## Introduction to Sectorial Operators

## 3. problem sheet

## Problem 1

Use the first representation theorem to verify that the operator $T_{0}$ in $L^{2}(0, \infty)$,

$$
T_{0} f=-f^{\prime \prime}, \quad \operatorname{dom} T_{0}=\left\{f \in H^{1}(0, \infty): f^{\prime} \mathrm{AC}, f^{\prime \prime} \in L^{2}(0, \infty), f^{\prime}(0)=0\right\}
$$

is m -sectorial, and specify a sector that contains the numerical range of $T_{0}$. (Cf. Section 4 of the lecture.)

## Problem 2

Provide counterexamples which show that the following statements are not true.
(i) If $A, V$ are linear operators in a Hilbert space, $A$ is self-adjoint and $V$ is $A$-bounded with $A$-bound one then $A+V$ is self-adjoint.
(ii) If $\mathfrak{t}, \mathfrak{t}^{\prime}$ are sectorial forms on a Hilbert space, $\mathfrak{t}$ is closed and $\mathfrak{t}^{\prime}$ is $\mathfrak{t}$-bounded with $\mathfrak{t}$-bound one then $\mathfrak{t}+\mathfrak{t}^{\prime}$ is closed.

## Problem 3

Prove the following statement which is used in the lecture: If $U, V$ are finite-dimensional subspaces of a Hilbert space then

$$
\operatorname{dim} U-\operatorname{dim} V=\operatorname{dim}\left(U \cap V^{\perp}\right)-\operatorname{dim}\left(V \cap U^{\perp}\right)
$$

holds.

## Problem 4

Let $T, V$ be linear operators in a Hilbert space such that $T$ is closed and $V$ is $T$-compact. Show that $V$ is $T$-bounded with $T$-bound zero.

## Problem 5

Let $T \in \mathcal{C}(\mathcal{H})$ and $\xi \in \rho(T)$. Show that for all $\lambda \neq \xi$ the following hold. ${ }^{1}$
(i) $\lambda \in \sigma(T)$ iff $\frac{1}{\lambda-\xi} \in \sigma\left((T-\xi)^{-1}\right)$.
(ii) $\lambda \in \sigma_{\text {ess }, \mathrm{k}}(T)$ iff $\frac{1}{\lambda-\xi} \in \sigma_{\text {ess }, \mathrm{k}}\left((T-\xi)^{-1}\right), k=1,2,3,4$.

Here is a "bonus problem" suggested by Tobias:

## Problem 6

Let $T$ be a self-adjoint operator such that $T^{2}$ is $T$-bounded. Does it follow that $T$ is bounded?

[^0]
[^0]:    ${ }^{1}$ Statements of this type are usually called spectral mapping theorems.

