Stockholms universitet

Introduction to Sectorial Operators

1. problem sheet

Problem 1

Discuss the details of Example 1.4 from the lecture: show that in $X = (C([0,1]), \|\cdot\|_{\infty})$ the operator

$$Tf = f', \quad \text{dom} T = C^1([0, 1]).$$

is closed but not bounded.

Problem 2

Provide an example which shows that the sum of two closed operators in a Banach (or Hilbert) space is not closed in general.

Problem 3

Prove Lemma 1.20 from the lecture: for a densely defined linear operator S in a Hilbert space \mathcal{H} , the following are equivalent:

- (i) S is symmetric;
- (ii) (Sf,g) = (f,Sg) for all $f,g \in \text{dom } S$.

If \mathcal{H} is a Hilbert space over \mathbb{C} then (i) and (ii) are equivalent to

(iii) $(Sf, f) \in \mathbb{R}$ for all $f \in \text{dom } S$.

Hint: For the difficult implication, look at $(S(f + \lambda g), f + \lambda g)$ for appropriate values of λ .

Problem 4

Let S, T be densely defined operators in a Hilbert space such that ST is again densely defined. Show that $T^*S^* \subset (ST)^*$ and that in general the converse inclusion fails. Find additional conditions under which the converse inclusion is true.

Problem 5

Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and let T be the operator in $L^2(\mathbb{R})$ given by

$$Tg := fg, \quad \operatorname{dom} T := \left\{ g \in L^2(\mathbb{R}) : fg \in L^2(\mathbb{R}) \right\};$$

cf. Example 1.23 from the lecture. Show that the point spectrum of T is given by

$$\sigma_{\mathbf{p}}(T) = \left\{ \mu \in \mathbb{R} : |f^{-1}(\{\mu\})| > 0 \right\},\$$

where $|\cdot|$ denotes the Lebesgue measure.

Jonathan Rohleder