Multiple priors valuation of a liability cash flows subject to capital requirements

Filip Lindskog

based on recent work with H. Engsner and J. Thøgersen, and earlier work with H. Engsner and K. Lindensjö

OWARS Oct 13, 2021

Filip Lindskog (Stockholm University)

Liability cash flow valuation

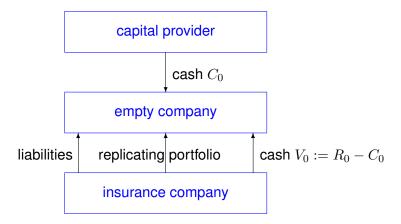
OWARS Oct 13, 2021 1 / 27

4 **A** N A **B** N A **B** N

Valuation of aggregate insurance liabilities

- Aim: Present a conceptually sound market consistent approach to valuing an insurance company's aggregate liability to its policyholders
- Insurance companies are regulated, subject to externally imposed capital requirements. Sharpened capital requirements should lead to increased values of non-hedgeable risks
- Owners (share holders) are not liable for losses that exceed the total asset value of the company. Limited liability should enter in the valuation of non-hedgeable risks
- The liability value should depend on the assets held by the insurer for replication/hedging of liabilities

Hypothetical transfer of liabilities



Suppose liabilities and replicating portfolio together, after transfer, imply capital requirement of size R_0 according to some regulatory rule

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Silly example

- Liability: payment of a Google share in three years
- Replicating portfolio: A forward contract with forward price *F* on the delivery of a Google share in three years, a three-year zero-coupon bond with face value *F*
- Liability is perfectly hedged by the replicating portfolio \Rightarrow no risk $\Rightarrow R_0 = 0 \Rightarrow V_0 = C_0 = 0$
- Real insurance liability cash flow are complex, not perfectly replicable, and there is no obvious "best" replicating portfolio
- Solvency 2/EIOPA says that the replicating portfolio should minimize solvency capital requirements of the liability-receiving entity (Article 38: Reference undertaking)

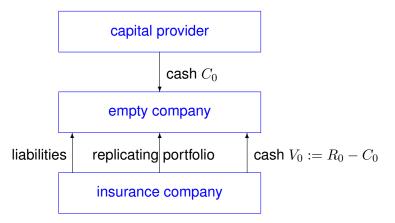
Hypothetical transfer of liabilities

- Hypothetical transfer at time 0 of the liability together with a replicating portfolio to an empty corporate entity whose role is to manage the liability run-off (and then cease to exist)
- All values are discounted by a bank account numeraire
- The following are transferred: original liability with cash flow $(X_t^o)_{t=1}^T$, replicating portfolio with cash flow $(X_t^r)_{t=1}^T$ and a cash amount V_0 invested in the numeraire asset.
- Equivalently: residual liability with cash flow $X = X^o X^r$ and cash amount V_0 are transferred
- V_0 is value of X; V_0 + [market price of X^r] is the value of X^o
- How should V₀ be determined?

The new liability owner's perspective

- At each time *t*, ownership of new entity requires meeting externally imposed capital requirements R_t , where $R_T = 0$
- *C_t* is the value of continued ownership of the entity managing the liability run-off
- Ownership can be terminated at any time, option to default, without costs (but possibly with a net loss)
- Upon termination of ownership all assets of the entity are transferred to the policyholders
- The owner's benefit is the option to collect dividends/surplus throughout the run-off or until terminating ownership

Hypothetical transfer of liabilities



If the option to collect dividends/surplus is worth C_0 to the new owner, then the insurance company should pay $V_0 := R_0 - C_0$ to make the entity managing the liability run-off solvent

< ロ > < 同 > < 回 > < 回 >

The cash flows to owner and policyholders

- $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t=0}^T, \mathbb{P})$, adapted processes $(X_t^o)_{t=1}^T, (X_t^r)_{t=1}^T, (R_t)_{t=0}^T$
- Upon stopping at time τ the cumulative cash flow (dividends) to the owner in return for providing initial capital C_0 is

$$\sum_{t=1}^{\tau-1} \left(R_{t-1} - R_t - X_t \right) = R_0 - R_{\tau-1} + \sum_{t=1}^{\tau-1} X_t^r - \sum_{t=1}^{\tau-1} X_t^o,$$

