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Abstract:
Understanding the spread of infectious disease is an important issue in order to prevent ma-
jor outbreaks. In this report mathematical modeling is used to gain insight into the dynamics
of an epidemic. A process model, the SIR model, exploiting knowledge about population
dynamics serves as framework. Key interest is in adapting the stochastic model to observed
data – especially from animal production. Observing all events of an epidemic is not feasi-
ble in practice, hence estimation of model parameters has to be done from missing data. We
give a rigorous treatment of an existing technique to handle estimation in partially observed
epidemics using Markov Chain Monte Carlo (MCMC). The aim of this report is to extend
the basic SIR model to handle two common situations in animal production: interaction into
the course of the epidemic and population heterogeneity due to the spatial layout of con-
finement. Handling partially observed epidemics in these contexts we do by extending the
above described MCMC method. A programming environment has been developed to ex-
emplify the model extensions at a proof of concept level. It is made available for download
for others to confirm our results or try the extensions on their own data.

Keywords: Infectious disease, SIR model, partial observability, Markov chain Monte
Carlo, multi-type epidemic.

This report is also available on WWW @ URL:
http://www.dina.dk/∼hoehle/pubs/dina102.pdf

Danish Informatics Network in the Agriculture Sciences
The Royal Veterinary and Agricultural University
Thorvaldsensvej 40
1871 Frederiksberg C
Denmark





Contents

Chapter 1 Introduction 7

Chapter 2 Parameter estimation in simple SIR epidemics 11

2.1 Introducing the stochastic continuous time SIR-model . . . . . 11

2.2 ML-estimation in case of full data . . . . . . . . . . . . . . . . 13

2.3 MCMC-estimation in case of partial observability . . . . . . . . 15

2.4 Testing the implementation . . . . . . . . . . . . . . . . . . . . 18

2.4.1 The five case SIR epidemic . . . . . . . . . . . . . . . . 18

2.4.2 Sketching a Marginalized Likelihood method . . . . . . 20

2.4.3 Smallpox data . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.4 Value of Infection data . . . . . . . . . . . . . . . . . . 22

Chapter 3 Estimation in generalized SIR models 25

3.1 The extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Estimation in the extended models with full data . . . . . . . . 28

3.3 Estimation with infection times missing . . . . . . . . . . . . . 30

3.3.1 Bayesian analysis using MCMC . . . . . . . . . . . . . 31

3.3.2 Sketch of a Marginalized Likelihood approach . . . . . . 32

3.4 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Testing the implementation . . . . . . . . . . . . . . . . . . . . 33

3.5.1 The two regime model . . . . . . . . . . . . . . . . . . 34

3.5.2 Two unit model . . . . . . . . . . . . . . . . . . . . . . 35

3.5.3 The Classical Swine Fever epidemic in the Netherlands . 36

Chapter 4 Conclusions and Future Work 41

4.1 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Summing up . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Appendix A Implementation 45

A.1 The recovery and infection time files . . . . . . . . . . . . . . . 45

A.2 The options file . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.3 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5





Chapter 1

Introduction

It does not take more than a couple of pages of Stephen King’s “The Stand” before one realizes
that malicious epidemics seem to be a favored way to scare the interested reader. Unfortunately,
the literary universe of e.g. King is not far ahead of reality. Stories in the news range from po-
tential terrorist threats by smallpox, HIV in Africa, to foot and mouth disease in England and
spreading of e-mail viruses. The list indicates that epidemics are definitely not confined to hu-
mans – animals, computers, etc. are also targets. Understanding the spread of infectious disease
is an important issue in order to prevent major outbreaks of an epidemic. Exploiting mathemat-
ics and especially statistics to gain this insight has a long tradition [Cliff and Haggett, 1993] and
boils down to the design of one or more parametric models, which are investigated by fitting
them to epidemics observed in the real world. Here one distinguishes between time-series mod-
els and process-based models. Where as the former can be described as a black-box approach
doing well to detect patterns in the data, they lack explanatory power. Process based models, on
the other hand, are white-box oriented; prior knowledge about population dynamics from clinical
investigations or earlier studies, etc. is put into the model giving the parameters a physical inter-
pretability. For a person to person transmitted disease, such prior knowledge could consist of a
division of the population into compartments (being distinct stages of the disease) and a model
for the transmission between the stages. Each transmission again consists of sub-components,
e.g. to go from healthy to sick requires a healthy to have an infectious contact. Thus, assumptions
are made on the contact behavior of the population and how the disease might be transmitted in
case of an encounter. For example in a homogeneous population, two random individuals have an
equal probability of meeting. For a population living in a large area this is not a good assumption,
because they are more inclined to meet near neighbors as individuals far away.

The crucial step, when using a model to describe an infectious disease, is the adaptation to the
specific disease by estimation of model parameters from data. In our case the data are the ob-
servations available for the infectious disease under study. Here, the advantage of interpretable
parameters is that a fitted model can serve as a tool to gain both insight on the process and evaluate
different control strategies.

This report deals with a commonly used process-model the SIR-model; a compartment model
with three states: susceptible, infected, and recovered [Cliff and Haggett, 1993]. A susceptible
individual becomes a disease transmitter by changing to the infectious state. When an infectious
individual is cured or in other ways cannot contribute to the spread of the disease anymore (e.g.
dies or is isolated), it is regarded as recovered. To keep it simple the population is often assumed
to be homogeneous. SIR-modeling can be done using a variety of methods; using a deterministic
or stochastic setting, regarding individuals as continuous or discrete quantities, and letting time
scale be continuous or discrete, see [Diekmann and Heesterbeek, 2000; Andersson and Britton,
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8 Chapter 1. Introduction

2000]. Common is a desire to establish a sufficient framework for understanding and investigating
the epidemics. Fitting the model to observations from epidemics by estimating the model parame-
ters depends on the data available. If the time and type of every transition between compartments
is observed this is easy. Such ideal situations although never occur in practice, because here data
are collected retrospectively and not as part of designed experiments. Onset of infection is espe-
cially hard to determine – often only secondary information, such as clinical symptoms or sero-
conversion can be detected. The connection in time between onset of infection and the secondary
information is often highly stochastic. It is often easier to detect the recoveries, because they refer
to the time point, where an individual becomes inactive with respect to disease-spreading. Detec-
tion of the disease by symptoms can be assumed equal to recovery, because bed-rest (humans),
stamping out (herds), or other isolating and terminating actions are performed. The assumption
that detection equals recovery is although not always reasonable; for an only moderately injurious
disease, measurements range from doing nothing to applying some sort of medical treatment. At
best, the latter speeds up recovery time, but none of the measures stop the detected infective im-
mediately. Another problem is that a non-negligible amount of falsely detected cases of a disease
might occur.

