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The point functor allows us to associate with each Lie superalgebra the class of 

ordinary Lie algebras, composed of its points over Grassman algebras. To these 

Lie algebras we extend the Alder--Kostant geometric scheme of constructing non- 

linear Lax equations. 

O. A scheme of constructing integrable systems associated with Lie algebras was proposed 

by Kostant and Adler. Cf. [i] for a detailed account of an improved version of it and for the 

literature (cf. also the paper of Semenov-Tyan-Shanskii in the present issue). In this note 

we consider the transfer of the Adler--Kostant scheme to Lie superalgebras. The technical means 

for such a generalization and for the construction of examples are known from the structure 

theory of simple Lie superalgebras. The psychological difficulties are more serious: it is 

not easy to imagine what a differential equation on a ringed space with nilpotents in the 

structural sheaf means (and precisely such a definition is usually used in work on super- 

manifolds). 

In the present note we adopt a completely elementary point of view: instead of super- 

objects (supergroup, supermanifolds) we consider the ordinary objects associated with them 

(Lie groups, manifolds, etc.). The "language of points" which allows us to pass to such a 

description is introduced in Sec. i. (Of necessity the account here is more algebraized, 

since it is necessary to establish a connection with the "nonelementary" definitions of [2].) 

The method of constructing set-theoretic models of objects with nilpotents in the structure 

sheaf ("point functor") is well known in algebraic geometry. The specifics of the problem 

compel us to consider immediately a whole collection of set-theoretic models, and not one as 

is usually the case. 

i. Let J~ -(~/i 0) be a supermanifold [2]. (In this paper we consider only algebraic 

supermanifolds over ~ .) For any commutative superalgebra C we define the set ~(C) = 

~o%(C,J~) �9 To a morphism of supermanifolds ~: ~----~ corresponds a map of sets 

~(C):~(C)--~); here to morphism ~: C �9 C r correspond maps ~:~(C') ---~(C)~ ~N: 

~(C~----~(C) such that ~ C ) -  ~G')V ~. The supermanifold ~3 is a supergroup if 

and only if the sets ~(C) are groups and the maps @~ @ e ~o% (C,C t) are group homo- 

morphisms. 

By an action ~ of a supergroup ~ on a supermanifold ~we mean a collection of actions 

Q(C): ~(C)~(C) .~/~), compatible with the substitutions @: C--~C'. 

Examples. i. The linear supermanifold of dimension (~,~t)~,~-(V~,0v0 | , 

where V~,V~ are linear spaces of dimension ~D% , respectively. Let V =V~ | V T 

be a ~2 -graded space. Then ~(C)-(V| 
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2. Let ~ =~ �9 ~T be a Lie superalgebra over ~ Then ~(C) --('~ | ; 

obviously ~(C) has an imposed (canonical) Lie algebra structure over C �9 The co- 

adjoint representations of the Lie algebras ~ (C) are compatible with the morphisms 

~' C - C' , and define a representation of the Lie superalgebra ~ in the sense of 

the definition given above. 

3. The supergroup ~ (Pl~) is a functor which associates with a commutative 

superalgebra C the group ~L(pl~iC) of even invertible matrices of order (p,~) with 

elements from 

Remark. For a given supermanifold ~L , instead of an arbitrary commutative super- 

algebra C , it suffices to consider a sufficiently large Grassman algebra ~ For each 

supermanifold the number of variables in ~ is its own, so it is convenient not to fix it, 

but to consider it "very large." We shall make more precise in what sense a supermanifold 

is defined by its ~ -points. 

LEMMA. Let ~,~ : ~ r ~ be morphisms of supermanifolds, a~),~(~):~(A(~ 

---~(~(~)) be the corresponding mappings of sets, (i) If iL~t~ =(p,~), �9 ~ , then it 

follows from ~(~) - ~(~) that ~-- ~ . (ii) Let the collection of maps Z (~): 

/I(A(~))--~(A(K)) be defined for ~ and suppose to each homomorphism ~:A(~)---~ 

A (~') there corresponds a map of sets ~:~(A(K ~--~(~(~)), ~ : ~(A(~ ))---'~(A(~ 

such that ~(~)~(~')~ . Then there exists a morphism of supermanifolds s ~----~ 

such that ~(K) =~(~). 

The use of the language of A -points allows us to avoid the consideration of super- 

objects almost completely. For example, the Adler--Konstant scheme for Lie superalgebras is 

the ordinary scheme applicable to the special class of Lie algebras which are A -points of 

Lie superalgebras. The structure theory of Lie superalgebras is used to describe the decom- 

position into subalgebras, the construction of invariants of the coadjoint action, orbits, 

etc. 

The convenience of the language of A -points compared with the classical language of 

ringed spaces is clearly evident upon considering actions of supergroups on supermanifolds. 

The orbits of such an action furnish examples of objects which one wants to consider sub- 

supermanifolds, but which are not (they are not ringed spaces). 

Example. We consider S0(~) -orbits in the standard ~ -dimensional representation. 

We shall now assume the space of the representation is (0,~) -dimensional (and the action 

of the group is understood, for example, in the language of A -points, described above). 