 $\tau \in \{1, \dots, T+1\}$ and $\tau = T+1$ means a complete run-off

 Upon stopping at time τ the cumulative cash flow to the policyholders is

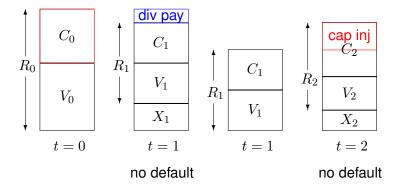
$$\sum_{t=1}^{\tau-1} X_t^o + R_{\tau-1} + \left[\text{time-}\tau \text{ market price of } \sum_{t=\tau}^T X_t^r \right]$$

< 口 > < 同 > < 回 > < 回 > < 回 > <

Dividend payment followed by capital injection

div pay =
$$R_0 - R_1 - X_1$$

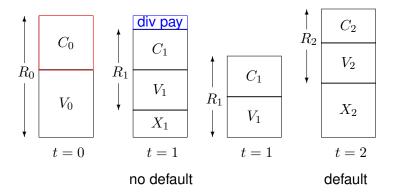
cap inj
$$= -(R_1 - R_2 - X_2)$$



$$V_t := R_t - C_t$$
 for all t

э

Dividend payment followed by default



Why default instead of a capital injection here?

Filip Lindskog (Stockholm University)

Liability cash flow valuation

OWARS Oct 13, 2021 10 / 27

Value of ownership

- Suppose owner assigns monetary value at time *t* to discounted future cash flow using valuation operator *Y* → VALUE_t(*Y*)
- Value of ownership at time t = T is $C_T := 0$ and

$$C_t := \operatorname{ess\,sup}_{\tau > t} \operatorname{VALUE}_t \left(\sum_{u=t+1}^{\tau-1} \left(R_{u-1} - R_u - X_u \right) \right), \quad t < T$$

4 3 5 4 3 5

Value of ownership

 Choose a set Q of probability measures Q equivalent to P such that each Q ∈ Q correctly prices traded cash flows and may correspond to a pessimistic view of nontraded insurance risk

Choose

$$\operatorname{VALUE}_{t}(Y) := \operatorname{ess\,inf}_{\mathbb{Q}\in\mathcal{Q}} \mathbb{E}^{\mathbb{Q}}_{t}[Y], \quad \mathbb{E}^{\mathbb{Q}}_{t}[\cdot] := \mathbb{E}^{\mathbb{Q}}[\cdot \mid \mathcal{F}_{t}]$$

• $\mathcal{Q} = \{\mathbb{Q}_0\}$ is a possible but not necessarily suitable choice

• Value of ownership at time t < T is

$$C_t := \operatorname{ess\,sup}_{\tau > t} \operatorname{ess\,inf}_{\mathbb{Q} \in \mathcal{Q}} \mathbb{E}_t^{\mathbb{Q}} \left[\sum_{u=t+1}^{\tau-1} \left(R_{u-1} - R_u - X_u \right) \right]$$

assuming Q-uniform integrability of the involved variables

Value of residual liabilities

• Value of the residual liability at time t is $V_t := R_t - C_t$, implies

$$V_t = \operatorname{ess\,inf}_{\tau > t} \operatorname{ess\,sup}_{\mathbb{Q} \in \mathcal{Q}} \mathbb{E}_t^{\mathbb{Q}} \bigg[\sum_{u=t+1}^{\tau-1} X_u + R_{\tau-1} \bigg]$$

Note:

$$V_{t} \leq \operatorname{ess\,sup}_{\mathbb{Q}\in\mathcal{Q}} \mathbb{E}_{t}^{\mathbb{Q}} \left[\sum_{u=t+1}^{T} X_{u} \right] \text{ (no stopping) },$$
$$V_{t} \geq \operatorname{ess\,sup}_{\mathbb{Q}\in\mathcal{Q}} \operatorname{ess\,inf}_{\tau>t} \mathbb{E}_{t}^{\mathbb{Q}} \left[\sum_{u=t+1}^{\tau-1} X_{u} + R_{\tau-1} \right] \text{ (sup inf } \leq \operatorname{inf\,sup)}$$

Filip Lindskog (Stockholm University)