Our aim is to use the SIR-model as building block for decision support handling infectious dis-
eases in animal production. Application of SIR-models within this domain is subject to a set of
characteristics worth noting.

• Populations under study in this application can be small, e.g. the members of a pen or
section in a slaughter pig production unit. Handling the population as a continuous quantity
would be too coarse an approximation in this case.

• The smaller the unit the more distinct the influence of the chance element. Hence, stochas-
ticity of the model is a must.

• Observations are likely to be infrequent compared to the speed of the epidemic. Hence,
long chains of infections can occur between observation times, violating basic indepen-
dence assumptions in the SIR-model. A continuous time model would be better suited for
infrequent data. Furthermore, it allows for any-time predictions, which are of interest for a
warning system.

Whereas the above argues for the choice of time scale, population granularity and stochasticity
within the framework of single population SIR-model, two further characteristics require exten-
sions to the simple model.

• Stalling of the animals into pens and sections introduces a spatial dimensions causing an
inhomogeneity in the contact process not covered by the simple model. The hierarchy of
pens, sections and population should thus be part of the model.

• Interaction into the epidemic process by e.g. authorities implementing control measures
influences contact behavior and recovery process. Examples from the veterinarian field are
the introduction of a vaccination policy or the decision to carry out pre-emptive slaughtering
of farms neighboring an infected farm.

The aim of this report is to give a detailed description of parameter estimation in the simple SIR-
model and integrate the necessary extensions induced by the animal production domain into the
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SIR-model. That is handling spatial arrangements of the population causing an inhomogeneity
in the contact process and interaction into the both contact and recovery processes by control
measures. With a fitted SIR-model the way is paved for applications such as a disease warning
system predicting the location of new cases in a pig production facility as described in [Höhle,
2002]. A secondary goal is to present a programming environment developed to exemplify the
model extensions at a proof of concept level. Furthermore, this implementation allows others to
try the extensions on their own data.





Chapter 2

Parameter estimation in simple SIR epidemics

We begin this chapter by introducing the concept of the continuous time SIR-model, the class of
SIR model best suited to meet the demands mentioned in Chapter 1. The model will constitute our
framework for describing infectious diseases and estimate its parameters to fit specific observa-
tions on recovery and infection times. At first, well-known formulas on how to obtain maximum
likelihood estimates for β and γ in case of full observations are derived. Hereafter, an approach
for handling estimation in case of missing infection times is presented: Bayesian analysis using
Markov Chain Monte Carlo (MCMC). Goal is to obtain a sufficient understanding for creating an
own implementation of the various SIR-estimation procedures. The Bayesian part of this chapter
is based on work of [O’Neill and Roberts, 1999], but extended in an applied manner by conver-
gence testing, discussion of implementational issues, and method validation through simulated
datasets.

2.1 Introducing the stochastic continuous time SIR-model

The following establishes the notational framework using the terms of [O’Neill and Roberts,
1999]. A population of initially N susceptible and a infectious is considered. Note that in general
a can be arbitrarily large, but to keep things simple only a = 1 is considered. X(t) and Y (t)
denote respectively the number of susceptible and the infected individuals at time t ≥ 0. It is
sufficient to keep track of (X(t), Y (t)), because for all t the equality X(t)+Y (t)+R(t) = N +a
must hold, with R(t) denoting the number of recovered individuals. Evolution of the epidemic
process (X(t), Y (t)) can be described by a continuous time Markov chain with the following
transition rates.

(i, j)→ (i− 1, j + 1) : βX(t)Y (t)

(i, j)→ (i, j − 1) : γY (t)

Beginning with the single initially infected individual, the epidemic runs until there are no more
infected left in the population. In case the initial infective recovers before any other individuals
are infected the epidemic ceases. We will denote such an epidemic a singleton.

EXAMPLE 2.1 (A SIMPLE EPIDEMIC)
Consider a SIR epidemic with parameters β = 0.1, and γ = 0.3 in a population with (N, a) =
(10, 1), i.e. 10 susceptibles and one initial infected. Figure 2.1 shows 10 realizations of this model
underlining the stochasticity of the model. In an estimation context, usually only one realization
of the epidemic is available – from which we then try to estimate the parameters.

11
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Figure 2.1: X(t) and Y (t) for 10 simulations of the example epidemic. In the runs 1,2, and 6, the
initial infectious recovers before any new infections occur, thus stopping the epidemic.

3

One way to exploit SIR-models is to use them as a tool to simulate the outcome of epidemics to get
an understanding of how the model parameters influence the outcome. For example, Figure 2.1
illustrates the stochasticity in Example 2.1. Another way is to use the model to explain observed
epidemic data by finding the model parameters β and γ giving the best fit to the available data.
Depending on the specific case, this could be both recovery infection and recovery times, just
recovery times or in some situation just the final total number of susceptibles infected at the end
of the epidemic, i.e. the final size, Z , of the epidemic. Sections 2.2 and 2.3 treat the first two
scenarios in detail. In case only final size data is available, no individual estimate of β and γ can
be made – only an estimate of the basic reproduction ratio, i.e.

R0 =
βN

γ
,

can be obtained. This number is often of interest, because major outbreaks can occur only if R0 >
1, see [Andersson and Britton, 2000, Chapter 4]. To illustrate the final size, Figure 2.2 shows the
final size distribution of the epidemic in Example 2.1. Further information on how to estimate
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Figure 2.2: Final size distribution of the epidemic in Example 2.1. The bar-plot shows the result
of 10,000 simulations, whereas crosses show exact value obtained by solving the equation system
in [Andersson and Britton, 2000, Theorem 2.2].
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this basic reproduction ratio from final size data can be found in [Becker, 1989; Andersson and
Britton, 2000] but is otherwise not treated in this report.

To describe event data, let I0 < 0 be the time of the first infection, i.e. the initial infection
making a = 1. Assume that the epidemic is observed in the time interval [I0, T ], if at time
T all infected are recovered, the epidemic is said to be observed to its end. Data thus consists
of observed removal times τ , and subsequent infectious times I observed during [I0, T ]. Here,
τ = (τ1, . . . , τn), is in time wise order with the first recovery defined to be observed at time
zero. That is τ1 ≡ 0 and τi ≤ τi+1. Similarly, I = (I1, . . . , Im−1), with Ij ≤ Ij+1. In general
n ≤ m ≤ N , with m = n if the epidemic is observed for its entire duration. To make the
analysis simpler we decided to only consider epidemics observed until end, i.e. in our cases we
always have m = n. This is though not a general requirement before parameter estimation is
possible [O’Neill and Roberts, 1999].

