Introduction to Sectorial Operators

2. problem sheet

Problem 1

Let \mathfrak{t} be a sectorial form with vertex γ and semi-angle θ and let $\mathfrak{h}=\operatorname{Re} \mathfrak{t}$ and $\mathfrak{g}=\operatorname{Im} \mathfrak{t}$. Show the estimate

$$
|\mathfrak{g}[u, v]| \leq(\tan \theta) \sqrt{(\mathfrak{h}-\gamma)[u]} \sqrt{(\mathfrak{h}-\gamma)[v]}, \quad u, v \in \operatorname{dom} \mathfrak{t}
$$

(cf. Lemma 2.8 in the lecture notes).

Problem 2

Prove Proposition 2.14 from the lecture: If \mathfrak{t} is sectorial then \mathfrak{t} is closable iff

$$
\left.\begin{array}{c}
\left(u_{n}\right)_{n} \subset \operatorname{dom} \mathfrak{t} \\
u_{n} \rightarrow 0 \text { in } \mathcal{H} \text { and } \\
\mathfrak{t}\left[u_{n}-u_{m}\right] \rightarrow 0
\end{array}\right\} \Longrightarrow \mathfrak{t}\left[u_{n}\right] \rightarrow 0 .
$$

In this case,

$$
\begin{aligned}
\overline{\mathfrak{t}}[u] & =\lim _{n \rightarrow \infty} \mathfrak{t}\left[u_{n}\right], \\
\operatorname{dom} \overline{\mathfrak{t}} & =\left\{u \in \mathcal{H}: \exists\left(u_{n}\right)_{n} \subset \operatorname{dom} \mathfrak{t} \text { s.t. } u_{n} \rightarrow u \text { in } \mathcal{H}, \mathfrak{t}\left[u_{n}-u_{m}\right] \rightarrow 0\right\} .
\end{aligned}
$$

Problem 3

Show that, in general, the numerical range of a closed operator T is not closed and the inclusion $\sigma_{\mathrm{c}}(T) \subset \Theta(T)$ does not hold.

Problem 4

Which of the following operators in $\ell^{2}(\mathbb{N})$ are sectorial and how does a sector containing the numerical range look like? Which of these operators are even m-sectorial?
(i) $R\left(x_{n}\right)_{n \in \mathbb{N}}:=\left(i n x_{n}\right)_{n \in \mathbb{N}}, \quad \operatorname{dom} R=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}(\mathbb{N}):\left(n x_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}(\mathbb{N})\right\}$;
(ii) $S\left(x_{n}\right)_{n \in \mathbb{N}}:=\left((n+i n) x_{n}\right)_{n \in \mathbb{N}}, \quad \operatorname{dom} S=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}(\mathbb{N}):\left((n+i n) x_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}(\mathbb{N})\right\}$;
(iii) $T\left(x_{n}\right)_{n \in \mathbb{N}}:=\left(a_{n}^{\phi} x_{n}\right)_{n \in \mathbb{N}}, \quad \operatorname{dom} T=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}(\mathbb{N}):\left(a_{n}^{\phi} x_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}(\mathbb{N})\right\}$, where for a fixed $\phi \in(-\pi, \pi],\left(a_{n}^{\phi}\right)_{n \in \mathbb{N}}$ is a sequence of complex numbers being dense in $\left\{r e^{i \phi}: r \in \mathbb{R}\right\}$.

Problem 5

How do the spectra of the operators in Problem 4 look like? Check in each case whether they fill out all of the (closure of the) numerical range of the operator.