Value of original liabilities

Recall that all $\mathbb{Q}\in\mathcal{Q}$ correctly prices traded cash flows. Hence, for any $\mathbb{Q}'\in\mathcal{Q},$

$$L_{0} = \mathbb{E}_{0}^{\mathbb{Q}'} \left[\sum_{u=1}^{T} X_{u}^{r} \right] + V_{0}$$

$$= \mathbb{E}_{0}^{\mathbb{Q}'} \left[\sum_{u=1}^{T} X_{u}^{r} \right] + \inf_{\tau > 0} \sup_{\mathbb{Q} \in \mathcal{Q}} \mathbb{E}_{t}^{\mathbb{Q}} \left[\sum_{u=1}^{\tau-1} X_{u} + R_{\tau-1} \right]$$

$$\leq \mathbb{E}_{0}^{\mathbb{Q}'} \left[\sum_{u=1}^{T} X_{u}^{r} \right] + \sup_{\mathbb{Q} \in \mathcal{Q}} \mathbb{E}_{t}^{\mathbb{Q}} \left[\sum_{u=1}^{T} (X_{u}^{o} - X_{u}^{r}) \right]$$

$$= \sup_{\mathbb{Q} \in \mathcal{Q}} \mathbb{E}_{t}^{\mathbb{Q}} \left[\sum_{u=1}^{T} X_{u}^{o} \right]$$

Filip Lindskog (Stockholm University)

OWARS Oct 13, 2021 14 / 27

Comment on Cost-of-Capital Valuation

For cash flow $(Y_t)_{t=1}^T$, if instead of

$$\operatorname{VALUE}_t\left(\sum_{u=t+1}^T Y_u\right) := \operatorname{ess\,inf}_{\mathbb{Q}\in\mathcal{Q}} \mathbb{E}_t^{\mathbb{Q}}\left[\sum_{u=t+1}^T Y_u\right]$$

we choose

$$\operatorname{VALUE}_t\left(\sum_{u=t+1}^T Y_u\right) := \mathbb{E}_t^{\mathbb{P}}\left[\sum_{u=t+1}^T \frac{Y_u}{B_{t,u}}\right], \quad B_{t,u} = \prod_{s=t}^{u-1} (1+\eta_s),$$

where η_s are cost-of-capital rates, and $R_t = \text{VaR}_{t,0.005}(-X_{t+1} - V_{t+1})$, then we obtain the valuation framework in (Möhr -11, ASTIN Bulletin) explaining the valuation principle of Solvency 2

4 D N 4 B N 4 B N 4 B N

Optimal stopping with multiple priors

- Conditions on Q necessary to express V_t in terms of a backward recursion (Riedel -09) (hold automatically for Q = {Q₀})
- Q is stable (under pasting) if for a stopping time τ and $\mathbb{Q}^{(1)}, \mathbb{Q}^{(2)} \in Q$ with density processes $D^{(1)}, D^{(2)}$ such that

$$D_t^{(1)} = \frac{\mathrm{d}\mathbb{Q}^{(1)}}{\mathrm{d}\mathbb{P}}\Big|_{\mathcal{F}_t}, \quad D_t^{(2)} = \frac{\mathrm{d}\mathbb{Q}^{(2)}}{\mathrm{d}\mathbb{P}}\Big|_{\mathcal{F}_t},$$

the density process $D^{(3)}$ given by

$$D_t^{(3)} = \mathbb{I}_{\{t \le \tau\}} D_t^{(1)} + \mathbb{I}_{\{t > \tau\}} \frac{D_\tau^{(1)} D_t^{(2)}}{D_\tau^{(2)}}$$

corresponds to $\mathbb{Q}^{(3)} \in \mathcal{Q}$. (Note: $\{t \leq \tau\}, \{t > \tau\} \in \mathcal{F}_{t-1}$)

-

4 D N 4 B N 4 B N 4 B N

Multiple priors optimal stopping and recursions

- Suppose Q is stable under pasting and the set D_T of Radon Nikodym densities ^{dQ}/_{dP} corresponding to Q are weakly compact in L¹(F, ℙ) (automatically fulfilled for Q = {Q₀})
- Seen from time t, the optimal stopping time is

$$\tau_t := \inf \left\{ u \in \{t+1, \dots, T\} : R_{u-1} < X_u + V_u \right\} \land (T+1)$$

• $(C_t)_{t=0}^T$ and $(V_t)_{t=0}^T$ are determined by

$$R_T = C_T = 0,$$

$$C_t = \operatorname{ess\,inf}_{\mathbb{Q}\in\mathcal{Q}} \mathbb{E}_t^{\mathbb{Q}}[(R_t - X_{t+1} - V_{t+1})^+],$$

$$V_t = R_t - C_t,$$

where $(x)^+ := \max(x, 0)$

Comment on Cost-of-Capital Valuation

If the owner uses the valuation operator

$$\text{VALUE}_t\left(\sum_{u=t+1}^T Y_u\right) := \mathbb{E}_t^{\mathbb{P}}\left[\sum_{u=t+1}^T \frac{Y_u}{B_{t,u}}\right], \quad B_{t,u} = \prod_{s=t}^{u-1} (1+\eta_s)$$

to assess value of continued ownership, then the analogous recursion holds:

