Stockholms universitet

Introduction to Sectorial Operators

HT 2017

3. problem sheet

Problem 1

Use the first representation theorem to verify that the operator T_0 in $L^2(0,\infty)$,

 $T_0 f = -f'', \quad \text{dom} \, T_0 = \left\{ f \in H^1(0,\infty) : f' \text{ AC}, f'' \in L^2(0,\infty), f'(0) = 0 \right\},$

is m-sectorial, and specify a sector that contains the numerical range of T_0 . (Cf. Section 4 of the lecture.)

Problem 2

Provide counterexamples which show that the following statements are **not** true.

- (i) If A, V are linear operators in a Hilbert space, A is self-adjoint and V is A-bounded with A-bound one then A + V is self-adjoint.
- (ii) If $\mathfrak{t}, \mathfrak{t}'$ are sectorial forms on a Hilbert space, \mathfrak{t} is closed and \mathfrak{t}' is \mathfrak{t} -bounded with \mathfrak{t} -bound one then $\mathfrak{t} + \mathfrak{t}'$ is closed.

Problem 3

Prove the following statement which is used in the lecture: If U, V are finite-dimensional subspaces of a Hilbert space then

$$\dim U - \dim V = \dim \left(U \cap V^{\perp} \right) - \dim \left(V \cap U^{\perp} \right)$$

holds.

Problem 4

Let T, V be linear operators in a Hilbert space such that T is closed and V is T-compact. Show that V is T-bounded with T-bound zero.

Problem 5

Let $T \in \mathcal{C}(\mathcal{H})$ and $\xi \in \rho(T)$. Show that for all $\lambda \neq \xi$ the following hold.¹

(i)
$$\lambda \in \sigma(T)$$
 iff $\frac{1}{\lambda - \xi} \in \sigma((T - \xi)^{-1})$.

(ii)
$$\lambda \in \sigma_{\mathrm{ess},\mathbf{k}}(T)$$
 iff $\frac{1}{\lambda-\xi} \in \sigma_{\mathrm{ess},\mathbf{k}}((T-\xi)^{-1}), k=1,2,3,4.$

Here is a "bonus problem" suggested by Tobias:

Problem 6

Let T be a self-adjoint operator such that T^2 is T-bounded. Does it follow that T is bounded?

¹Statements of this type are usually called spectral mapping theorems.