered. Observe that since the integral (or residue) pairs 1
with θ

x
, this pairing is odd, and, therefore, ns(1)∗ = Π(F3). The straightforward calculations

yield: X = Kf ∈ stF̂ if and only if f is a solution of the equation
(

cKθ
d2

dx2
+ 2

d

dx
F + 2F

d

dx
+ (−1)p(F )KθFKθ

)
f = 0. (0.2.3)
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The operator

L5 = (the cocycle operator that determines ĝ) + 2FK1 + 2K1F + (−1)p(F )KθK1Kθ (0.2.4)

from the lhs of (0.2.3) will be called the ns(1)-KdV operator.
In components we have: f = f0 + f1θ, F = F0 + F1θ, where f0 and F1 are even functions

(of x with values in an auxiliary supercommutative superalgebra C) while f1 and F0 are odd
ones. Suppose F0 = 0. Since formula (1.4.5) below implies that {f(x)θ, g(x)θ}K.b. = fg, we
see that the product of two solutions of the Sturm–Liouville equation L2f = 0 is a solution
of the KdV equation L3X = 0. This is Kirillov’s supersymmetry.

Remark . Kirillov only considered C-points of g and ĝ, that is why he missed all odd pa-
rameters (F0 6= 0) of the supersymmetry he found.

0.3. The result. I extend Kirillov’s result from witt to all simple distinguished stringy Lie
superalgebras — an elaboration of Remark from [L1], p. 167, where the importance of odd
parameters in this problem was first observed and the problem solved here was raised. To
consider all superized KdV and Sturm–Liouville operators was impossible before the list of
stringy superalgebras and their cocycles ([GLS], [KvdL]) was completed.

0.4. Open problems (for students). Passing to superization of the steps of sec. 0.1, I
interpret the elements of ĝ∗ for the distinguished stringy superalgebras g as selfadjoint oper-
ators, perhaps, pseudodifferential, rather than differential. This, together with ideas applied
by Khesin–Malikov to the usual Sturm–Liouville operator, requires generalizations of the
Lie superalgebra of matrices of complex size associated with the analogs of superprincipal
embeddings of osp(N |2) for N ≤ 4 (considered in [LSS] for N = 1). Such superizations were
recently described (only for N = 1, see [GL]). It still remains to describe the corresponding
W -superalgebras and Gelfand–Dickey superalgebras, present the result given below in com-
ponents in order to compare with the results of physicists ([BIK], [DI], [DIK], [IKT] to name
a few), describe superprincipal embeddings for N > 1 needed for a detailed superization of
Drinfeld–Sokolov’s and Khesin–Malikov’s constructions.

There also remain four non-scaral cases: vectL(1|1), mL(1), vectL(1|2), and the most in-
teresting svectLλ(1|2).

Closely related to nontrivial central extensions of distinguished stringy superalgebras are
superizations of the Schwarz derivative and Bott cocycle. When Radul gave his examples
[Ra] several distinguished algebras were unknown; the omission should be mended.

Lastly, the simplest problem: in sec. 1.3 there are described simplest modules more general
than Fλ. Are there Sturm-Liouville operators acting in them? (For vect the simplest modules
are volume forms; they do not fit .)

§1. Distinguished stringy superalgebras

We recall all the neccessary data. For the details of classification of simple vectorial Lie
superalgebras see [LS] and [GLS]; for a review of the representation theory of simple Lie
superalgebras including infinite dimensional ones see [L2], for basics on supermanifolds see
[D], [L1, L2] or [M]. The ground field is C.

1.1. Supercircle. A supercircle or (for a physicist) a superstring of dimension 1|n is the
real supermanifold S1|n associated with the rank n trivial vector bundle over the circle. Let
x = eiϕ, where ϕ is the angle parameter on the circle, be the even indeterminate of the
Fourier transforms; let θ = (θ1, . . . , θn), be the odd coordinates on the supercircle formed by
a basis of the fiber of the trivial bundle over the circle. Then (x, θ) are the coordinates on
(C∗)1|n, the complexification of S1|n.
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Denote by vol = vol(x, θ) the volume element on (C∗)1|n. (Roughly speaking, vol“=”dx ·
∂

∂θ1

· ... · ∂
∂θn

. Recall that this is not equality: as shown in [BL], the change of variables acts

differently on the lhs and rhs and only coinsides for the simplest transformations.)
Let the contact form be

α = dx −
∑

1≤i≤n

θidθi.

Usually, if
[

n
2

]
= k we rename the first 2k indeterminates and express α as follows for n = 2k

and n = 2k + 1, respectively:

α′ = dx −
∑

1≤i≤k

(ξidηi + ηidξi) or α′ = dx −
∑

1≤i≤k

(ξidηi + ηidξi) − ζdζ.

On (C∗)1|n, there are 5 series of simple “stringy” Lie superalgebras of vector fields and 4
exceptional such superalgebras. The 10 of them (or 12 if we distinguish different regradings)
are distinguished: they admit nontrivial central extensions.

The “main” 3 series are: vectL(1|n) = derC[x−1, x, θ], of all vector fields, its subalgebra
svectLλ(1|n) of vector fields that preserve the volume form xλvol, and kL(1|n) that preserves
the Pfaff equation α = 0. The superscript L indicates that we consider vector fields with
Laurent coefficients, not polynomial ones.

The Lie superalgebras of these 3 series are simple with the exception of svectLλ(1|1) for
any λ, svectLλ(1|n) for n > 1 and λ ∈ Z, and kL(1|4).

