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Motivation

STEC/HUS Outbreak in Germany 2011 (1)

Outbreak of E. coli (STEC) O104:H4 in Germany May–June 2011
associated with sprouts (Frank et al., 2011; Buchholz et al., 2011):

STEC HUS
N (% of total) 2987 (78) 855 (22)
Median age (years) 46 42
Female (%) 58 68
Deaths 18 35
Case-fatality-ratio (%) 0.6 4.1

Hemolytic-uremic syndrome (HUS) is a disease characterized by
hemolytic anemia, thrombocytopenia and acute kidney failure.

HUS can be a complication of an STEC infection.

Onset of HUS occurs a median of 5 days (IQR: 4–7) days after onset
of the STEC related diarrhea.
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Motivation

STEC/HUS Outbreak in Germany 2011 (2)

Retrospective epidemic curve for the hospitalization date of HUS
cases (where available, 658 cases) :
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However, during the outbreak the situation is not as clear due to
reporting delays.
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RKI informed about
 three HUS cases in Hamburg

Warning against consuming
 tomatoes, cucumbers and lettuce

 in Northern Germany

Sprouts communicated
 as source in Lower Saxony

Sprouts confirmed,
 warning against consumption

 of raw  sprouts

However, during the outbreak the situation is not as clear due to
reporting delays.
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Nowcasting The problem and some notation

Nowcasting – what’s the situation?

Opposite to forecasting, we just want to know what the situation is
“now”, i.e. in an ideal situation without reporting delay.

The term nowcasting is a revival of what has been extensively
studied as adjustment for occurred-but-not-yet-reported events during
the AIDS/HIV epidemic, see e.g. Kalbfleisch and Lawless (1989).

There is a close connection between nowcasting and claims reserving

in actuarial sciences.

Our aim was to assess current epidemic trends during the outbreak in
order to judge if the outbreak is ongoing, assess the impact of control
measures and perform capacity planning.

M. Höhle Nowcasting during the 2011 STEC O104:H4 Outbreak 7/ 22



Nowcasting The problem and some notation

Nowcasting Notation (1)

Let n
t,d be the number of cases which occur on day t and become

available with a delay of d days, where t = 0, . . . ,T – with T being
now and d = 0, . . . ,D.

Problem: n
t,d is unknown when d > T � t – see reporting triangle

N(t,T ) =
Pmin(T�t,D)

d=0 n

t,d is the number of cases which occurred on
t and who are reported until time T

Aim of nowcasting: predict the total number of cases, i.e.

N(t,1) =
1X

d=0

n

t,d =
DX

d=0

n

t,d .
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Nowcasting The problem and some notation

Nowcasting Notation (2) – Reporting triangle

Delay

Time

n0,0 n0,1 n0,D n0,T

nT − m,0 nT − m,1 nT − m,T − t nT − m,D

nT − D,D

nt,0 nt,T − t nt,D

nT,0

N(t, ∞) −N(t, T)

N(t, T)
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Nowcasting The problem and some notation

Frequentist Nowcasting

What we did during the outbreak was the simple estimate

N̂(t,1) =
N(t,T )

F̂ (T � t)
,

where F̂ (·) was the naive ECDF estimator of the delay distribution
ignoring truncation.

Lawless (1994) contains a more rigorous treatment using
F̂trunc(T � t) together with an approximate asymptotic normal
predictive distribution for N(t,1).

Once the outbreak was over we wanted to compare and improve
approaches in order to be better prepared for the next outbreak.
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Nowcasting A Bayesian approach

Bayesian Nowcasting (1)

Advantages of using a Bayesian approach for the problem:
I natural framework for handling predictive distributions
I truncation as a missing data problem ! just more parameters

We used a contingency table setup known from AIDS/HIV modelling
to describe the problem:

n

t,d ⇠ Po(µ
t,d), (t, d) 2 A

m

T

, (1)

log(µ
t,d) = log(�

t

) + log(f
t,d).

For homogeneous delay we show that the generalized Dirichlet

distribution is the conjugate prior for the reversed delay distribution
under right-truncated multinomial sampling.

If, furthermore, �
t

iid⇠ Ga(↵�,��) then fast non-MCMC computation
of the predictive posterior for N(t,1) is possible.
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Nowcasting A Bayesian approach

Bayesian Nowcasting (2)

Addition: 2nd order TP basis spline to smooth the epidemic curve:

log(�
t

) = �0 + �1t + �2t
2 +

LX

i=1

b

i

max(t � 
i

, 0)2, (2)

where (b1, . . . , b
L

)0 ⇠ N(0,�2
b

I ).
Addition: Time-varying delay distribution using a discrete time hazard
model, i.e. one models

h

t,d = P(delay = d |delay � d ,W
t,d), d = 0, . . . ,D

for a case occurring at time t by

logit(h
t,d) = �

d

+ W 0
t,d⌘, d = 0, . . . ,D � 1 and (3)

h

t,D = 1.
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Nowcasting A Bayesian approach

Bayesian Nowcasting (3)
STEC example: Intervention towards faster reporting on 23 May 2011
is represented by a single change-point, i.e.

W
t,d = 1(t + d � 2011-05-23).

