Stockholms universitet

Introduction to Sectorial Operators

2. problem sheet

Problem 1

Let \mathfrak{t} be a sectorial form with vertex γ and semi-angle θ and let $\mathfrak{h} = \operatorname{Re} \mathfrak{t}$ and $\mathfrak{g} = \operatorname{Im} \mathfrak{t}$. Show the estimate

$$|\mathfrak{g}[u,v]| \leq (\tan \theta) \sqrt{(\mathfrak{h}-\gamma)[u]} \sqrt{(\mathfrak{h}-\gamma)[v]}, \quad u,v \in \operatorname{dom} \mathfrak{t}$$

(cf. Lemma 2.8 in the lecture notes).

Problem 2

Prove Proposition 2.14 from the lecture: If \mathfrak{t} is sectorial then \mathfrak{t} is closable iff

$$\begin{pmatrix} (u_n)_n \subset \operatorname{dom} \mathfrak{t} \\ u_n \to 0 \text{ in } \mathcal{H} \text{ and} \\ \mathfrak{t}[u_n - u_m] \to 0 \end{pmatrix} \Longrightarrow \mathfrak{t}[u_n] \to 0.$$

In this case,

$$\overline{\mathfrak{t}}[u] = \lim_{n \to \infty} \mathfrak{t}[u_n],$$

dom $\overline{\mathfrak{t}} = \{ u \in \mathcal{H} : \exists (u_n)_n \subset \operatorname{dom} \mathfrak{t} \text{ s.t. } u_n \to u \text{ in } \mathcal{H}, \mathfrak{t}[u_n - u_m] \to 0 \}.$

Problem 3

Show that, in general, the numerical range of a closed operator T is not closed and the inclusion $\sigma_{\rm c}(T) \subset \Theta(T)$ does not hold.

Problem 4

Which of the following operators in $\ell^2(\mathbb{N})$ are sectorial and how does a sector containing the numerical range look like? Which of these operators are even m-sectorial?

(i) $R(x_n)_{n\in\mathbb{N}} := (inx_n)_{n\in\mathbb{N}}, \quad \operatorname{dom} R = \{(x_n)_{n\in\mathbb{N}} \in \ell^2(\mathbb{N}) : (nx_n)_{n\in\mathbb{N}} \in \ell^2(\mathbb{N})\};$

(ii)
$$S(x_n)_{n\in\mathbb{N}} := ((n+in)x_n)_{n\in\mathbb{N}}, \quad \operatorname{dom} S = \{(x_n)_{n\in\mathbb{N}} \in \ell^2(\mathbb{N}) : ((n+in)x_n)_{n\in\mathbb{N}} \in \ell^2(\mathbb{N})\};$$

(iii)
$$T(x_n)_{n\in\mathbb{N}} := (a_n^{\phi}x_n)_{n\in\mathbb{N}}, \quad \text{dom } T = \{(x_n)_{n\in\mathbb{N}} \in \ell^2(\mathbb{N}) : (a_n^{\phi}x_n)_{n\in\mathbb{N}} \in \ell^2(\mathbb{N})\}, \text{ where for a fixed } \phi \in (-\pi,\pi], (a_n^{\phi})_{n\in\mathbb{N}} \text{ is a sequence of complex numbers being dense in } \{re^{i\phi} : r \in \mathbb{R}\}.$$

Problem 5

How do the spectra of the operators in Problem 4 look like? Check in each case whether they fill out all of the (closure of the) numerical range of the operator.

Jonathan Rohleder