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Abstract

Public health surveillance of emerging infectious diseases is an essential instrument in the
attempt to control and prevent their spread. This paper presents the R package ’surveil-
lance’, which contains functionality to visualise routinely collected surveillance data and
provides algorithms for the statistical detection of aberrations in such univariate or multi-
variate time series. For evaluation purposes, the package includes real-world example data
and the possibility to generate surveillance data by simulation. To compare algorithms,
benchmark numbers like sensitivity, specificity, and detection delay can be computed for
a set of time series. Package motivation, use and potential are illustrated through a mix-
ture of surveillance theory, case study and R code snippets.

Keywords: monitoring, public health surveillance, time series of counts, outbreak detec-
tion, univariate and multivariate surveillance

1 Introduction

Public health authorities have, in an attempt to meet the threats of infectious diseases, created
comprehensive mechanisms for the routine collection of disease data. The vast amounts of
data resulting from this acquisition demands the development of automated algorithms for
the detection of abnormalities. This paper considers the setup, where these data, possibly
after an initial processing from the surveillance database, result in univariate or multivariate
time series of case counts. Monitoring of such time series typically occurs by a combination of
heuristic methods and statistical modelling. Prominent examples of surveillance algorithms
are the work by Stroup et al. [25] and Farrington et al. [5] applied in e.g. the ISIS project
in the Netherlands [26] or the monitoring of bacterial gastrointestinal in Denmark [3]. A
comprehensive survey of outbreak detection methods can be found in [4, 23, 12].

The R package surveillance offers an implementation of surveillance algorithms for
epidemiologists and an infrastructure for developers within R, a free software environment for
statistical computing and graphics [17]. Statistically trained analysts can use the implemented
algorithms to monitor their data and developers of new algorithms can test and compare
results with those of standard surveillance methods. To this end, real-world outbreak datasets
are included together with mechanisms for simulating surveillance data. With the package at
hand, comparisons between algorithms as in Hutwagner et al. [9] should be easy to conduct.
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This paper is organised as follows. Section 2 gives a brief introduction to surveillance data
and illustrates how to create new datasets by simulation. These data are then analysed in
Sect. 3, which explains and exemplifies the use of univariate surveillance algorithms. Usage
of the package for the visualisation and analysis of multivariate surveillance data is covered
in Sect. 4. Finally, Sect. 5 provides a discussion and indicates directions of future work.

2 Univariate Surveillance Data

Denote by {yt ; t = 1, . . . , n} the time series of counts. Because such data are typically col-
lected on a weekly or monthly basis, the alternative notation {yi:j} shall also be used, with
j ∈ {1, . . . , 52} or j ∈ {1, . . . , 12} being the week or month in year i ∈ {−b, . . . ,−1, 0}. That
way the years are indexed such that the most recent year has index zero. Without loss of
generality I shall in the following assume weekly data. For evaluation of the outbreak de-
tection algorithms it is also possible for each week to store – if known – whether there was
an outbreak that week. The resulting time series {(yt, xt) ; t = 1, . . . , n} is in surveillance
given by an object of class disProg (disease progress), which is basically a list containing
two vectors: the observed number of counts and a Boolean vector state indicating whether
there was an outbreak that week. A number of time series are contained in the data directory,
mainly originating from the SurvStat@RKI database maintained by the Robert Koch Insti-
tute, Germany [19]. For example the object ha describes the weekly number of adult male
hepatitis A cases in the federal state of Berlin during 2001-2006. In the summer of 2006 the
health authorities noticed an increased amount of cases compared to the previous years [20].
In surveillance this time series is stored as disProg object, which contains the counts for
each of the 12 districts in Berlin, but in the following only the time series aggregated over all
districts is considered. Visualisation as in Fig. 1 is done as follows.

R> data("ha")

R> plot(aggregate(ha), main = "Hepatitis A in Berlin 2001-2006")
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Figure 1: Weekly adult male hepatitis A cases in Berlin 2001-2006, with the four weeks of
the known outbreak denoted by ’+’.