The fourth series is a simple ideal svect◦L(1|n) of svectLλ(1|n) for n > 1 and λ ∈ Z contains,
the quotient being spanned by θ1 . . . θn∂x.

The twisted supercircle of dimension 1|n is the supermanifold that we denote S1|n−1;M is
associated with the Whitney sum of the trivial vector bundle of rank n − 1 and the Möbius
bundle. Since the Whitney sum of the two Möbius bundle s is isomorphic to the trivial rank
2 bundle, we will only consider either S1|n or S1|n−1;M .

Let θ+
n =

√
xθn be the corresponding to the Möbius bundle odd coordinate on CS1|n−1;M ,

the complexification of S1|n−1;M . Set

αM = dx −
∑

1≤i≤n−1

θidθi − xθndθn;

simetimes the following form is more convenient:

α′M = dx−
∑

1≤i≤k

(ξidηi + ηidξi)− xθndθn; or α′M = dx−
∑

1≤i≤k

(ξidηi + ηidξi)− ζdζ − xθndθn.

The fifth series is the Lie superalgebra kM(n) that preserves the Pfaff equation αM = 0.
One exceptional superalgebra, mL(1), is the Lie subsuperalgebra in vectL(1|2) that pre-

serves the Pfaff equation given by the even contact form

β = dτ + πdq − qdπ

corresponding to the “odd mechanics” on 1|1-dimensional supermanifold with 0|1-dimensional
time. Though the following regradings demonstrate the isomorphism of this superalgebra
with the nonexceptional ones considered as abstract superalgebras, they are distinct as fil-
tered superalgebras and to various realizations of these Lie superalgebras different Sturm–
Liouville and KdV operators correspond.

Let t, θ be the indeterminates for vect(1|1); let xξ, η be same for k(1|2) (in the realiza-
tion that preserves the Pfaff eq. α′ = 0); and let τ, q, π be the indeterminates for m(1).
Denote vect(t, θ) with the grading deg t = 2, deg θ = 1 by vect(t, θ; 2, 1), etc. Then the
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following exceptional nonstandard degrees indicated after a semicolon provide us with the
isomorphisms:

vect(t, θ; 2, 1) ∼= k(1|2); k(t, ξ, η; 1, 2,−1) ∼= m(1);
vect(t, θ; 1,−1) ∼= m(1); m(τ, q, π; 1, 2,−1) ∼= k(1|2).

Another, serious, exception is the Lie superalgebra kL◦(1|4), the simple ideal of codimen-
sion 1 in kL(1|4), the quotient being generated by θ1θ2θ3θ4

x
. The remaining exceptions, listed

in [GLS], are not distinguished, so we ignore them in this paper.

1.2. The modules of tensor fields. To advance further, we have to recall the definition of
the modules of tensor fields over the general vectorial Lie superalgebra vect(m|n) = der C[X],
where X = (x, θ), and its subalgebras, see [BL]. Let g = vect(m|n) (for any other Z-graded
vectorial Lie superalgebra the construction is identical) and g≥ = ⊕

i≥0
gi, where deg Xi = 1

for all i. Clearly, g0
∼= gl(m|n). Let V be the gl(m|n)-module with the lowest weight

λ = lwt(V ). Make V into a g≥-module setting g+ · V = 0 for g+ = ⊕
i>0

gi. Let us realize g

by vector fields on the m|n-dimensional linear supermanifold Cm|n with coordinates X. The
superspace T (V ) = HomU(g≥)(U(g), V ) is isomorphic, due to the Poincaré–Birkhoff–Witt
theorem, to C[[X]]⊗ V . Its elements have a natural interpretation as formal tensor fields of

type V (or λ). When λ = (a, . . . , a) we will simply write T (~a) instead of T (λ). We usually
consider irreducible g0-modules.

Examples: T (~0) is the superspace of functions; Vol(m|n) = T (1, . . . , 1;−1, . . . ,−1) (the
semicolon separates the first m coordinates of the weight with respect to the matrix units
Eii of gl(m|n)) is the superspace of densities or volume forms. We denote the generator
of Vol(m|n) corresponding to the ordered set of coordinates X by vol(X). The space of

λ-densities is Volλ(m|n) = T (λ, . . . , λ;−λ, . . . ,−λ). In particular, Volλ(m|0) = T (~λ) but

Volλ(0|n) = T (
−→−λ).

1.3. Modules of tensor fields over stringy superalgebras. Denote by TL(V ) =
C[t−1, t] ⊗ V the vect(1|n)-module that differs from T (V ) by allowing the Laurent poly-
nomials as coefficients of its elements instead of just polynomials. Clearly, TL(V ) is a
vectL(1|n)-module. Define the twisted with weight µ version of TL(V ) by setting:

TL
µ (V ) = C[x−1, x]xµ ⊗ V. (1.3.1)

• The “simplest” modules — the analogues of the standard or identity repre-
sentation of the matrix algebras. The simplest modules over the Lie superalgebras of
series vect are, clearly, the modules of λ-densities, Volλ. These modules are characterized by
the fact that they are of rank 1 over F , the algebra of functions. Over stringy superalgebras,
we can also twist these modules and consider Volλµ. Observe that for µ 6∈ Z this module has
only one submodule, the image of the exterior differential d, see [BL], whereas for µ ∈ Z

there is, additionally, the kernel of the residue:

Res : VolL −→ C , fvol(x, θ) 7→ the coefficient of
θ1 . . . θn

x
in the expantion of f.

(1.3.2)
• Over svectL(1|n) all the spaces Volλ are, clearly, isomorphic, since their generator,

vol(x, θ), is preserved. So all rank 1 modules over the algebra of functions are isomorphic to
the module module F0;µ = tµF of twisted functions.

