The authors were supported in part by a grant from the Spanish Ministry of Education.

1. Introduction

Holomorphy uniqueness theorem and support for real analytic Radon transforms

Theorems for real analytic Radon transforms
A. Let d and H be as in Corollary 2. Let f be continuous on $H \setminus \partial d$. Then $f = 0$ if and only if f is constant.

Proof. The proof is analogous to that of Proposition 1. The assumption in Proposition 1 allows us to consider the proposition in one in $[1]$, whereas the assumption in Corollary 2 allows us to consider the proposition in one in $[2]$.

Corollary 3. If f is a continuous function on $H \setminus \partial d$, then $f = 0$ if and only if f is constant.

Proof. The proof is analogous to that of Proposition 1.

Assumptions in the following corollaries do not depend on this choice.

Corollary 4. If f is an analytic function on $H \setminus \partial d$, then the maximum principle in $H \setminus \partial d$ is equivalent to the maximum principle in H.

Proof. The proof is analogous to that of Proposition 1.

Corollary 5. If f is an analytic function on $H \setminus \partial d$, then the minimum principle in $H \setminus \partial d$ is equivalent to the minimum principle in H.

Proof. The proof is analogous to that of Proposition 1.

Remark. It is sufficient to assume that f is analytic on $H \setminus \partial d$ in order to obtain the same results for f analytic on H.
3. The microlocal regularity theorem. Our Radon transform can be written

\[R_\nu (H) = \int K(x, H, \eta) F(x) dx, \]

where the distribution \(K(x, H, \eta) \) on \(\mathbb{R}^n \) is a measure supported on the hypersurface \(Z = \{ \nu = \mu \} \) in \(T^*(\mathbb{R}^n) \) and \(\eta \) is a normal direction to \(Z \) at \(x \). The Radon transform is defined as

\[\mathcal{F}(f) = \int_{\mathbb{R}^n} f(x) e^{-2\pi i x \cdot \xi} d\xi, \]

where \(f \) is a function on \(\mathbb{R}^n \) and \(\xi \) is a point in the dual space \(\mathbb{R}^n \).

Remark: The function \(f \) in the theorem and the corollaries may be any distribution on \(\mathbb{R}^n \) provided that the smooth condition needed here is replaced by an appropriate smooth condition valid for distributions (cf. Proposition 2).

4. Vanishing theorems for microanalytic distributions. Assume for a moment that we know the function \(f \) of \(\mathcal{F}(f), N, S, \) and \(\gamma = 0 \). For some closed analytic surface \(S \), one can show immediately from the definition of the integral of \(f \) over a family of concentric spheres \(S_t \) with radius \(t \) that the same would be true with \(f \) replaced by \(f \) for an arbitrary real analytic function on \(\mathbb{R}^n \). We assume that \(f = 0 \) in a neighborhood of \(\{ \gamma = 0 \} \).
and whose graphs are disjoint from f.}

(1) $\forall t \in I$ there exists $z \in \mathcal{H}$, $\rho \in \mathcal{R}$, $\gamma \in \mathcal{G}$, $\delta \in \mathcal{D}$ such that $f \ni (x, y, z, \rho, \gamma, \delta)$.

(2) $\forall t \in I$ there exists $z \in \mathcal{H}$, $\rho \in \mathcal{R}$, $\gamma \in \mathcal{G}$, $\delta \in \mathcal{D}$ such that $f \ni (x, y, z, \rho, \gamma, \delta)$.
\[
\mathcal{H} \neq x \quad \Leftrightarrow \quad \mathcal{I}(\mathcal{H} - x) \mathcal{B} \mathcal{F}(x) = (x)J
\]

Suppose \(\mathcal{H} \) is such that \(\mathcal{H} \neq x \). Then, \(\mathcal{H} \) \(\mathcal{H} \) is a homogenous differential equation in \(\mathcal{H} \) which is a linear homogeneous equation. We can therefore solve the equation \(\mathcal{H} \) in terms of \(\mathcal{H} \) and \(\mathcal{H} \) in the region where \(\mathcal{H} \) is not identified. Thus, we have \(\mathcal{H} = (x)J \).

Moreover, if \(\mathcal{H} \) is such that \(\mathcal{H} \neq x \), then \(\mathcal{H} \) is a homogenous differential equation in \(\mathcal{H} \) which is a linear homogeneous equation. We can therefore solve the equation \(\mathcal{H} \) in terms of \(\mathcal{H} \) and \(\mathcal{H} \) in the region where \(\mathcal{H} \) is not identified. Thus, we have \(\mathcal{H} = (x)J \).

6. Complementary To show that the differential equation \(\mathcal{H} \) is solved by \(x \) in the region where \(\mathcal{H} \) is not identified, we need to find a solution \(x \) of the differential equation \(\mathcal{H} \) and \(\mathcal{H} \) in the region where \(\mathcal{H} \) is not identified.

Assume now that \(x \not\in \mathcal{H} \). Suppose \(x \) is such that \(x \neq \mathcal{H} \). Then, \(x \) is a homogenous differential equation in \(\mathcal{H} \) which is a linear homogeneous equation. We can therefore solve the equation \(\mathcal{H} \) in terms of \(\mathcal{H} \) and \(\mathcal{H} \) in the region where \(\mathcal{H} \) is not identified. Thus, we have \(\mathcal{H} \neq x \).