For test purposes it is also often of interest to generate surveillance data by simulation. A
Hidden Markov Model (HMM) is introduced, where a binary state Xt, t = 1, . . . , n, denotes
whether there was an outbreak and Yt is the number of observed counts. The state Xt is given
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by a homogeneous Markov chain with a 2× 2 transition matrix specified by two parameters
p and r: P (Xt+1 = 0|Xt = 0) = p and P (Xt+1 = 1|Xt = 1) = r. In addition, the observed
Yt is Poisson-distributed with log-link mean depending on a seasonal effect and time trend,
i.e. log µt = A · sin (ω · (t + ϕ)) + α + βt. In case of an outbreak (Xt = 1) the mean increases
with a value of K, altogether

Yt ∼ Po(µt + K ·Xt). (1)

The model in (1) corresponds to a single-source, common-vehicle outbreak, where the length
of an outbreak is controlled by the transition probability r and the frequencies of outbreaks
by p. The advantage of (1) is that it allows for an easy definition of a correctly identified
outbreak: each Xt = 1 has to be identified. More advanced setups would require different
definitions of an outbreak, e.g. as a connected series of time instances, where the number
of outbreak cases is greater than zero. Care is then required in defining what a correctly
identified outbreak for time-wise overlapping outbreaks means.

In surveillance the function sim.pointSource is used to simulate such a point-source
epidemic; the result is an object of class disProg as shown in Fig. 2.

R> sps <- sim.pointSource(p = 0.99, r = 0.5, length = 400,

+ A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1,

+ state = NULL, K = 1.7)

R> plot(sps, xaxis.years = FALSE)
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Figure 2: A simulated time series. The ’+’ indicate time points, where Xt = 1.

3 Univariate surveillance algorithms

The aim of surveillance algorithms is the timely detecting of aberrations in surveillance data.
Surveillance offers two classes of algorithms: reference value based and those inspired by
statistical process control. The following will exemplify the two classes and discuss how to
evaluate their performance.

3.1 Algorithms based on reference values

Surveillance data often exhibit strong seasonality; one way to deal with this fact is through
the use of reference values: let y0:t be the number of cases of the current week (denoted week
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t in year 0), b the number of years to go back in time and w the number of weeks around t
to include from these previous years. For the year zero we use w0 as the number of previous
weeks to include – typically w0 = w. Altogether the set of reference values is:

R(w,w0, b) =

 b⋃
i=1

w⋃
j=−w

y−i:t+j

 ∪

 −1⋃
k=−w0

y0:t+k

 .

This gives the number of cases at time points with similar conditions as at y0:t. Note that
the number of cases of the current week is not part of R(w,w0, b).

A surveillance algorithm based on reference values is a procedure using R(w,w0, b) to
create a prediction ŷ0:t for the current week. This prediction is then compared with the
observed y0:t: if the observed number of cases is much higher than the predicted number, the
current week is flagged for further investigations. In order to do surveillance for time 0 : t, an
important concern is the choice of b and w. Values as far back as time −b : t− w contribute
to R(w,w0, b) and thus have to exist in the observed time series.

Four different types of algorithms based on reference values are implemented in surveil-
lance. The Centers for Disease Control and Prevention (CDC) method [25], the Farrington
method [5], the method used at the Robert Koch Institute (RKI), Germany [1], and a Bayesian
approach documented in [18]. To give an idea of concepts the Bayesian approach is presented.

Here, one assumes independently and identically (iid) Poisson distributed reference values
with parameter λ. A gamma distribution is used as prior distribution for λ. The reference
values are defined to be RBayes = R(w,w0, b) = {y1, . . . , yn} and y0:t is the value to predict.
Thus, λ ∼ Ga(α, β) and yi|λ ∼ Po(λ), i = 1, . . . , n. Standard derivations show that the
posterior distribution is

λ|y1, . . . , yn ∼ Ga(α +
n∑

i=1

yi, β + n).

Computing the predictive posterior distribution for the next observation

f(yn+1|y1, . . . , yn) =

∞∫
0

f(yn+1|λ) f(λ|y1, . . . , yn) dλ,

one gets the Poisson-gamma distribution, which is a generalisation of the negative binomial
distribution. Altogether,

yn+1|y1, . . . , yn ∼ NegBin

(
α +

n∑
i=1

yi,
β+n

β+n+1

)
.

Using Jeffrey’s prior Ga(1
2 , 0) as non-informative prior distribution for λ, the parameters of

the negative binomial distribution are

α +
n∑

i=1

yi =
1
2

+
∑

yi:j∈RBayes

yi:j and
β + n

β + n + 1
=

|RBayes|
|RBayes|+ 1

.