Over svectLλ(1|n), the simplest modules are generated (over functions, perhaps, twisted)
by xλvol(x, θ). The submodules of the simplest modules over svectL(1|n) and svectLλ(1|n) are



STURM–LIOUVILLE AND KORTEVEG–DE VRIES OPERATORS 7

the same as those over vectL(1|n); but if the twist µ ∈ Z there is, additionally, the trivial
submodule generated by (a power of) vol(x, θ) or xλvol(x, θ), respectively.
• Over contact superalgebras, it is more natural to express the simplest modules not in

terms of λ-densities but via powers of the form α which in what follows denotes either α′

itself for the kL series, or αM for the kM series, or β for mL(1). Set:

Fλ =

{
Fαλ for n = 0

Fαλ/2 otherwise .
(1.3.3)

Observe that Volλ ∼= Fλ(2−n) as k(1|n)-modules. In particular, the Lie superalgebra of series

k does not distinguish between ∂
∂x

and α−1: their transformation rules are identical. Hence,

k(1|n) ∼=
{
F−1 if n = 0

F−2 otherwise .

We denote the twisted versions by Fλ;µ.
For n = 2 (and α = dx − ξdη − ηdξ) there are other rank 1 modules over F = F0, the

algebra of functions, namely:

T (λ, ν)µ = Fλ;µ ·
(

dξ

dη

)ν/2

. (1.3.4)

• Over kM , we should replace α with αM and the definition of the kL(1|n)-modules Fλ;µ

should be replaced with

FM
λ;µ =

{
Fλ;µ(αM)λ for n = 1

Fλ;µ(αM)λ/2 for n > 1.
(1.3.5)

For n = 3 and αM = dx−ξdη−ηdξ−tθdθ there are other rank 1 modules over the algebra
of functions F , namely:

TM(λ, ν)µ = FM
λ,µ ·

(
dξ

dη

)ν/2

. (1.3.6)

Examples . 1) The k(2m + 1|n)-module of volume forms is F2m+2−n. In particular, k(1|2) ⊂
svect(1|2).

2) As kL(1|n)-module, kL(1|m) is isomorphic to F−1 for m = 0 and F−2 otherwise. As
kM(1|n)-module, kM(1|n) is isomorphic to F−1 for m = 1 and F−2 otherwise. In particular,
kL(1|4) ≃ Vol and kM(1|5) ≃ Π(Vol).

1.4. Convenient formulas. The four main series of stringy superalgebras are vectL(1|n),
svectLλ(1|n), kL(1|n) and kM(1|n). Obviously,

D = f∂x +
∑

fi∂i ∈ svectLλ(1|n) if and only if λf = −xdivD. (1.4.1)

A laconic way to describe k, m and their subalgebras is via generating functions.
• Odd form α = α1. For f ∈ C[x, θ] set :

Kf = (2 − E)(f)
∂

∂x
− Hf +

∂f

∂x
E,

where E =
∑
i

θi
∂

∂θi
, and Hf is the hamiltonian field with Hamiltonian f that preserves dα1:

Hf = −(−1)p(f)

(∑

j≤m

∂f

∂θj

∂

∂θj

)
.
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The choice of α′ instead of α only affects the form of Hf . We give it for m = 2k + 1:

Hf = −(−1)p(f)
∑

j≤k

(
∂f

∂ξj

∂

∂ηj

+
∂f

∂ηj

∂

∂ξj

+
∂f

∂θ

∂

∂θ
).

• Even form β = α0. For f ∈ C[q, π, τ ] set:

Mf = (2 − E)(f)
∂

∂τ
− Lef − (−1)p(f)∂f

∂τ
E,

where E = q ∂
∂q

+ π ∂
∂π

, and

Lef =
∂f

∂q

∂

∂π
+ (−1)p(f)∂f

∂π

∂

∂q
.

Since

LKf
(α1) = K1(f)α1, LMf

(α0) = −(−1)p(f)M1(f)α0, (1.4.2)

it follows that Kf ∈ k(1|m) and Mf ∈ m(1). Observe that

p(Lef ) = p(Mf ) = p(f) + 1̄.

• To the (super)commutators [Kf , Kg] or [Mf ,Mg] there correspond contact brackets of
the generating functions:

[Kf , Kg] = K{f,g}k.b.
; [Mf ,Mg] = M{f,g}m.b.

The explicit formulas for the contact brackets are as follows. Let us first define the brackets
on functions that do not depend on x (resp. τ). The Poisson bracket {·, ·}P.b. is given by the
formula

{f, g}P.b. = −(−1)p(f)
∑

j≤m

∂f

∂θj

∂g

∂θj

or

{f, g}P.b. = −(−1)p(f)[
∑

j≤m

(
∂f

∂ξj

∂g

∂ηj

+
∂f

∂ηj

∂g

∂ξj

) +
∂f

∂θ

∂g

∂θ
].

(1.4.3)

The Buttin bracket {·, ·}B.b. is given by the formula (given here for n = 1)

{f, g}B.b. =
∑

i≤n

(
∂f

∂qi

∂g

∂ξi

+ (−1)p(f) ∂f

∂ξi

∂g

∂qi

). (1.4.4)

In terms of the Poisson and Buttin brackets the contact brackets take the form

{f, g}k.b. = (2 − E)(f)
∂g

∂x
− ∂f

∂x
(2 − E)(g) − {f, g}P.b. , (1.4.5)

respectively,

{f, g}m.b. = (2 − E)(f)
∂g

∂τ
+ (−1)p(f)∂f

∂τ
(2 − E)(g) − {f, g}B.b.. (1.4.6)

It is not difficult to prove the following isomorphisms (as superspaces):

k(1|n) ∼= Span(Kf : f ∈ C[x, θ]); m(1) ∼= Span(Mf : f ∈ C[τ, q, π]).