As the duration of being infectious is stochastic, Ii and τi do not necessarily have to refer to the
same individual. On the other hand we know that once the total number of infected individuals
drops to zero no more infections can occur and the epidemic stops. This knowledge combined
with the observed data can be translated to a relationship between the I’s and the τ ’s. Let I(t) =
|{I ∈ ({I0}∪ I) | I ≤ t}| and R(t) = |{τ ∈ τ | τ ≤ t}| be the number of infective and recovered
at time t. For each observed recovery τi, the correspondent infection has to occur prior to τi, i.e.
for all t ∈ [I0, τn[ we should have Y (t) = I(t) − R(t) > 0. In case of m = n this is equivalent
to the constraint

Ii < τi for all 1 ≤ i ≤ m− 1. (2.1)

2.2 ML-estimation in case of full data

As a first step, the likelihood expression for a fully observed epidemic with data (τ , I0, I) is
computed. Instead of absolute time the waiting time between the different events is modeled,
i.e. ti = t′i − t′i−1, where t′i denotes events in absolute time. Likelihood of each waiting time
can be found using survival analysis methodology in a setup with multiple modes of failure,
see [Fahrmeir and Tutz, 1994, p.331]. Two events of “failure” are possible: becoming infected or
recovering. The two hazard functions can be written as

λinf(ti|β) = βX(ti)Y (ti),

λrec(ti|γ) = γY (ti).

with X(t) and Y (t) being the number of susceptibles and infectious at time t, respectively. The
overall hazard function is thus given by

λ(ti|β, γ) = βX(ti)Y (ti) + γY (ti).

Between events the hazard functions are constant, i.e. the advantage of using waiting times is that
it allows operating with constant hazards.

The epidemic dataset is described by D = {(ti, ei)}, where ei ∈ {inf, rec} denotes the event-
type. D consists of n recovery events and m infectious events, with m = n when the epidemic
is observed to end. Interest is now in the density of τ , I given β, γ, I0. Consider therefore the
likelihood of a single arbitrary event ei in D as failure time in a setup with constant hazard and
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non-informative censoring. If time is zero at the occurrence of the event just prior to ei, the
likelihood is

Li = λei
(ti|β, γ)P (Ti ≥ ti|β, γ) = λei

(ti|β, γ)S(ti|β, γ),

where Ti is a stochastic variable denoting failure time of ei and

S(t|β, γ) = exp

(

−
∫ t

0
λ(u|β, γ)du

)

is the survival function based on the overall hazard. Assuming independence between the arrival
times, the overall likelihood is given by looking at all infection and all recovery events except I0.
The latter is not part of the likelihood, because an epidemic always is conditioned on the existence
of the first infective. Hence, L

=

[

n
∏

i=1

γY (τ−
i ) exp

(

−
∫ τi

τi−1

λ(t|β, γ) dt

)][

m−1
∏

i=1

βX(I−i )Y (I−i ) exp

(

−
∫ Ii

Ii−1

λ(t|β, γ) dt

)]

=

n
∏

i=1

γY (τ−
i )

m−1
∏

i=1

βX(I−i )Y (I−i )

[

n
∏

i=1

exp

(

−
∫ τi

τi−1

λ(t|β, γ) dt

)][

m−1
∏

i=1

exp

(

−
∫ Ii

Ii−1

λ(t|β, γ) dt

)]

=
n
∏

i=1

γY (τ−
i )

m−1
∏

i=1

βX(I−i )Y (I−i )

[

exp

(

−
n
∑

i=1

(

∫ τi

τi−1

λ(t|β, γ) dt

)

−
m−1
∑

i=1

(

∫ Ii

Ii−1

λ(t|β, γ) dt

))]

,

where X(t−), Y (t−) denotes the situation just prior to time t, i.e. Y (t−) = limt→t− Y (t). As the
i and r events are consecutive in time the sums of integrals can be simplified into a single integral.
Hence,

f(τ , I|β, γ, I0) =

n
∏

i=1

γY (τ−
i )

m−1
∏

i=1

βX(I−i )Y (I−i ) exp

(

−
∫ T

I0

βX(t)Y (t) + γY (t) dt

)

(2.2)

Differentiating this likelihood with respect to either β and γ and solving for zero reveals that the
ML estimates are given as

β̂ =
m− 1

∫ T

I0
X(t)Y (t) dt

, γ̂ =
n

∫ T

I0
Y (t) dt

, (2.3)

which corresponds to the results from [Andersson and Britton, 2000, Section 9.2]. Here, using
counting processes the ML-estimators are also proven to be asymptotically Gaussian with the true
parameter values as mean and consistent estimates of the standard errors being

s.e.(β̂) =
β̂√

m− 1
, s.e.(γ̂−1) =

γ̂−1

√
n

.

From (2.3) it is also easy to see that if all observations, i.e. I0, I, τ , are scaled in time by a factor
k, the resulting ML estimates for β and γ are just k times the value of the non-scaled estimators.
This might come handy to avoid numeric overflow when working with epidemics having large t
values.



2.3. MCMC-estimation in case of partial observability 15

2.3 MCMC-estimation in case of partial observability

As mentioned in the introduction, infectious times are hardly ever observed in practice, but we
are still interested in estimation β, γ, or just R0 despite of missing {I0} ∪ I observations. Based
on the observed removal times Markov Chain Monte Carlo can be used to deal with the partial
observed epidemic process. Our goal is to obtain estimates of the β and γ process parameters.
Due to the non-observed infection times our state vector will thus be (β, γ, I0, I). This section
follows the work described in [O’Neill and Roberts, 1999].

Operating within the Bayesian framework prior distributions are assumed for the unknown pa-
rameters β, γ, I0.

β ∼ Γ(νβ , λβ), γ ∼ Γ(νγ , λγ) − I0 ∼ Exp(θ),

where Γ(ν, λ) denotes the Gamma distribution with mean ν/λ and variance ν/λ2, and Exp(θ)
denotes the exponential distribution with mean 1/θ. Prior for I is just assumed to be uniform on
the set of valid configurations. Using Equation 2.2 the full-conditional posterior distributions can
be obtained for β, γ, and I0, which allows us to use Gibbs updating of these quantities. For I

the full-conditionals cannot be as easily established, therefore a Metropolis sampler will be used
here. Calculation of the full-conditional posteriors happens according to Bayes Formula,

Posterior ∝ Likelihood × Prior.