Employing a quantile-parameter α, the smallest value yα is computed, so that P (yn+1 ≤
yα|y1, . . . , yn) ≥ 1− α. Now A0:t = I(y0:t ≥ yα), i.e. if the observed value y0:t is equal to or
greater than yα, then an alarm will be flagged for the current week. For example, the below-
stated code applies this procedure with R(w,w0, b) = (6, 6, 2) and α = 0.01 to observations
209–290 from the ha dataset, the resulting plot is shown in Fig. 3.
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R> ha.b662 <- algo.bayes(aggregate(ha), control = list(range = 209:290,

+ b = 2, w = 6, alpha = 0.01))

R> plot(ha.b662, firstweek = 1, startyear = 2005)

Analysis of aggregate(ha) using bayes(6,6,2)
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Figure 3: The Bayes algorithm with R(w,w0, b) = (6, 6, 2) applied to the ha dataset. Red
triangles indicate alarms by the algorithm and should be compared to the known outbreaks
(’+’).

As an example of applying the more traditional algorithms, Fig. 4 is the result of applying
the CDC and Farrington procedure to the simulated time series sps from Fig. 2. Note that
the CDC procedure operates with four-week aggregated data – to better compare the upper
bound values, the aggregated number of counts for each week are thus shown as circles in the
plot.

R> cntrl <- list(range = 300:400, m = 1, w = 3, b = 5, alpha = 0.01)

R> sps.cdc <- algo.cdc(sps, control = cntrl)

R> sps.farrington <- algo.farrington(sps, control = cntrl)
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Figure 4: The CDC (left) and the Farrington (right) algorithm applied to the simulated time
series from Fig. 2.
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3.2 Algorithms inspired by statistical process control

Because monitoring at each time instance is only based on a subset of the observations,
surveillance algorithms based on reference values tend to be sub-optimal. A different class
of algorithms is the one inspired by statistical process control (SPC) techniques such as the
cumulative sum (CUSUM) chart. In the basic SPC setting one assumes that during an in-
control state the observations are iid x1, . . . , xn ∼ N(0, 1). In case of an out-of-control state,
i.e. an outbreak, this distribution changes to N(µ,1). Aim of an SPC chart is now to detect
on-line if and when such a change-point occurs. The CUSUM for example accomplishes this
by monitoring the time series using the statistic:

St = max(0, St−1 + xt − k), t = 1, . . . , n,

where S0 = 0 and k is a user-defined constant called the reference value determining the
magnitude of change to detect. A change-point is detected once St > h, where h is called
the decision interval. An important measure of chart performance is the so called average
run length (ARL). Typically, two ARLs are reported: the mean time before the first alarm
i) in an in-control state (i.e. no change-point) and ii) in an out-of-control state (i.e. change-
point at time zero). Given desired values for these two ARLs, the function find.kh uses the
spc-package [11] to compute the corresponding h and k.

Several differences between the standard CUSUM chart and charts suited for the surveil-
lance of infectious disease data exist though: the time series consist of count data, which
might experience seasonality or other time changing behaviour. To obtain a CUSUM for iid
count data, y1, . . . , yn ∼ Po(m), Rossi et al. [22] suggested to transform data to normality by
using the following transformation:

xt =
yt − 3m + 2

√
m · yt

2
√

m
.

In case of time-changing behaviour one loosens the iid assumption through risk-adjusting the
chart by letting m be time varying. A suggestion to handle seasonality is to use predictions
from a Poisson regression model:

log(mt) = α +
S∑

s=1

(
γs cos(ωst) + δs sin(ωst)

)
,

where ωs = 2π
52 s are the Fourier frequencies, see [8] for details.

The code below performs the above Rossi based seasonal CUSUM detection to the hepati-
tis data using S = 1 with Fig. 5 showing the results. Once the CUSUM signals, no resetting
is applied as suggested by Kenett and Pollak [10], i.e. alarms occur until the St statistic again
drops below the threshold. CUSUMs are better to detect sustained shifts, which compared
to Fig. 3 means that the alarm is sounded earlier.