• Define the Möbius contact field by the formula

K̃f = (2 − Ẽ)(f)D + D(f)Ẽ + H̃f , (1.4.7)

where

Ẽ =
∑

i<n

θi
∂

∂θi

+
1

2
θ

∂

∂θ
and D =

∂

∂x
− θ

2x

∂

∂θ
=

1

2
K̃1 (1.4.8)
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and where

H̃f = (−1)p(f)(
∑ ∂f

∂θi

∂

∂θi

+
1

x

∂f

∂θ

∂

∂θ
)

in the realization with form α̃M ; in the realization with form α̃′M for n = 2k and n = 2k + 1
we have, respectively:

H̃f = (−1)p(f)(
∑

(
∂f

∂ξi

∂

∂ηi

+
∂f

∂ηi

∂

∂ξi

) +
1

x

∂f

∂θ

∂

∂θ
),

H̃f = (−1)p(f)(
∑

(
∂f

∂ξi

∂

∂ηi

+
∂f

∂ηi

∂

∂ξi

) +
∂f

∂ζ

∂

∂ζ
+

1

x

∂f

∂θ

∂

∂θ
).

The corresponding contact bracket of generating functions will be called the Ramond bracket;
its explicit form is (see (1.4.8))

{f, g}R.b. = (2 − Ẽ)(f)D(g) −D(f)(2 − Ẽ)(g) − {f, g}MP.b., (1.4.9)

where the Möbius-Poisson bracket {·, ·}MP.b is defined to be

{f, g}MP.b = (−1)p(f)

(∑ ∂f

∂θi

∂g

∂θi

+
1

x

∂f

∂θ

∂g

∂θ

)
in the realization with form α̃M .

(1.4.10)
Since (cf. (1.4.2))

LK̃f
(α̃) = K̃1(f)α̃. (1.4.11)

It is easy to verify that k(1|n) ∼= Span(Kf : f ∈ C[x−1, t, θ]) whereas kM(1|n) = Span(K̃f :
f ∈ C[x−1, t, θ]). In other words, the spaces are identical but the brackets are nonisomorphic.

1.5. Distinguished stringy superalgebras. In the literature there are several definitions
of what we call stringy superalgebras, mostly self-contradicting ones. For example, in almost
all physical papers stringy superalgebra are called “superconformal” ones (meaning confor-
mal superalgebras). In reality, only witt, kL(1|1) and kM(1|1) are conformal in the original
sence of the term ([GLS]); but even if other superalgebras were conformal, there central
extensions are not, though the term “superconformal” is magnanimously applied to all. In
[KvdL] and in several subsequent papers the “superconformal” superalgebras are defined as
“simple ... such that considered as witt-module ...”, whereas everybody considers Virasoro,
Neveu-Schwarz and Ramond superalgebras as “superconformal” ones, though they are not
simple, and condition after “such that” depends on the embedding of witt. Therefore, we
suggest the term stringy for the general class of algebras inside of which some are conformal,
some are simple, etc. An intrinsic definition of this class is given in [GLS] together with that
for the loop superalgebras (which, unlike simple loop algebras, may have no Cartan matrix,

a usual key notion in the definition): both types of algebras are Z-graded g =
∞
⊕

i=−d
gi of

infinite depth d but in the adjoint representation they act differently:

for the loop algebras every root vector corresponding to any real root

acts locally nilpotently in the adjoint representation,

for the stringy algebras this is not so.

In other words, for all stringy superalgebras there is an analog of the operator d
dx

which
acts nontrivially on each homogeneous component, whereas for loop algebras there is no
such operator. For the list of simple stringy superalgebras see [GLS]. It is instructive to
compare [FL, KvdL, GLS]. Under distinguished stringy superalgebras we understand both
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the simple stringy superalgebras admitting the nontrivial central extension and the result of
this extension.

Theorem . ([FL, KvdL, GLS]) The only nontrivial central extensions of the simple stringy

Lie superalgebras are those given in the following table.

The operator ∇ introduced in the second column of the table by the formula c : D1, D2 7→
Res(D1,∇(D2)) for an appropriate pairing (·, ·) will be referred to as the cocycle operator.

Let in this sebsection and in sec. 2.1 Kf be the common notation of both Kf and K̃f ,

depending on whether we consider kL or kM , respectively. Let further K = (2θ ∂
∂θ

− 1) ∂2

∂x2 .

algebra the cocycle c : Kf , Kg 7→ Res(Kf ,∇(Kg)) The name of the extended algebra

kL(1|0) ResfK3
1(g) Virasoro or vir

kL(1|1)

kM(1|1)

}
ResfKθK

2
1(g)

Neveu-Schwarz or ns

Ramond or r

kL(1|2)

kM(1|2)

}
(−1)p(f)ResfKθ1

Kθ2
K1(g)

2-Neveu-Schwarz or ns(2)

2-Ramond or r(2)

kL(1|3)

kM(1|3)

}
ResfKξKθKη(g)

3-Neveu-Schwarz or ns(3)

3-Ramond or r(3)

kL◦(4)

kM(1|4)

} (1) (−1)p(f)ResfKθ1
Kθ2

Kθ3
Kθ4

K−1
1 (g)

(2) Resf(xKx−1(g))

(3) ResfK1(g)

(1)