As interest is only up to proportion all terms not containing the variables of interested are ignored,
i.e. for β we have

π(β|τ , I0, I, γ) ∝ f(τ , I|β, γ, I0)π(β)

∝
(

m−1
∏

i=1

βX(I−i )Y (I−i )

)

exp

(

−
∫ T

I0

βX(t)Y (t) + γY (t) dt

)

βνβ−1 exp(−λββ)

∝ βm−1 exp

(

−
∫ T

I0

βX(t)Y (t) dt

)

βνβ−1 exp(−λββ)

= βνβ+m−2 exp

(

−λββ − β

∫ T

I0

X(t)Y (t) dt

)

(2.4)

∼ Γ

(

νβ + m− 1, λβ +

∫ T

I0

X(t)Y (t) dt

)

.

In case of non-informative priors, νβ = λβ = 0, the mean of the posterior will be identical to
the ML estimates in Equation (2.3). If the epidemic of interest consists of a singleton, a setting
with non-informative priors makes the first parameter of the Γ-distribution zero. This leads to an
incorrectly specified distribution causing problems in case we want to sample from it. If instead a
proper prior is specified, sampling occurs directly from this prior, because the data of a singleton
epidemic provide no additional information about β.

Using similar computations, the posterior of γ is found to be

π(γ|τ , I0, I, β) ∼ Γ

(

νγ + n, λγ +

∫ T

I0

Y (t) dt

)

.

To compute the posterior distribution of I0, we use that the prior for −I0 is Exp(θ) distributed.
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Letting the zero indicator function of the exponential distribution be implicit, we obtain

π(−I0|τ , I, β, γ) ∝ f(τ , I|β, γ, I0)π(−I0|β, γ, I0)

=

n
∏

i=1

γY (τ−
i )

m−1
∏

i=1

βX(I−i )Y (I−i ) exp

(

−
∫ T

I0

λ(t|β, γ) dt

)

θ exp(−θ(−I0))

∝ exp

(

−
∫ I1

I0

βX(t)Y (t) + γY (t) dt

)

exp(−θ(−I0)).

As X(t) = N for I0 ≤ t < I1 and Y (t) = 1 for I0 ≤ t < I1 the necessary integrals are,

∫ I1

I0

Y (t) dt = (I1 − I0), and
∫ I1

I0

X(t)Y (t) dt = N(I1 − I0).

yielding π(−I0|τ , I, β, γ) ∝ exp(−βN(I1− I0)− γ(I1− I0)− θ(−I0)). As calculation is only
up to proportionality, we can multiply by appropriate constants to obtain a proper pdf., i.e.

π(−I0|τ , I, β, γ) ∼ Exp(βN + γ + θ), (2.5)

which produces the desired posterior distribution of I0.

The initial state vector

Initial values for β and γ are obtained by sampling from their respective priors. By fixing the seed
value of the random generator it is possible to assure fixed initial values useful for debugging and
comparison. Similarly, I0 is obtained by sampling a value from Exp(θ) and negating it. To find
a I taken uniform from the set of valid configurations, we draw m − 1 independent values from
the uniform distribution on (I0, τn−1), sort them in ascending order, and check whether they obey
the constraint of Ii ≤ τi for 1 ≤ i ≤ m − 1. This procedure is repeated until a valid sample is
obtained.

Generating new states by Gibbs-within-Metropolis

A Gibbs within Metropolis sampling scheme is used to update the state vector (β, γ, I0, I). The
first three components are updated by sampling from the respective full conditional distribution,
whereas sampling from π(I|τ , I0, β, γ) is done using a Metropolis sampler. For notational con-
venience π(τ , I|I0, β, γ) is abbreviated as f(I). Compared to the estimation scheme of O’Neill
and Roberts [1999] we know know the size of I , because the epidemic is assumed observed to
end. Thus, there is no need to estimate m by being able to add or remove infection times to the
state vector. The only operation is therefore the moving of an infection event in time: Choose at
random one of the infection times I1, . . . , Im−1 and denote this time s. Generate a replacement
time t by sampling uniform on (I0, T ). This new infection candidate is accepted with probability

α(X,Y ) = min

(

1,
f((I\{s}) ∪ {t})

f(I)

)

.

Proposal distribution of the new element in the state I ′ = (I\{s}) ∪ {t} is thus U(I0, T ), which
is independent of current state I , corresponding to the independence sampler. Independence
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also automatically ensures that the proposal distribution is symmetric which is required for a
Metropolis Algorithm, see [Gilks et al., 1996]. Also, for MCMC to work it has to be ensured that
the designed Markov chain is irreducible and recurrent, i.e. it must be able to visit relevant states
in the state space and that infinitely often [Gilks et al., 1996, Chapter 4]. Demonstrating these
properties is not always non-trivial and O’Neill and Roberts [1999] do not discuss the matter in
further detail. For a more rigorous proof consult the work of Gibson and Renshaw [1998], who
prove the above properties for an almost similar model.

Implementationalwise the I vector is represented as an array. After t is written to s’s position in
I , the array needs to be sorted before the acceptance probability can be computed. Let t = Ij

after sorting, if t < τj the configuration is invalid and will automatically be rejected because
f((I\{s}) ∪ {t}) = 0. The reason here fore, is that the data claims that new infectious case
are generated, even though Y (t) = 0. It remains future research to investigate whether a better
proposal distribution scheme can be devised, than the above proposed by [O’Neill and Roberts,
1999]. For example, Figure 2.3 shows the acceptance probability of replacing I1 or I9 in Epidemic
no. 3 from Example 2.1. Note how the uniform proposal is fair in the case of I9, but quite poor
in case of I1. The question is whether some adaptive method can yield less rejection, fulfill the
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Figure 2.3: The acceptance probability α for replacement of I1 and I9 in Epidemic no. 3 from
Example 2.1 with a t ∈ (I0 = −0.77, T = 5.40]. The i and r letters on the x-axis denote
current location of I0, I , and τ events. Because a recovery means fewer infected and thus a lower
probability for becoming infected, the acceptance probability drops at each recovery event.

criteria of an Metropolis proposal distribution, while having a higher mixing rate. A possible
alternative could be to use a random walk sampler instead of the independence sampler. Updating
again occurs by at random selecting an existing infection time Ii using it to generate a new value

I ′i = Ii + ε, where ε ∼ N(0, σ2).