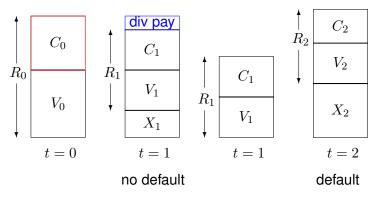
$$V_t = R_t - \frac{1}{1 + \eta_t} \mathbb{E}_t^{\mathbb{P}}[(R_t - X_{t+1} - V_{t+1})^+]$$

which can be expressed $(R_t - X_{t+1} - V_{t+1} = C_{t+1} + R_t - R_{t+1} - X_{t+1})$

$$\frac{\mathbb{E}_t^{\mathbb{P}}[(C_{t+1} + \operatorname{div} \operatorname{pay}_{t+1})^+]}{C_t} = 1 + \eta_t$$

in terms of expected excess return on equity

Optimal stopping: illustration



Optimal to terminate ownership first time τ such that $R_{\tau-1} < X_{\tau} + V_{\tau}$

(4) (5) (4) (5)

Capital requirements by risk measures

Natural to consider $R_t := \rho_t(-X_{t+1} - V_{t+1})$ so that

$$V_t = \rho_t (-X_{t+1} - V_{t+1}) - \operatorname{ess\,inf}_{\mathbb{Q}\in\mathcal{Q}} \mathbb{E}_t^{\mathbb{Q}} [(\rho_t (-X_{t+1} - V_{t+1}) - X_{t+1} - V_{t+1})^+]$$

for conditional risk measures $\rho_t: L^1(\mathcal{F}_{t+1}, \mathbb{P}) \to L^1(\mathcal{F}_t, \mathbb{P})$ such as

$$VaR_{t,0.005}(Y) = F_{-Y|\mathcal{F}_t}^{-1}(0.995),$$
$$ES_{t,0.01}(Y) = \frac{1}{0.01} \int_0^{0.01} VaR_{t,u}(Y) du$$

Notice: $\rho_t = \operatorname{VaR}_{t,q}$ or $\rho_t = \operatorname{ES}_{t,q}$ with $q \downarrow 0$ implies

$$V_0 \uparrow \sup_{\mathbb{Q} \in \mathcal{Q}} \mathbb{E}^{\mathbb{Q}}[X_1 + \dots + X_T]$$

Example: insurance liability cash flow

 $C_{i,k}$ denotes the cumulative amount paid to policyholders during development year 1, 2 due to accidents in accident year *i*. $C_{i,k}$ is observed at calendar time i + k.

Liability cash flow: $(X_1, X_2) = (C_{-1,2} - C_{-1,1} + C_{0,1}, C_{0,2} - C_{0,1})$

Consider the development year dynamics of exposure adjusted cumulative amounts

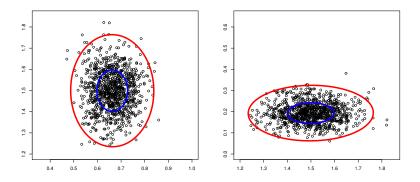
$$C_{i,1} = \frac{2}{3} + \frac{1}{5}\varepsilon_{i,1}, \quad C_{i,2} = \frac{3}{2}C_{i,1} + \frac{1}{5}\varepsilon_{i,2},$$

where all $\varepsilon_{i,k}$ are independent and N(0,1) with respect to \mathbb{P} . Suppose we want \mathbb{Q}_{θ} , $\theta = (f_0, f_1, \sigma_0, \sigma_1)$, such that

$$C_{i,1} = f_0 + \sigma_0 \varepsilon_{i,1}^{\theta}, \quad C_{i,2} = f_1 C_{i,1} + \sigma_1 \varepsilon_{i,2}^{\theta},$$

where all $\varepsilon_{i,k}^{\theta}$ are independent and N(0,1) with respect to \mathbb{Q}_{θ} . Choose a compact set $\Theta \subset (0,\infty)^4$ describing parameter uncertainty.