Then all the orbits except the trivial one in general have no points over C I 

By a ~ -supermanifold we mean a subfunctor of a functor from the category C 5A of com- 

mutative superalgebras to the category of sets, ~et5 , of the supermanifold represented.* 

Thus, an orbit which is not a supermanifold will be a ~ -supermanifold. 

�9 Apparently it is precisely such objects which are meant in [3]. We have not succeeded in 

attaching a precise menaing to the difficult definitions of this paper (it is not excluded 

that the author means not G -supermanifolds, but simply any functors C~A ---~ ~ei5 ; 

the meaninglessness of such a definition is already evident for ordinary manifolds). 
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The possibility of transferring all differential-goemetric constructions to -super- 

manifolds is unclear. This does not lead to difficulties in studying differential equations: 

in accord with our general approach we consider only ordinary differential equations on the 

set of A -points. For ~ -supermanifolds the set of ~ -points is a well-defined ordinary 

manifold. (For example, if one is concerned with an orbit of the coadjoint action, this is 

an ordinary orbit of the group G A .) Here the following questions arise: on the "functori- 

ality" of dynamics, i.e., on the connection of solutions of a differential equation in dif- 

ferent A-hulls and on the representabillty of different functors in our categories. For- 

tunately, these questions are not important for the elementary investigation of differential 

equations. 

It is important to note that any differential equation on ~ can be reduced by ex- 

pansions with respect to a basis in the Grassman algebra to a system of differential equations 

such that all the equations except the underlying ones (i.e., those connected with the even 

part of the superalgebra ~=~5 ~ ~[ ) are linear nonautonomous equations [4]. (Cf. the 

examples of Toda superlattices in [ii].) Thus, passage to Lie superalgebras does not in- 

crease our possibilities too much: the new nonlinear equations are extensions of old ones by 

means of linear nonautonomous equations. Such a mechanism is well-known to specialists in 

the method of the inverse problem. The justification for the superization of the Adler--Kostant 

scheme is in its geometric character and the possibility of a coordinate-free treatment of 

rather complex systems (which in the coordinates associated with a basis in ~ are not so 

simple even to write out.) 

2. To apply the Adler--Kostant scheme and the Lie algebra ~A we need the following 

objects. 

(I) The decomposition of ~A into the linear sum of two Lie subalgebras. We shall con- 

sider the natural decompositions generated by the decomposition of the Lie superalgebra 

into the linear sum of two Lie subsuperalgebras, ~ = 0~ + ~ Here we obviously have 

(2) The description of the orbits of the algebra <~A)0-(~A=OLAS 5A" 

(3) The description of the invariants of the coadjoint action of the algebra ~A 

Let ~ he a contragradlent simple Lie superalgebra. As examples of such superalgebras 

over ~ one has the classical flnite-dimensional Lie superalgebras and the exterior auto- 

morphisms of Inflnlte-dimensional Lie superalgebras associated with them which are the ana- 

logs of the Kac-Moody algebras, of. [5], and also the compressions of some of them and the Lie 

superalgebras of stringed theories %~(~), ~ (~), ~(~) for 0 ~  , cf. [6]. The 

decompositions of the Lie superalgebra ~ into a sum of Lie subsuperalgebras are canonically 

connected with its ~ -gradings. We note that in contrast with Lie algebras for simple 

finite-dimensional Lie superalgebras there are several inequivalent systems of simple roots 

and consequently essentially different principal ~ -gradlngs. All ~ -gradings are listed 

in [7]. 

In describing the invariants of finite-dimensional simple Lie superalgebras it is useful 

to identify the superalgebra with its dual space (when such an identification is possible). 
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Cf. [8] for a list of invarlant polynomials on flnite-dimensional simple Lie superalgebras. 

In large part they have the form 5t~ ~(~)~ or 01%9(X) ~ for some representation 9 ' 

where 5tZ is the supertrace [2], and 01Z qAc ~)= i% ~ is the odd or strange trace. On 

the Lie superalgebras of the series W, 5, 5 N there are no invariant polynomials except 

constants. 

One should dwell especially on the superalgebras ~ (K) . For them the invariant bi- 

linear form on ~(~) is odd; hence the canonical isomorphism ~ ~ ~ induced by 

this form is the operator ~ of change of parity. Here the Kirillov bracket on ~ goes 

into the so-called Byutan bracket or odd bracket 

The passage from invariants of a Lie superalgebra to invariants of the coadjolnt representa- 

tion of the Lie algebra ~A is obvious due to the following simple assertion. 

Lemma. Let ~ ~ I (~) be an invariant polynomial on the dual space of the Lie super- 

For ~A,~ ~ let ~s ~A~(X ). Then ~% is an invariant algebra 

polynomial on ~ ; and the map A~(~ *) ~ ~(~): ($j~)~ ~ ~5 is surjective. 

Examples of the simplest integrable systems associated with finite-dimensional simple 

superalgebras are given in the paper of R. Yu. Kirillova published in this collection. More 

interesting systems are connected with infinite-dimensional simple Lie superalgebras and 

two-dimensionalized systems of the type considered in [9]. The consideration of these systems 

in the spirit of the Adler--Kostant method uses central extension of the current superalgebra 

(for ordinary current algebras the two-dimensionalization is described in [i0]). The most 

important problem here is the choice of interesting equations. 
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