Tuning σ means finding a trade-off between a high acceptance rate and a low mixing, here adaptive
methods, etc. from [Gilks et al., 1996] might lead to inspiration.

Because only one component of I is updated per run, quite a large number of iterations are needed
before stationarity can be expected. A possible workaround could be to update a larger number of
components. This gives quicker mixing, but at the cost of a lower acceptance rate. Finally, some
efficiency gains might be obtained by re-parameterizing the I parameter to contain waiting time
between infection times instead. This would make time-consuming sorting superfluous.
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2.4 Testing the implementation

A program, LadyBug, implementing the theory of the preceding sections has been developed.
Providing information about population size, I and τ , the program computes the desired param-
eter estimates; Appendix A contains a thorough description of the program together with infor-
mation on invocation, etc. In this section we will apply it to three examples: a small simulated
epidemic containing five cases from [O’Neill and Roberts, 1999], data from a smallpox epidemic
in Nigeria, and finally the simulated datasets generated by us in Figure 2.1. Aim is to check the
correctness of the implementation by validating against the results by [O’Neill and Roberts, 1999]
and datasets, where we know the correct value of the parameters. Such a validation is important:
The iterative and stochastic nature of the methods makes introducing programming errors easy –
locating and debugging them a matter of balancing between optimism and perplexity!

2.4.1 The five case SIR epidemic

First test-case contains simulated data from a SIR-model with parameters β = 0.12 and γ = 1
in a population with (N, a) = (9, 1). Data consists of five observed removal times1, where it is
assumed that the epidemic has been observed for its entire length, see O’Neill and Roberts [1999]
for details. Prior distribution parameters are (νβ, λβ) = (0.1, 1) and (νγ , λγ) = (0.1, 0.1). After
a burn-in of 1000 samples 5,000 samples are generated by running the chain for an additional
1,000,000 samples and thinning it by taking each 200th value. A thinning scheme is applied, in
order to reduce the auto-correlation of the samples, this feels necessary, because only one infection
time besides I0 is changed per run. Despite of thinning, a larger number of generated samples also
provides better convergence results in e.g. Geweke plots. Output of the program is now analyzed
by the BOA package in R, see B. [2001]. The overall statistics for the two posterior distributions
are as follows.

Mean SD Naive SE MC Error Batch SE Batch ACF
β 0.0978 0.0608 0.0008600 0.0008612 0.0008556 -0.0570
γ 0.7995 0.4667 0.0065997 0.0063301 0.0068253 -0.1854

Here, SD corresponds to the standard error, σ, of the posterior distribution, and Naive SE error
is a measure of the precision of the sample mean as a point estimate of the true posterior mean.
It is naively derived by assuming independence between samples, i.e. σ/

√
5000. The next two

columns also estimate the above mentioned precision, but take the autocorrelation of the samples
into account – either using spectral estimators or dividing calculations into batches, see [BUG,
2001; B. , 2001] for details. After the 101,000 samples the acceptance rate of the I component
of the Metropolis sampler is 42.75%. In [O’Neill and Roberts, 1999] posteriors means of β and
γ are 0.098 and 0.780 are reported with std. error 0.0632 and 0.451, respectively. Our estimates
are thus in agreement with their findings. Furthermore, Figure 2.4 shows density plots of the two
parameters obtained by a kernel-filter.

To get an idea about chain convergence we consider in Figure 2.5 the Geweke convergence di-
agnostic plot [BUG, 2001; B. , 2001] and in Figure 2.6(a) a trace of the β values. Out of the
plotted 50 points in the figure approximately 1-2 are lying outside the confidence bands for the β
parameter. The question is whether this indicates that the chain has converged? Heidelberger and

1Note that all data are available as LadyBug specification files from the program homepage.
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Figure 2.4: Kernel densities for β and γ, respectively.

Welch’s test for stationarity (see [BUG, 2001]) is passed for both parameters, without having to
throw any samples away. From the results of the above diagnostics, we play the daredevils and
conclude that the chain appears to have converged.
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Figure 2.5: The Geweke convergence diagnostic for β, γ, i.e Z-score together with 95% confi-
dence intervals for the two parameters, see [BUG, 2001].

As an additional diagnostic tool Figure 2.6(b) shows the development of f(τ , I| . . .) as a function
of the sample index. If we instead of a Bayesian analysis think of MCMC as maximizing the f
function, the trace in the Figure could be regarded as the output of stochastic optimizer of which
the best result could be taken. If a brute-force maximization of Expression (2.2) with (β, γ, I0, I)
as unknowns is desired, more sophisticated methods such as conjugate gradient or stochastic
simulated annealing should be applied, see [Press et al., 1992].
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Figure 2.6: (a) The β trace of the 5,000 samples. (b) Trace of log(f(τ , I| . . .)) obtained by the
same samples.

2.4.2 Sketching a Marginalized Likelihood method

As the small five-case epidemic constitutes our first application, a consideration about model-
identifiability and alternative estimation methods are in place. We note, that the total number of
model parameters is |I|+3, which we are trying to estimate from |τ | (in our case equal to |I|+1)
recovery times and knowledge about the start population (N, a). Having more model parameters
than data is certainly problematic, but the constraint on I0 ∪ I given by Ii−1 ≤ Ii ≤ τi restricts
the parameter space substantially. To visualize this, consider the following intuitive procedure.

1. Select a valid configuration of I0∪I with respect to Equation (2.1) by drawing it uniformly
from the space of valid of configurations.

2. Estimate β, γ using ML-Estimation from τ and the sample of I0 ∪ I .

Repeating the procedure k times, yields k independent estimates for β, γ of which we can take
the mean to obtain a qualified guess on the desired estimates.