{
4-Neveu-Schwarz = ns(4)

4-Ramond = ns(4)

(2)

{
4′-Neveu-Schwarz = ns(4′)

not defind for kM(1|4)

(3)

{
40-Neveu-Schwarz = ns(40)

not defind for kM(1|4)

vectL(1|1) D1 = f ∂
∂x

+ g ∂
∂θ

, D2 = f̃ ∂
∂x

+ g̃ ∂
∂θ

7→
Res(fK(g̃) + (−1)p(D1)p(D2)gK(f̃)+ v̂ect

L
(1|1)

2(−1)p(D1)p(D2)+p(D2)g ∂
∂θ

∂
∂θ

(g̃)

mL(1) Mf ,Mg 7→ Resf(Mξ)
3(g) m̂L(1)

§2. Superized KdV and Sturm–Liouville operators

2.1. The KdV operators for the distinguished contact superalgebras. Let in this
subsection Kf be the common term for both Kf and K̃f , as Table 1.5, for g = kL or kL◦ or
kM . The equation for Kf ∈ st(F,1), where (F, 1) ∈ ĝ∗, is of the form KdV (f) = 0, where
the operators KdV are listed in the following table with the cocycle operators being the
symmetrizations of the operators ∇ from sec. 1.5; we write ⊕ insted of + to grafically
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separate “the standard part”.

n KdV = the cocycle operator⊕ “the standard part”

0 K3
1 ⊕ FK1 + K1F

1 Kθ(K1)
2 ⊕ 2(FK1 + K1F ) + (−1)p(F )KθFKθ

2 (KξKη − KηKξ)K1 ⊕ 2(FK1 + K1F ) + (−1)p(F )(KξFKη − KηFKξ)

3 (KξKη − KηKξ)Kθ⊕
2(FK1 + K1F ) + (−1)p(F )(KξFKη − KηFKξ + KθFKθ)

41 (Kξ1Kη1
− Kη1

Kξ1)(Kξ2Kη2
− Kη2

Kξ2)
∫

x
⊕

2(FK1 + K1F ) + (−1)p(F )
∑

i=1,2(Kξi
FKηi

− Kηi
FKξi

)

42 xKx−1⊕ the standard part from 41

43 K1⊕ the standard part from 41

Clearly, the KdV operators corresponding to the supercircles associated with the cylinder
and the Möbius bundle are absolutely different. To establish that similar is the situation
with the Schröedinger operators, let us compair g with g∗ for kL and kM :

g = kL(1|n) 0 1 2 3 4 5 6 n

g F−1 F−2 F−2 F−2 F−2 F−2 F−2 F−2

Vol F1 Π(F1) F0 Π(F−1) F−2 Π(F−3) F−4 Πn(F2−n)

g∗ F2 Π(F3) F2 Π(F1) F0 Π(F−1) F−2 Πn(F4−n)

g = kM(1|n) 1 2 3 4 5 6 7 n

g F−1 F−2 F−2 F−2 F−2 F−2 F−2 F−2

Vol Π(F1) F1 Π(F0) F−1 Π(F−2) F−3 Π(F−4) Πn(F3−n)

g∗ Π(F2) F3 Π(F2) F1 Π(F0) F−1 Π(F−2) Πn(F5−n)

The comparison of g with g∗ shows that there is a nondegenerate bilinear form on g = kL(1|6)
and g = kM(1|7), even and odd, respectively. These forms are supersymmetric and given by
the formula

(Kf , Kg) = Res fg.
2.2. The Sturm–Liouville operators as selfadjoint differential operators.
• For the Neveu–Schwarz superalgebras we have the exact sequences

0 −→ z −→ ns(n) −→ F2 −→ 0. (2.3.1)

Here z = C · z if n 6= 4 and z = C · z, or C · z2, or C · z3 if n = 4, and centers correspond to
the three cocycles.

Using the identification Vol ∼= Πn(F2−n) we dualize the above exact sequence and get:

0 −→ Πn(F4−n) −→ ns∗(n) −→ z∗ −→ 0 for n = 1, 2, 3,

0 −→ F0/C −→ ns∗(4) −→ z∗ −→ 0, where 4 = 4 or 4′ or 40
(2.3.2)
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• For the Ramond superalgebras we similarly have the exact sequences

0 −→ z −→ r(1) −→ F−1 −→ 0

0 −→ z −→ r(n) −→ F−2 −→ 0 for n > 1.
(2.3.3)

Using the identification Vol ∼=
{

Π(F1) for n = 1

Πn(F3−n) for n > 1
we dualize the above exact sequence

and get:

0 −→ Π(F2) −→ r∗(1) −→ z∗ −→ 0

0 −→ Πn(F5−n) −→ r∗(n) −→ z∗ −→ 0.
(2.3.4)

Let us realize the elements of ns∗(n) and r∗(n) by selfadjoint (pseudo)differential operators

F̂ : Fλ −→ Πn(Fµ). We have already done this for vir in Introduction.
If g∗ is of the form FA of Π(FA), then the order of the Sturm–Liouville operator determined

by ĝ∗ is equal to A. In particular, the order of F̂ is equal to 4−n for ns∗(n) and 0 for n = 4′

or 40 as well; it is equal to 5 − n for r∗(n) if n > 1 and 2 for r∗(1).
Now, let us solve the systems of two equations, of which the first equation counts the order

of Sch and the second one is the dualization condition:

µ = 2 + (2 − n) + λ, µ + λ = 2 − n for ns(n)

µ = 1 + 1 + λ, µ + λ = 1 for r(1)

µ = 2 + (3 − n) + λ, µ + λ = 3 − n for r(n), n > 1.