R> kh <- find.kh(ARLa = 500, ARLr = 7)

R> ha.cusum <- algo.cusum(aggregate(ha), control = list(k = kh$k,

+ h = kh$h, m = "glm", trans = "rossi", range = 209:290))

The algo.cusum function also supports different transformations to normality, e.g. de-
viance, Pearson or Anscombe residuals [16]. Simulation studies (not shown) though underline
that such detectors are problematic in case of low count numbers, as the normal approxima-
tion is not sufficiently warranted here. In these cases the discrepancy between the anticipated
and actual ARLs can thus be ample and very instable, see [21].

6



Analysis of aggregate(ha) using cusum: rossi
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Figure 5: Rossi CUSUM applied to the hepatitis data using a Poisson regression model with
S = 1, α = 0.046, γ1 = 0.016 and δ1 = −0.057. The upper line shows for each time instance
the number of diseased individuals it would have taken the CUSUM to signal.

3.3 Algorithm performance

Typically, one is interested in testing and comparing surveillance algorithms. An easy way
is to look at the sensitivity and specificity of the procedure. A correct identification of an
outbreak is defined as follows: If the algorithm raises an alarm for time t, i.e. At = 1, and
Xt = 1, one has a correct classification. If At = 1 and Xt = 0, one has a false positive. In
order to compute various performance scores, the function algo.quality can be used on a
SurvRes object.

R> print(algo.quality(ha.b662))

TP FP TN FN Sens Spec dist mlag

[1,] 3 2 76 1 0.75 0.974359 0.2513115 0

This computes the number of false positives, true negatives, false negatives, the sensitivity
and the specificity. Finally, mlag is the average number of weeks between the first of a
consecutive number of Xt = 1’s (i.e. an outbreak) and the first alarm raised by the algorithm.

In order to compare the results of different algorithms for a single time series, a list of
control objects is declared – each element containing the name and settings of one algorithm
to be applied. Testing on a set of time series is performed in the following way. Firstly, a
list containing all disProg objects is created. Secondly, each algorithm specified in the afore
mentioned control object is applied to all series. Consequently, all predefined algorithms
based on weekly reference values (saved in aparv.control) are applied to the 14 surveillance
time series from SurvStat@RKI (i.e. the list outbrks) by:

R> surv.one <- function(outbrk) {

+ algo.compare(algo.call(outbrk, control = aparv.control))

+ }

R> algo.summary(lapply(outbrks, surv.one))

TP FP TN FN sens spec dist mlag

rki(6,6,0) 38 62 2646 180 0.174 0.977 0.826 5.43

rki(6,6,1) 65 83 2625 153 0.298 0.969 0.703 5.57
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rki(4,0,2) 80 106 2602 138 0.367 0.961 0.634 5.43

bayes(6,6,0) 61 206 2502 157 0.280 0.924 0.724 1.71

bayes(6,6,1) 123 968 1740 95 0.564 0.643 0.564 1.36

bayes(4,0,2) 162 920 1788 56 0.743 0.660 0.426 1.36

farrington(6,0,1) 107 158 2550 111 0.491 0.942 0.513 3.86

farrington(4,0,2) 102 150 2558 116 0.468 0.945 0.535 3.50

The above results compare the algorithms at α = 0.05 using different amounts of past data.
This and previous simulation studies show that the Bayesian approach seems to perform quite
well. However, the extent of the above comparisons do not legitimate any more supported
statements. Consult the work of Riebler [18] for a more thorough comparison using simulation
studies.

4 Towards multivariate surveillance

An extension to the surveillance setup described in the preceding sections is the situation
where several time series of counts are observed simultaneously. This could e.g. be the same
disease observed in multiple regions or the joint observation of several related diseases. The
simplest approach to such multivariate surveillance is to simultaneously and independently
monitor each region using a univariate method. However, this approach fails to take any
correlation between regions or diseases into account and can thus result in poor detection
performance. Sonesson and Frisén [24] provide a recent review of more genuine multivariate
surveillance techniques.

Representation and visualisation of multivariate time series data occurs through the al-
ready familiar disProg and survRes S3 classes. However, first steps towards the more formal
S4 class system are made by the class sts (surveillance time series), which covers the con-
tents of disProg and survRes. Thus an sts object contains matrices with observations, state,
population counts, alarm bounds and alarms for each observational unit and time point.