Pondering, one realizes that the above procedure reminds about Monte Carlo optimization of
an augmented likelihood function. Augmenting the likelihood L(β, γ|τ ) with fictions {I0} ∪ I

makes estimation easy. By integrating this augmented likelihood over all possible configurations
of {I0} ∪ I given τ the desired likelihood is obtained. In other words; the ML-estimate of β and
γ based on the observable data τ is found as the maximizer of the marginal density

L(β, γ|τ ) = f(τ |β, γ) =

∫ ∫

f(τ , I|I0, β, γ) dI dI0,

where integration happens over all valid configurations {I0} ∪ I|τ . Calculating the above high
dimensional integral is certainly infeasible analytical or by ordinary numerical solutions. Instead,
the objective function can be expressed as calculation of the expectation

L(β, γ|τ ) =

∫

f(τ , I|I0τ |β, γ) dPτ (I, I0),

where dPτ is the distribution of {I0} ∪ I given τ , i.e. uniform over the set of valid configuration.
This allows approximate the marginalized likelihood using Monte Carlo integration. Based on a



2.4. Testing the implementation 21

sample of size k from dPτ , denoted {I i
0} ∪ I i, 1 ≤ i ≤ k, calculate

Lk(β, γ|τ ) =
1

k

k
∑

i=1

f(τ , I(i)|I(i)
0 , β, γ),

and let (β̂, γ̂) and (β̂k, γ̂k) be the arguments maximizing L and Lk respectively. The obtained
Monte Carlo estimate (β̂k, γ̂k) has the property that (β̂k, γ̂k)→ (β̂, γ̂) for k →∞.

The difference between the intuitive method and Monte Carlo optimization is that we maximize
β and γ for each configuration, instead of maximizing β and γ once by minimizing the likelihood
sum of all configurations.

Crux of the above procedures is the sampling from Pτ , i.e. in our case to draw uniform from the
space of valid I0 ∪ I|τ configurations. Problem is that I0 is not bound to the left, making the
space of possible configurations enormous, most of them with ridiculous low likelihood values.
Figure 2.7 investigates the dependence of f(τ , I|I0, β, γ) on I0. The values are obtained by
conditioning I0 to be in {−1− 5i | 0 ≤ i ≤ 20 and then sample 100 configurations of I|I0, τ for
the five-case epidemic. The box-and-whisker plots illustrates the distribution of the log-likelihood
for these 100 cases. The linear effect on the log-scale is clear from Equation (2.2).
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Figure 2.7: Box-and-whisker plot illustrating log(f(τ , I|I0, β, γ)) as a function of I0 for a set
of fixed values. For each box, the median of the 100 values is shown, while box hinges show
the borders of the 1st and 3rd quartile of the values, and whiskers extend to the most extreme
data-point no more than 1.5 times away from these quartiles borders.

Figure 2.7 can be used to motivate that certain configurations are not worth exploring. To make
estimation feasible but unfortunately only approximate, we replace the simultaneous sampling of
I0 and I by a stepwise procedure. Draw m values from U(θ, τn), where θ is chosen such that an
appropriate truncation of the interval (−∞, τn) is obtained. By monitoring how f(τ , I|I0, β, γ)
depends on I0 it is often possible to get a good idea on how to choose θ in order to get a fair
truncation. Sort the obtained values and check whether the constraints are satisfied with respect to
τ . If not, repeat the procedure until a valid sample sample is obtained. Precision of the estimates
depends very much of the shape of f , number of samples used and the fairness of the truncation.
It remains a task of future research to replace the above coarse approximation with a more sound
procedure.

Figure 2.8 shows the kernel smoothed density obtained from 10, 000 samples for the five-case epi-
demic, where we maximize for each configuration. The β samples have mean 0.1109 and variance
of 0.0012, while the γ samples have mean 0.9093 and variance 0.0800. Running 100 runs of the
Monte Carlo Optimization method each based on a sample size of k = 1, 000 yields the following
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Figure 2.8: Kernel densities for β and γ, obtained by from 10,000 independent and valid samples
for I0 ∪ I .

mean and sample variances: β̂ = (0.0991, 1.4025e − 6) and γ̂ = (0.8129, 9.2571 · 10−5). Note
that this uncertainty is just a measure of the effect of sampling error on the point estimate. The
results from the two approaches illustrate the effect of the constraint at least for small epidemics:
Missing infection times are handled well, because the constraint allows to deduce quite narrow
intervals for the missing values.

2.4.3 Smallpox data

The next example concerns the classic smallpox epidemic example occuring in a closed com-
munity of 120 individuals in Abakaliki, Nigeria mentioned in both [Becker, 1989; O’Neill and
Roberts, 1999]. With none-informative priors, the following results are obtained using a setup
with 5,000 samples obtained by a burn-in of 1000 and a thin of 200.

Mean SD Naive.SE MC.Error Batch.SE Batch.ACF
β 0.00093 0.00030 9.365 ·10−6 9.288·10−6 1.133 ·10−5 0.2940
γ 0.09765 0.03015 9.533 ·10−4 9.806·10−4 1.013 ·10−3 0.1106

Acceptance rate is at 47.89%. O’Neill and Roberts [1999] reports estimates of 0.0009 and 0.098
with variances 0.00019 and 0.02074, which according to them corresponds to maximum likeli-
hood estimates found by some method not described in further detail. The Geweke convergence
plot for β is shown in Figure 2.9.

For comparison consider the results of the marginalized likelihood approach. Based on 100
samples each using 1,000 values for the Monte Carlo integration with θ = 10 we obtain β̂ =
(0.0006, 1.566 · 10−11) and γ̂ = (0.0642, 1.979 · 10−7), which unfortunately is somewhat away
from both the obtained MCMC values and the reported ML values. It appears that in a larger epi-
demic missing infection times are harder to restore, because constraints do not restrict the space
as much as e.g. in the five case epidemic.

2.4.4 Value of Infection data

So far the implementation has only been validated by comparing results for well-known datasets
used in the literature. In this section we will use the 10 simulated epidemics with (N = 10, a = 1)
shown in Figure 2.1, providing a dataset containing both τ and {I0}∪I . Like that we can compare
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Figure 2.9: The Geweke convergence diagnostic (50 bins) for β in the Abakaliki epidemic.

the estimates obtained using both recovery and infectious times by ML to the ones obtained using
MCMC from recovery times alone, see Table 2.4.4. In the latter case, posterior means of 10,000
samples (non-informative priors) together with naive standard error estimates are shown. In case
of a singleton epidemic it is not possible to use the MCMC method, because the method requires
at least two infection times. ML estimation of β̂ and γ̂ in case of singletons is possible, but there
is not a lot of information to use; β̂ will be zero and 1/γ̂ will be equal to the length of the single
infectious period. The formula for asymptotic variance will have a zero in the dominator and can
thus not be used and the standard deviation of γ̂ will be equal to γ̂.