The solutions are:

µ = 3 − n, λ = −1 for ns(n)

µ = 3
2
, λ = −1

2
for r(1)

µ = 4 − n, λ = −1 for r(n), n > 1.

For the remaining four distinguished stringy superalgebras the Sturm-Liouville operators
are matrix ones and the corresponding calculations are more involved.

2.3. The list of Sturm-Liouville operators. For kL(1|n) and n = 0, 1 we can deduce the
form of the Sturm-Liouville operators by factorization. For n > 1 and for kM(1|n) we define
the Sturm-Liouville operators as self-adjoint operators equal to the sum of the operator
given in the tables with a potential F , where F ∈ Πn(F) for kL(1|n) and F ∈ Πn+1(F)
for kM(1|n): the parity of the potential should be equal to that of the operator. Set ∆ =
K̃θn

K̃−1
1 − K̃−1

1 K̃θn
. The operators are given with respect to forms α and αM ; in realizations

where the contact fields preserve the forms α′ and α′M the expressions are more involved.

n 0 1 2 3

kL(1|n) K2
1 KθK1 Kθ1

Kθ2
Kθ1

Kθ2
Kθ3

(K1)
−1

kM(1|n) − ∆K̃2
1 ∆K̃ζK̃1 ∆(K̃ξK̃η − K̃ηK̃ξ)

kL(1|4) (1) Kθ1
Kθ2

Kθ3
Kθ4

(K1)
−2

(2) xKx−1(K1)
−1 − (K1)

−1xKx−1

(3) any constant c 6= 0

kM(1|4) ∆K̃ζKθ1
Kθ2

(K̃1)
−1



STURM–LIOUVILLE AND KORTEVEG–DE VRIES OPERATORS 13

For the Lie superalgebra vectL(1|1) the Sturm-Liouville operator is the same operator as
for kL(1|2) but rewritten in the form of a matrix and with η replaced with ∂ξ. We leave as
an exercise to the reader the pleasure to write this matrix explicitely as well as to reexpress
it in terms of the fields Mf for mL(1). For vectL(1|2) and svectLλ(1|2) the Sturm-Liouville
operators can be obtained from the Sturm-Liouville operator for kL(1|4) after restriction.
All this will be done explicitely elsewhere.

2.4. The KdV hierarchies associated with the Sturm–Liouville operators. Let Lr

be the Sturm–Liouville operator of order r, see sec. 2.3. As Shander taught us [Sh], the time
parameter should run in super setting over a 1|1-dimensional supermanifold, cf. [MR], and
define the KdV-type equations as the following Lax pairs:

DT (L) = [L,Ak], where Ak = (Lk/r)+ for k 6≡ r (mod r) (2.5.1)

and where

DT =

{
d
dt

if p(Ak) = 0̄
∂
∂τ

+ τ ∂
∂t

if p(Ak) = 1̄.

Here the subscript + singles out the differential part of the pseudodifferential operator. For
complex k and for ns(4) when L is a pseudodifferential operator, the differential part is
not well-defined and we shall proceed, mutatis mutandis, as Khesin–Malikov. The details is
subject of another paper.

§3. D’inechvé

3.1. The Schwarz derivative and Bott cocycle. Affine actions. Let S = R/2πZ;
witt the Lie algebra of complex-valued polynomial vector fields on S.

As is not difficult to verify, to the Gelfand-Fuchs 2-cocycle

a
d

dx
, b

d

dx
7→

∫

S

ab′′′dx (3.1)

on witt with trivial coefficients there corresponds a 1-cocycle with values in witt∗:

a
d

dx
7→ a′′′dx2 (3.2)

Two problems arise in connection with this:
1) describe precisely relation between H2(g; M) and H1(g; M ⊗ g∗). Since the latter are

easier to calculate than the former, this is rather important. The question was solved by
Dzhumadildaev [Dz] and in the Ph.D. thesis of his and S. Shnider’s student P. Zusmanovich
(Bar-Ilan U., 1992, regrettably, unpublished). Here we reproduce a part of his letter to
Leites.

“First of all, observe that there is no natural map H1(g; g) −→ H2(g) (only if g has a
nondegenerate invariant form, i.e., fg ≃ g∗, we may consider a map H2(g) −→ H1(g; g).).

Contrarywise, there is a natural map H2(g) −→ H1(g; g∗). Indeed, to any ψ : g×g −→ C

assign Aψ ∈ Hom(g; g∗) setting

(Aψ(x))(y) = ψ(x, y).

It turns out that Aψ ∈ H1(g; g∗) and the map A is monomorphism.
Generally A is not an epimorphism, and to describe the cokernel, we need pure Leibniz

central extensions. Namely, the following sequence is exact:

0 −→ H2(g) −→ H1(g; g∗) −→ HS0(g) −→ H3(g) −→ H2(g; g∗) −→ HS1(g) −→ ...
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Here all the signs, except for HSi(g), are well-known, whereas HS∗(g) is precisely what
I call symmetric cohomology of Lie algebras. The corresponding cochain complex and the
differential are constructed in my paper [Dz].

The term of interest to us, HS0(g), has a nice description: it is precisely the space of
invariant symmetric bilinear forms on g.

As is well-known, to any invariant symmetric bilinear form (·, ·) a 3-cocycle corresponds:
C3 : (x, y, z) 7→ ([x, y], z). Let

B : HS0(g) −→ H3(g)

be the corresponding map. I claim that

ker B = coker(H2(g) −→ H1(g; g∗)).