R> setClass("sts", representation(week = "numeric", freq = "numeric",

+ start = "numeric", observed = "matrix", state = "matrix",

+ alarm = "matrix", upperbound = "matrix", neighbourhood = "matrix",

+ populationFrac = "matrix", map = "SpatialPolygonsDataFrame",

+ control = "list"))

Two additional slots neighbourhood and map capture the spatial dimension: the former
specifies the spatial or structural relation between the units of observation, the latter allows
a specification of the spatial structure through a SpatialPolygonsDataFrame object from
the sp package [15]. Using the maptools package [14], it is easy to use shapefiles from
geographical information systems (GIS) for this visualisation. To illustrate, the hepatitis
data from Sect. 2 are re-visited by converting them to an sts object. Figure 6 shows the
time-aggregated counts for each of the twelve districts in Berlin, which makes apparent that
most of the cases originate from regions near the city center.

R> shp <- system.file("shapes/berlin.shp", package = "surveillance")

R> ha <- disProg2sts(ha, map = readShapePoly(shp, IDvar = "SNAME"))

R> plot(ha, type = observed ~ 1 | unit)

Using type = observed~1| time*unit instead would have created an animation con-
sisting of a picture like Fig. 6 for each time index. The initial visualisation suggests a closer
look at the six districts Pankow, Mitte, Friedrichshain-Kreuzberg, Tempelhof-Schöneberg,
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Figure 6: Spatial visualisation of the time aggregated hepatitis data for each district in Berlin.

Charlottenburg-Wilmersdorf and Neukölln. To robustify surveillance, counts for each dis-
trict are aggregated in four week blocks. Figure 7 shows the result of the following CUSUM
surveillance.

R> ha4 <- aggregate(ha[, c("pank", "mitt", "frkr", "scho",

+ "chwi", "neuk")], nfreq = 13)

R> ha4.cusum <- cusum(ha4, control = list(k = 1.5, h = 1.75,

+ m = "glm", trans = "rossi", range = 52:73))

R> plot(ha4.cusum, type = observed ~ time | unit)
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Figure 7: Hepatitis surveillance results for the six selected districts of Berlin with four week
aggregation.

Independent univariate CUSUMs thus sound alarms for Pankow, Mitte and Tempelhof-
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Schöneberg, but as Fig. 7 shows: detection might have been quicker if dependencies between
districts had been utilised. Currently, the package implements only multivariate monitoring
by the independent univariate methods from Sect. 3, but work is in progress to implement
some of the techniques mentioned in [24] and to add detection to the model of [7].

5 Discussion and future work

Surveillance provides a framework for the application of surveillance algorithms using the
freely available environment for statistical computing R. Combining the functionality of R
with Sweave [13] and LaTeX allows for easy access to SQL databases, GIS systems and au-
tomatic generation of reports. Importing respective R packages to accomplish tasks such
as ARL calculation and map visualisation shows how beneficial it can be to reside within a
free software environment. The package is available under the GPL licence from the com-
prehensive R Archive Network at http://cran.r-project.org. Additional documentation
and newest developmentversion is available from RForge: http://surveillance.r-forge.
r-project.org/. With demo("cost") the analyses in this article can be reproduced.

Casting surveillance algorithms into a Bayesian framework and thus interpreting alarm
thresholds as quantiles of the posterior predictive distribution gives a new way to see outbreak
detection. Yet an important issue remains multiple testing and the choice of threshold. Here,
evaluation based on ARLs, conditional delays or receiver operating characteristic (ROC)
curves should be preferred.

Several extensions of the algorithms described in Sect. 3 are conceivable: clever ways to
handle reporting delay, an estimation procedure correcting for past outbreaks and treating the
inherent over-dispersion in surveillance data by a negative-binomial model. However, in these
situations methods like Markov Chain Monte Carlo have to be used in order to obtain the
required alarm thresholds, see e.g. [6]. A different idea is to capitalise more on SPC techniques,
e.g. by extending the CUSUM chart to only specify the parametric form of the alternative
and base detection on the generalised-likelihood-ratio statistic [8]. Yet another extension is
to provide more complex mechanisms for the simulation of epidemics. In particular it would
be interesting to include multi-day outbreaks originating from single-source exposure with
varying incubation time [9] or SEIR-like epidemics [2].
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