Full information (ML) Partial information (MCMC)
# m β̂ γ̂ s.e.(β̂) s.e.(γ̂) β γ s.e.(β) s.e.(γ)

1 1 0.0000 5.8617 NA 5.8671 NA NA NA NA
2 1 0.0000 3.4892 NA 3.4892 NA NA NA NA
3 10 0.1289 0.5293 0.0430 0.1674 0.1282 0.5632 0.0006 0.0027
4 4 0.0506 0.5805 0.0292 0.2903 0.2760 2.9930 0.0021 0.0210
5 12 0.1330 0.2157 0.0421 0.0650 0.4943 0.1580 0.0044 0.0005
6 1 0.0000 4.1580 NA 4.1580 NA NA NA NA
7 2 0.0204 0.3693 0.0204 0.2611 0.0074 0.1357 0.0001 0.0015
8 9 0.0641 0.3563 0.0227 0.1188 0.0658 0.3214 0.0003 0.0015
9 8 0.0522 0.2791 0.0197 0.0987 0.0541 0.3240 0.0003 0.0016
10 11 0.1194 0.3330 0.0378 0.1004 0.1872 0.2090 0.0012 0.0009

Table 2.1: Comparing ML estimation based on access to both τ and I with MCMC estimation
from just τ . The first two columns show, which run of Fig 2.1 is considered together with its
number of infections. For MCMC, posterior means together with a naive std. error estimates are
shown.

If singleton epidemics are discarded the mean of the remaining seven β̂ estimates is 0.081 and 0.17
for ML and MCMC, respectively. That the mean is higher in case of partial information is mostly
due to the large deviation for run four and five, otherwise the calculations roughly yield the same
parameter estimates. Why runs four, five and possibly also 10 yield high β̂ estimates is hard to
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say. A possible explanation might be that they all are epidemics with a high number of observed
recoveries/infections – not knowing the infection times thus corresponds to throwing a lot of
information away thus introducing more parameters. The hypothesis is although contradicted by
the results of run 3. Not knowing anything about the infectious times should in principle allow for
multiple solution structures – one of them having a high number of infections in the beginning (β
high) followed by a long recovery time (with large variance). A more straightforward explanation
could be some type of convergence difficulty, which a more detailed analysis could reveal.

It is hard to draw well-founded conclusions from just 10 simulations in a very small population.
Of course lack of infection times is loss of information, but a more detailed description of the
impact is very context dependent. For some runs it appears that the limited information makes a
solution with a high infectious rate followed by a long recovery time more attractive. One thing is
although clear - the asymptotic variance estimates obtained in the ML framework are not feasible
in the case of a population of size 11! Here, the results obtained from the sampling appear more
precise.

The three examples should have illustrated the functionality of the LadyBug program in connec-
tion with simple SIR epidemics. We are thus ready to move on to extended SIR-models.



Chapter 3

Estimation in generalized SIR models

This chapter discusses two extensions of the SIR model, aimed at making it more applicable to
the domain of animal production, together with how to do parameter estimation in these settings.
After presenting the necessary theory, the methods are illustrated using both simulated epidemics
and data from a classical swine fever epidemic in the Netherlands. As in the last chapter, these
illustrations concurrently works as a test for the crafted implementation.

3.1 The extensions

The first extensions allows for switching between k different sets of parameters in the SIR model.
Focus is on a model, where the active regime at time t is completely determined by the value of
t. An example is to divide (I0, T ) into two disjunct intervals expressing that in the first interval
SIR-parameters are (β1, γ1) while being (β2, γ2) in the second interval. Advanced switching such
as e.g. switched Markov processes [Holst and Madsen, 2000], where the active regime depends on
past values, could be relevant, but is beyond the scope of this report. To introduce the necessary
notation, let the ordered set of switch points

S = (s12, s23, . . . , sk−1k), such that s12 < s23 < . . . < sk−1k,

determine the active regime at time t. To keep things simple we assume that S is known – in
many real world applications it might be of interest to estimate S by itself. Now, let the function
cr(t) : t→ {1, . . . , k} determine the active regime at time t, i.e.

cr(t) ≡















1 if t < s12

2 if s12 ≤ t < s23

. . .
k if t ≥ s(k−1)k

As before the population consists initially of N susceptibles and a = 1 infected. Transition
intensities of (X(t), Y (t)) = (i, j) at time t are given by

(i, j)→ (i− 1, j + 1) : βcr(t)ij (3.1)

(i, j)→ (i, j − 1) : γcr(t)j. (3.2)

Note that the above continuous time process no longer satisfies the Markov property. A switched
SIR model allows handling situations, where e.g. different control measures and management rou-
tines have been attempted over time to reduce the spread of the disease and limit its consequences.

25
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An example is the classical swine fever epidemic in the Netherlands [Pluimers et al., 1999; Stege-
man et al., 1999] analyzed in Section 3.5.3. Here, authorities increased control measures stepwise
in an attempt to eradicate the disease. Each regime would then correspond to a fixed set of control
measures practiced in a specified time interval. Parameter estimation from data can then be used
to see how the measures had an effect on the β and γ parameter. A less comprehensive example
with only two regimes is used to illustrate the idea.

EXAMPLE 3.1 (TWO-REGIME SIR-MODEL)
Consider an epidemic in a population with N = 34, a = 1, and S = (5.1216). We let β1 =
0.01, β2 = 0.1, γ1 = 0.3, and γ2 = 0.3. Figure 3.1(a) shows a single realization of this epidemic.
Notice how the increase in β after the switch causes the second top in the number of infected at
t ≈ 12. In (b) the effect on the final size can be seen from a histogram based on 10,000 samples.
Final size of the switching model (bars) tends to be larger compared to a single regime model
with Regime 1 parameters, but smaller than a single model with Regime 2 parameters. 27.24% of
the 10,000 simulations end up in regime 2.
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Figure 3.1: (a) Number of infected as a function of time for a single simulation of the model.
The vertical line at 5.1216 indicates the switch point. (b) Bars show final size distribution of the
epidemic in Example 3.1 obtained by 10,000 samples. Crosses and circles show probabilities of
a single model with parameters as in Regime 1 and Regime 2, respectively.

3

Whereas the basic model assumes homogeneity of the entire population, the second extension
allows handling a set U , |U | = l, of sub-populations. Within each sub-population homogeneity
is still the case, but we now enable heterogeneity between the interacting populations. Such a
pattern could for example originate from a spatial arrangement of the populations giving different
conditions to spread because contact behavior is limited. To keep it simple, the spatial structure
is assumed to be of grid tiling as e.g. in [Marshall et al., 2001; Höhle, 2001], with the further
assumption that only neighboring populations immediately interact. More advanced spatial struc-
tures and interaction schemes are of course imaginable, e.g. counties of a country where exchange
of infectious material is proportional to the Euclidean distance.