For example, for complex simple finite dimensional Lie algebras, the 3-cocycle ([x, y], z) is
nontrivial, i.e., kerB = 0, hence, H2(g) ∼= H1(g; g∗) = 0.

If g is a vectorial Lie algebra, it can happen that kerB is nontrivial. For example, for
svect(3) and for Hamiltonian Lie algebras (on tori, when there are invariant forms on g).
Then the “pure Leibniz central extrensions” arise, i.e., a central extension of the Lie algebra,
the result of which is not a Lie algebra: the result only satisfies the Jacobi identity, but not
the skew-symmetry one.

Thus, a part of H1(g; g∗) describes the Lie central extensions and another part describes
pure Leibniz central extensions”.

2) Generally, the cohomology H1(g; M) correspond to affine actions of g in M which are
of particular interest for stringy algebras, cf. [FL]. In her M.A. thesis Poletaeva calculated
some of these actions, namely she obtained the following statement.

Theorem . 1) For the contact stringy Lie superalgebras the possible nonzero values of

H1(g;Fλ) and the corresponding cocycles are as follows

λ \ n 0 1 2 3 n > 3

0 f
t
, df

dt
(2−E)(f)

t
, ∂f

∂t
(2−E)(f)

t
, ∂f

∂t
, KξKηf

(2−E)(f)
t

, ∂f
∂t

(2−E)(f)
t

, ∂f
∂t

1 − Kθ
∂f
∂t

− KξKθKη −
2 d2f

t2
− KξKηf − −

3 − Kθ
∂2f
∂t2

− − −
4 d3f

dt3
− − − −

2) For g = kL(2) the nonzero cocycles H(g; Tλ,µ) and the corresponding cocycles are as

follows

λ, µ cocycles

0, 0 ∂f
∂t

,
(2−E)(f)

t
, KξKηf

1, 1 Kξ(
(2−E)(f)

t
), KξK1f

1,−1 Kξ(
(2−E)(f)

t
), KηK1f

2, 0 KξKηK1f

The cocycles (3.1) and (3.2) can be integrated to the following cocycles on the diffeomor-
phism group of S. Ten years ago, as far as I know, no realization of this complex group
corresponding to witt existed. So far let us consider Diff S, we identify the elements of
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Diff S with functions, the images of x = eiϕ, where ϕ is the angle parameter on S. Polnaya
putanitsa.

This problem must be discussed with Yura Neretin. Since there are THREE real forms
of witt, it is interesting to understand what are the other two groups, if any, and how to
proceed as the odd dimension grows.

Define the Bott cocycle to be

Bott(g1, g2) =

∫

S

ln(g1 · g2)
′d ln g′

2 ()

Define the Schwarz derivative to be

S(g) =

(
g′′′

g′
− 3

2

(g′′)2

(g′)2

)
dx2 ()

Consider a 2nd order differential operator L : Fλ −→ Fµ:

L(fdxλ) = (af ′′ + bf ′ + cf)dxµ

If L is selfadjoint (b = 0) and a = 1, then the change of variable x = g(y) transforms L as
follows:

??

so cdx2 accrues Schwarz derivative of c.
Passing to kL(n), Radul observed that the conventional expression of the Schwarz deriv-

ative is better to rewrite in terms of the multiplier of the contact form α under the action
of the supergroup of contactomorphisms DiffαS1|n, the subsupergroup of diffeomorphisms
preserving the Pfaff equation α = 0. Namely, let

G :

{
x = f(X, Θ)
θi = ϕi(X, Θ)

be a contact transformation. (As is easy to verify, IS THIS TRUE? HOW ABOUT m(1)?
kM(n)? this means that

Kθi
f +

∑

j

ϕjKθi
ϕj = 0 for all i

and the form α expressed in coordinates X, Θ accrues a factor, the multiplier m given by
the formula

2m = K1f −
∑

j

ϕjK1ϕj

Moreover,

Kθi
=

∑
aijKΘi

,

where
(aij) = (Kθi

ϕj)
−1.

As is easy to see, ∑

j

akjalj = m−1δk,l,

i.e., (akj) is the conformal matrix preserving the symplectic structure on Kerdα.
for n = 2 determine the matrix multiplier M from the formula

G∗(ei) =
∑

j

Mij(G)ej,

where (e1, e2) are the odd vectors that span the fiber of the trivial bundle with which S1|2

is associated and selected to be orthogonal with respect to Kerdα. Observe that M(G)
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does not depend on the choice of the basis. VERNO LI chto M = (akj)? (U Radula eto
pochemu-to otmecheno tol’ko pri n = 2.)

For n = 2 set 〈(
a b
−b a

)
,

(
c d
−d c

)〉
= ad − bc.

Observe that for

(
a b
−b a

)
∈ CO(2; (C∞(S1|2) ⊗ Λ)0̄) we have

a2 + b2 ∈ C∞(S, R+)

since Grd ∈ Diff+(S); therefore ln(a2 + b2) is well-defined. So the expression

ln

(
a b
−b a

)
= ln(a2 + b2)

(
1 0
0 1

)
+ ϕ

(
0 1
−1 0

)
,

where cos ϕ = a
a2+b2

and cos ϕ = b
a2+b2

, i.e., ϕ is determined modulo 2πZ.