Inference for the hierarchical Bayesian model consisting of (1), (2)
and f

t,d resulting from (3) is done using Markov Chain Monte Carlo
with JAGS (Plummer, 2003) for each day T :
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HUS hospitalization up to "now"
Reports received at RKI
Nowcast bayes.trunc.ddcp
λt of bayes.trunc.ddcp

●

● Now
Nowcast horizon
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Nowcasting A Bayesian approach

Results: Nowcasting during the STEC outbreak (1)

Daily smoothed empirical delay distribution obtained from all
hospitalizations occurring within a moving window of t � 2, . . . , t + 2.

May 01 May 15 Jun 01 Jun 15 Jul 01
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ddcp(T)

One observes a distinct delay reduction due to the intervention on 23
May 2011.
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Evaluating the Nowcasts

Evaluation of the nowcasts (1)

Since, retrospectively, the true number of hospitalizations is available
we were able to evaluate the predictive quality of di↵erent
delay-distribution adjustment methods.

We use proper scoring rules for count-data (Czado et al., 2009)
evaluating both calibration and sharpness of the probabilistic
forecasts.

Nowcasts are evaluated between 2011-06-02 and 2011-07-04, for each
time T we consider the 10 lags T � 12, . . . ,T � 3.

The mean overall score of all 330 nowcasts is

notrunc trunc trunc.ddcp unif
logS 2.28 2.02 Inf 5.69
RPS 1.79 1.77 1.39 95.10

dist.median 2.37 2.51 1.87 143.94
outside.ci 0.07 0.05 0.09 0.84
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Evaluating the Nowcasts

Evaluation of the nowcasts (2)

Mean RPS score as a function of the nowcasted time points:
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Discussion

Outline

1 Motivation: STEC/HUS Outbreak in Germany 2011

2 Nowcasting

3 Evaluating the Nowcasts

4 Discussion
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Discussion

Discussion (1)

Ignoring truncation for the specific outbreak was an ad-hoc way to
compensate for the fact that, early in the outbreak, delays reduced
significantly.

However, right-truncation adjusted procedures are to be
recommended as proper adjustment methods.

Visualized nowcasts were circulated among the stakeholders at the
RKI on a daily basis.

Retrospective animations after the outbreak were an e↵ective tool for
communicating consequences of delays in the German reporting
system to political stakeholders.
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Discussion

Discussion (2)

In order to promote application, the proposed methods and the
outbreak data are available in the R package surveillance (Salmon
et al., 2016) as function nowcast and dataset husO104Hosp.

The contingency table approach has been further extended to
facilitate delay adjusted outbreak detection algorithms (Salmon et al.,
2015).

Details of the talk:

Bayesian Nowcasting during the STEC O104:H4 Outbreak in
Germany, 2011 (2014), Höhle M and an der Heiden M. Biometrics,
70(4):993–1002.

For a less serious version of this talk check out the work on zombie

pReparedness ( m hoehle).
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Generalized Dirichlet Distribution

The density of the GD(↵,�) distribution with parameters
↵ = (↵0, . . . ,↵

D�1)0 and � = (�0, . . . ,�
D�1)0 is proportional to

f (rev(p)) /
D�1Y

i=0

p

↵
i

�1
D�i

(1� p

D

� . . .� p

D�i

)�i ,

where the probabilities p
D

, . . . , p1 and p0 = 1� p

D

� · · ·� p1 are all
non-negative and sum to one.

Here, �
i

= �
i

� ↵
i+1 � �

i+1 for i = 0, . . . ,D � 2 and
�
D�1 = �

D�1 � 1.

In the above, rev(·) denotes the reverse delay order, i.e. where delay d

is mapped to the new scale D � d in analogy with the reverse time
hazard function.
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Delay distribution model

The corresponding delay distribution can be computed from the h

t,d ’s
in (3) on slide 13 as

f

t,d =

 
1�

d�1X

i=0

f

t,i

!
h

t,d , d = 0, . . . ,D.
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Model details: Priors

TP basis spline setup used in H. and an der Heiden (2014):

� ⇠ dmnorm( beta.mu, beta.prec)

1/�2
b

⇠ dgamma(0.001, 0.001)

�
d

⇠ dnorm( mu.gamma[d], tau.gamma[d]),

with µ� and ⌧� s.t. a uniform distribution is obtained for the f

t,d ’s

⌘ ⇠ dmnorm( eta.mu, eta.prec),

with eta.mu = 0 and eta.prec = diag(1).
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Model details: Knots

Knots are placed at {1, . . . ,
L

}
We place min(bT/6c, 20) knots evenly between time zero and T .

In order to avoid over-extrapolations at the end, where uncertainty is
large, we remove any knots which are between time T � D/2 and T .
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Evaluation of the nowcasts (3)
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Left pane: RPS score as function of T � t for the outbreak data.
Right pane: Same but now for simulated data based on the true epidemic
curve and simulated homogeneous delays.
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Scoring Rules

logarithmic score (logS)

logS(PT

t

,N(t,1)) = � log(f
P

T

t

(N(t,1))),

ranked probability score (RPS)

RPS(PT

t

,N(t,1)) =
NmaxX

k=0

⇣
F

T

t

(N(t,1))� 1(N(t,1)  k)
⌘2
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