Illustration of (f_0, f_1) -projection and (f_1, σ_1) -projection of boundary of Θ together with parameter estimates



 $\mathbb{P}(\widehat{\theta}\in\Theta^{\mathrm{red}})=0.9 \text{ and } \mathbb{P}(\widehat{\theta}\in\Theta^{\mathrm{blue}})=0.1$

- $\mathcal{Q}_{\Theta} = \{\mathbb{Q}_{\theta} : \theta \in \Theta\}$ is not stable under pasting
- The "stable hull" Q
 _Θ obtained by considering random switching among the probability measures in Q_Θ according to predictable P(Θ) processes is stable under pasting (and satisfies other required conditions)
- $\widetilde{\mathcal{Q}}_{\Theta}$ is considerably larger than \mathcal{Q}_{Θ} . However,

$$\operatorname{ess\,inf}_{\mathbb{Q}\in\widetilde{\mathcal{Q}}_{\Theta}}\mathbb{E}^{\mathbb{Q}}_{t}[Y_{t+1}] = \operatorname{ess\,inf}_{\mathbb{Q}\in\mathcal{Q}_{\Theta}}\mathbb{E}^{\mathbb{Q}}_{t}[Y_{t+1}]$$

for \mathcal{F}_{t+1} -measurable Y_{t+1} which means that we can take one step in the backward recursion optimizing only over the smaller set \mathcal{Q}_{Θ}

Assume $C_{-1,1} = 2/3$, choose $R_t = \text{VaR}_{t,q}$ and Θ containing the outcome of an estimator of $(f_0, f_1, \sigma_0, \sigma_1)$ with probability 0.1 or 0.9.

$$C_{i,1} = \frac{2}{3} + \frac{1}{5}\varepsilon_{i,1}, \quad C_{i,2} = \frac{3}{2}C_{i,1} + \frac{1}{5}\varepsilon_{i,2},$$

where all $\varepsilon_{i,k}$ are independent and N(0,1) with respect to \mathbb{P} ,

$$C_{i,1} = f_0 + \sigma_0 \varepsilon_{i,1}^{\theta}, \quad C_{i,2} = f_1 C_{i,1} + \sigma_1 \varepsilon_{i,2}^{\theta},$$

where all $\varepsilon_{i,k}^{\theta}$ are independent and N(0,1) with respect to \mathbb{Q}_{θ} . $\mathbb{E}^{\mathbb{P}}[X_1 + X_2] = 4/3$ and we want to compute

$$\underline{V}_0 \le V_0 \le \overline{V}_0 = \sup_{\theta \in \mathcal{Q}} \mathbb{E}^{\mathbb{Q}}[X_1 + X_2]$$

Filip Lindskog (Stockholm University)

$\mathcal{Q}=\mathcal{Q}_{\Theta}$	p = 0.1	p = 0.9
q = 0.10	(1.452, 1.491)	(1.686, 1.787)
q = 0.05	(1.473, 1.491)	(1.730, 1.787)
q = 0.01	(1.490, 1.491)	(1.772, 1.787)
q = 0.005	(1.491, 1.491)	(1.780, 1.787)
$\mathcal{Q} = \widetilde{\mathcal{Q}}_{\Theta}$	p = 0.1	p = 0.9
q = 0.10	(1.470, 1.513)	(1.734, 1.856)
q = 0.05	(1.491, 1.513)	(1.786, 1.856)
q = 0.01	(1.509, 1.513)	(1.835, 1.856)
q = 0.005	(1.511, 1.513)	(1.845, 1.856)

Table: Lower and upper bounds $(\underline{V}_0, \overline{V}_0)$ using $\rho_t = \operatorname{VaR}_{t,q}$. Empirical estimates based on 10^5 iid samples. $\overline{V}_0 = \sup_{\mathbb{Q} \in \mathcal{Q}} \mathbb{E}^{\mathbb{Q}}[X_1 + X_2]$ easily computed

3 > 4 3

main references

- H. Engsner, K. Lindensjö, F. Lindskog (2020) The value of a liability cash flow in discrete time subject to capital requirements *Finance and Stochastics* 24(1), 125-167
- H. Engsner, F. Lindskog, J. Thøgersen (2021+) Multiple-prior valuation of cash flows subject to capital requirements *arXiv:2109.00306*
- C. Möhr (2011) Market-consistent valuation of insurance liabilities by cost of capital ASTIN Bulletin 41, 315-341
- F. Riedel (2009) Optimal stopping with multiple priors *Econometrica* 77(3), 857-908