Schwarz derivatives and Bott cocycles (a, b) 7→
∫

S1|n c(a, b) computed so far ([Ra]) are:

n Schwarz derivative

0 1
2

(
m′′

m
− 3

2

(
m′

m

)2
)
α2

∫
S

ln(a · b)′d ln b′

1 1
2

(
Kθ(m′)

m
− 3

2
m′Kθ(m)

m2

)
α3/2

∫
S1|1 ln m(a · b)Kθ ln m(b)vol(x, θ)

2 1
2

(
Kθ1

Kθ2
(m)

m
− 3

2

Kθ1
(m)Kθ2

(m)

m2

)
α exp

(∫
S1|2〈ln M(a · b), ln M(b)〉vol(x, θ)

)

3 −3m3/2
(
v1(v2), v3

)
α1/2

4
(
??

)
α−1/2

4o
(
??

)
α−1/2

4′
(
??

)
α−1/2

****************

N.Definitions. The equation of the form

σ(x)y′′ + τ(x)y′ + λy = 0, (N.1)

where σ(x) is a polynomial of degree ≤ 2, τ(x) is a polynomial of degree ≤ 1 and λ is a
constant, is called a hypergeometric type equation and its solutions are called functions of
hypergeometric type. By multiplying (N.1) by an appropriate ρ(x) one reduces (N.1) to the
selfadjoint form

(σ(x)ρ(x)y′)′ + λρ(x)y = 0, where (σ(x)ρ(x))′ = τ(x)ρ(x). (N.2)

Let ym and yn be solutions of (N.2) with distinct eigenvalues λm and λn, respectively. If for
some a and b, not necessarily finite, ρ(x) satisfies the conditions

σ(x)ρ(x)xk|x=a,b = 0 for k = 0, 1, . . . ,

then
b∫

a

ym(x)yn(x)ρ(x)dx = 0. (N.3)

(Clearly, if a and b are finite, it suffices to require that σ(x)ρ(x)|x=a,b = 0.)
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In 1929 Bochner [B] classified all orthogonal polynomials which arise as solutions of (N.1).
Up to a linear change of variable, there are only four distinct types of them, all of which are
called classical orthogonal polynomials. They are

1) the Jacobi polynomials P
(α,β)
n (x) defined for α, β > −1 as polynomial solutions of (0.2)

for σ(x) = 1 − x2, ρ = (1 − x)α(1 + x)β, (a, b) = (−1, 1) and τ = β − α − (α + β + 2)x;
λ = n(n+α+β+1). For α = β = 1

2
the Jacobi polynomials are called Chebyshev polynomials.

2) the Bessel polynomials B
(A,B)
n (x) defined for A 6∈ Z+, B 6= 0 as polynomial solutions of

(0.2) for σ(x) = x2, ρ =??, (a, b) =?? and τ = Ax + B; λ = −n(n + A − 1).

3) the Laguerre polynomials L
(α)
n (x) defined for α 6∈ −N as polynomial solutions of (0.2)

for σ(x) = x, ρ =??, (a, b) =?? and τ = α + 1 − x; λ = n.

4) the Hermite polynomials H
(α)
n (x) defined for α 6∈ −N as polynomial solutions of (0.2)

for σ(x) = 1, ρ =??, (a, b) =?? and τ = −2x; λ = 2n.
Now, consider operator in SEVERAL variables X = (x1, . . . , xn):

L = Aij(X)DiDj + Bi(X)Di + C

where deg Aij ≤ 2, deg Bi ≤ 1, C = const.
What are its canonical forms? What are the canonical forms of the EQUATION Ly = 0?
For n = 2 the question was considered (solved?) by ??? Frydriszak [?] considered several

purely odd indeterminates and very degenerate case Aij = const; he did not study normal
forms.

I am not so sure that Frydriszak’s setting of the problem is natural, whereas the above
examples of Sturm-Liouville operator suggest to investigate the cases of one even x and
several odd θ’s. Moreover, the least order of self-adjoint operators in these cases is not 2.
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2.3. The list of Sturm-Liouville operators. For kL(1|n) and n = 0, 1 we can deduce
the form of the Sturm-Liouville operators by factorization. For n > 1 and for kM(1|n) we
define the Sturm-Liouville operators as self-adjoint operators. In the following table we use
an abbreviation: ∆ = K̃θ(K̃1)

−1 − (K̃1)
−1K̃θ. The Sturm-Liouville operator is the sum of

the operator given in the tables with a potential F , where F ∈ F or F ∈ Π(F): the parity
of the potential should be equal to that of the operator.

n 0 1 2 3

kL(1|n) K2
1 KθK1 KξKη − KηKξ (KξKθKη − KηKθKξ)(K1)

−1

kM(1|n) − ∆K̃2
1 ∆K̃θ1

K̃1 ∆(K̃ξK̃η − K̃ηK̃ξ)

kL(1|4) (1) (Kξ1Kη1
− Kη1

Kξ1)(Kξ2Kη2
− Kη2

Kξ2)(K1)
−2

(2) xKx−1(K1)
−1 − (K1)

−1xKx−1

(3) c 6= 0 any constant

kM(1|4) (1) ∆K̃θ1
(K̃ξK̃η − K̃ηK̃ξ)(K̃1)

−1

So far I did not write an explicit expression for the Sturm-Liouville operator corresponding
to cocycle (3) or for vectL(1|2) and vectLλ(1|2).

For the Lie superalgebra vectL(1|1) the Sturm-Liouville operator is the same operator as
for kL(1|2) but rewritten in the form of a matrix and with η replaced with ∂ξ. We leave as
an exercise to the reader the pleasure to write this matrix explicitely as well as to reexpress
it in terms of the fields Mf for mL(1).

For vectL(1|2) and svectLλ(1|2) the Sturm-Liouville operators can be obtained from the
Sturm-Liouville operator for kL(1|4) after restriction.
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SE-106 91, Stockholm, Sweden; mleites@matematik.su.se


