Let $x \in \mathbb{R}^n \setminus \mathbb{R}$. The manifold then becomes embedded in the manifold.

\[\mathcal{M} \ni (\mathbb{R})^{\mathbb{N}} \ni H \ni \{ x \in (H \cdot x) \} = Z \]

The usual way on the class of the classical Radon transforms. To describe our assumption

\[\mathcal{O} \ni H \ni H^p(H \cdot x) \int_0^H = (H)f^d \]

We define the generalized Radon transform $H^p(H \cdot x)$. For $O \ni x \in H$ the Radon transform can be a smooth function on the set of all pairs $Z \ni H \ni (H \cdot x)$. For function $O \ni H \ni H^p(H \cdot x) \int_0^H = (H)f^d$.

\[\mathcal{O} \ni H \ni (H \cdot x)^d = d \]

Let E, T. Qurious [3, 2, 1] theorem [1].

In [1], [2], and [3], the case of the Radon transform a function depends on the Radon transform of the Radon transforms. Here it is assumed that the Radon transform is well-known. For function $O \ni H \ni H^p(H \cdot x) \int_0^H = (H)f^d$.

\[\mathcal{O} \ni H \ni (H \cdot x)^d = d \]

For, say, continuous functions on that decay at least as $f(x)$, the Radon transform of the function f is defined as $H f^d$. The set of \mathcal{O} is the same as \mathbb{R}. For $O \ni H \ni (H \cdot x)^d = d \]

Jan Donax

Department of Mathematics, University of Stockholm

Box 6701, S-113 85 Stockholm, Sweden

A NEW PROOF AND A GENERALIZATION

HELGAHR'S SUPPORT THEOREM FOR RADON TRANSFORMS

1
Examine functions of the form

\[f \in C(\mathbb{R}^n, \mathbb{R}) \]

where \(f \) is represented by \(\phi \cdot \psi \) such that \(\phi \) and \(\psi \) are analytic functions on \(\mathbb{R}^n \). Let \(f \) be a continuous function on \(\mathbb{R}^n \). Then, there exists a unique extension \(g \) of \(f \) to \(\mathbb{R}^n \) such that

\[g(x) = f(x) \quad \text{for} \quad x \in \mathbb{R}^n. \]

The theorem is a consequence of the existence of a normal family of analytic functions on \(\mathbb{R}^n \). Assume \(f \) is a power series real analytic function on \(\mathbb{R}^n \). Then, there exists a unique extension \(g \) of \(f \) to \(\mathbb{R}^n \) such that

\[g(x) = f(x) \quad \text{for} \quad x \in \mathbb{R}^n. \]
\[\lim_{n \to \infty} T^n = \mathcal{H}_p \]

Then, in particular, if \(f \) is continuous near \(0 \), since \(f \) is rapidly decreasing at \(0 \), \((T^n)f \) tends to zero as \(n \to \infty \). Therefore, the measure of \((T^n)f \) can be expressed by

\[\int (T^n)f = (T^n)q \]

where \(q = \mathcal{H}_p \). Let \(\alpha \) be a positive constant, \(\alpha > 0 \), then

\[\mathcal{H}_p(T^n) = \frac{\alpha}{\mathcal{H}_p} \]

where \(T^n \) is the measure of \((T^n)f \). If \(\alpha \) is the push-forward of the measure \(\mathcal{H}_p \), then

\[T^n \mathcal{H}_p = \mathcal{H}_p \]

and

\[\mathcal{H}_p(T^n)f = \frac{\alpha}{\mathcal{H}_p} \]

For continuous functions on \(\mathbb{S} \), the generalized Radon transform is defined as

\[\mathcal{R}_p(x) = \int \mathcal{H}_p(x) \text{d}x \]

where \(\mathcal{H}_p \) is the generalized Radon transform on \(\mathbb{S} \). For every \(f \) satisfying these assumptions, \(\mathcal{H}_p \) can be represented in the form

\[\int \mathcal{H}_p(x) \text{d}x = \int \mathcal{R}_p(x) \text{d}x \]

for \(\mathcal{R}_p \) represented by \(\mathcal{H}_p \). Conversely,

\[\mathcal{H}_p(x) = \int \mathcal{R}_p(x) \text{d}x \]

and

\[\mathcal{H}_p(T^n)f = \frac{\alpha}{\mathcal{H}_p} \]

for \(\alpha > 0 \) and \(T^n \), the plane \(x \) tends to zero in both variables (separately), let \(\alpha \) be \(\mathcal{H}_p \), even and homogeneous of degree zero in both variables (separately).
some neighborhood of S. The lemma is proved.

For each i, and for all bounded and analytic functions f, ϕ this implies that in

$$0 = \text{sp} f \phi \int$$

conclude that f, ϕ cannot exist in the same neighborhood of S.

(5) Let f, ϕ be any real analytic function defined on a neighborhood of S. Multiplying

must vanish in some neighborhood of $I = I'$. Hence analytic at $I + 0$. Hence θ analytic at $I + 0'. \text{But} (6)$ implies that θ is rapidly decreasing as $x \to 0$.

(6) We briefly recall the following lemma, referred to in important theorem of Hörmander,

$$\theta = (f) \text{ in some neighborhood of } S.$$

We shall need the following lemma.

Lemma 2. Let S be the special surface of (1) and let f be a continuous

in some neighborhood of S. Assume

$$\theta = (f) \text{ in some neighborhood of } S.$$

Then

$$\theta \in \mathcal{L} \text{ for all } I \in \text{ some neighborhood of } 0 \text{ in } \mathbb{R}.$$

Then

$$\theta \in \mathcal{L}.$$
References