In the spatial setup, each unit u ∈ U has its own set of parameters βu, γu. For notational conve-
nience all involved quantities are formulated in vectors of length l. That is, let N = (N 1, . . . , N l)
be a vector denoting the different initial number of susceptibles and let a be zero except for the
component corresponding to the unit hosting the initial infective. At each time time-point t, (i, j)
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denotes the number of susceptibles and infectious in each unit. Transition intensities for unit u
are now given as

(i, j)→ (i[iu − 1], j[ju + 1]) : βuiuju +
∑

s∈N4(u)

βu→siujs (3.3)

(i, j)→ (i, j[ju − 1]) : γuju, (3.4)

where i[iu − 1] ≡ (i1, . . . , iu − 1, . . . , il) and N4(u) denotes the city-block neighborhood of u.
Notice the additional βu→s parameters introduced to handle interaction between neighbors. The
formulated model is although still just an instance of a multi-type epidemic, see [Andersson and
Britton, 2000, Chapter 6]. To reduce the number of parameters one could assume that all βu and
γu are equal and that one parameter is sufficient to describe the interaction between any two units,
i.e. a total of three parameters needs to be estimated.

EXAMPLE 3.2 (TWO UNIT MODEL)
Consider a one-regime model with two units each having their own set of (β, γ) parameters but
β1→2 = β2→1 = βn. Let N = (24, 25), a = (1, 0), β1 = β2 = 0.1, βn = 0.001, and γ1 =
γ2 = 0.3. Figure 3.2(a) shows the trajectory of an epidemic with such a configuration, in (b) the
final distribution is shown based on 10,000 simulations. Note, how the epidemic either ceased
straight away, infects all animals within the first unit (without spreading to the second), or infects
practically all animals in the two units.
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Figure 3.2: (a) Trajectory of the number of infected in each unit as a function of time. Note how
the disease jumps to Unit 2, when there are a maximal of infected in Unit 1. (b) Shows the final
size distribution of the chosen setup based on 10,000 simulations.

3

Instead of dividing the population according to spatial membership one could divide the overall
population into populations with varying susceptibility as in [Hayakawa et al., 2000]. Here, the
number of susceptibles in each group, X(t), is tracked whereas the number of infected Y (t) is the
sum of the number of infected in each sub-population. Transition intensity for an infectious event
in population i is then βiXi(t)Y (t). This yields nice formulas both for ML-Estimation in case
of full data and MCMC-Estimation in case of just recovery times, see [Hayakawa et al., 2000].
The derived equations from this chapter can with only slight modifications be used to perform the
necessary estimation.
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Finally, a model containing both regime switching and spatial extensions is possible. Here, each
unit u consists of k different SIR-regimes with common switch point vector Su. In the following,
we will use subscripts to denote regime and superscripts to denote unit, i.e. β 2

1 is the β parameter
of the first regime of unit two.

3.2 Estimation in the extended models with full data

Despite of different regimes and units, focus is still on an epidemic starting from a single initial
infective. Knowledge about the location of the initial infective is an assumption, which in practice
can be hard to achieve. Similar derivations as in Section 2.2 are now performed to obtain a
likelihood expression. It is possible to handle the two extension from the previous framework
within one framework if we in addition to infection and recover events introduce switch events.
Furthermore, each event now needs to carry information about which unit it occured in. That is, an
event ε consists of the entries (t, e, u), where t ∈ R denotes time of occurrence, e = {inf, rec, sw}
is the event type, and u = {1, . . . , l} denotes the location. The functions t(ε), e(ε), and u(ε) are
introduced to extract this information from an event record. Note that the active regime at ε can
be deduced by using the cr(t(ε)) function. Some additional notation is necessary to get through
the derivation of the likelihood. Let the ordered sets

I1
1 , τ 1

1 , . . . , I1
k , τ 1

k , I2
1 , τ 2

1 , . . . , I2
k , τ 2

k , . . . I l
1, τ

l
1, . . . , I

l
k, τ l

k

contain all i and r events associated to their respective regimes and units. Note that the first
infection, I0, is handled separately and is therefore not part of any other set. For notational
convenience let τ = {τ1, . . . , τk}, I = {I1, . . . , Ik},β = {β1

1 , . . . , βl
k}, βn = {βn

1 , . . . , βn
k }

and γ = {γ1
1 , . . . , γl

k}. Furthermore, for each unit u we artificially generate a switch event for
each element of S; the ordered set Su is then used to denote the k switch events generated for
section u. A switch event does not change X(t) nor Y (t) and is only used to handle changes in
the hazard functions due to regime shifts.

As before, the waiting time between events is modeled, i.e. let

ξ = (ε0, . . . , εlast) = I0 ∪





⋃

j=1,...,l

Sj ∪





⋃

i=1,...,k

I
j
i ∪ τ

j
i









be the ordered set of all events sorted according to their event-time. The likelihood for the waiting
time ti − ti−1 can again be expressed by a multiple failure model using several cause-specific
hazard functions. For a single location u ∈ U the overall-hazard function is given by

λu(t|β,γ) = λu
inf(t|β,γ) + λu

rec(t|β,γ) + λu
sw(t|β,γ),

where λu
inf(t|β,γ) and λu

rec(t|β,γ) are given by equations (3.1-3.2), (3.3-3.4), or a combination.
In case of switching, the cr(t) function will determine, the appropriate regime to use. For the
artificial switch events the following hazard is used.

λu
sw(t|β,γ) =

{

1 if t ∈ Su

0 otherwise
.
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The overall-hazard for all units is then given as λ(t|β,γ) =
∑

u∈U λu(t|β,γ). Hence, the likeli-
hood for all observations can be derived as

L = f(τ , I|S,β,γ, I0) =
∏

εi∈ξ\{ε0}

λ
u(εi)
e(εi)

(t(εi)|β,γ) exp

(

−
∫ t(εi)

t(εi−1)
λ(t|β,γ) dt

)

. (3.5)

Due to its shape, all λu
sw(t|β,γ) terms can be ignored in the integral of the overall hazard. As

expected, the likelihood boils down to (2.2) in case of only one unit and one regime. In case of a
fully observed epidemic, ML estimates can be obtained using numerical optimization of Equation
(3.5). In special cases such as the regime switching model — a closed form can although be
derived. Two examples illustrate this point.

EXAMPLE 3.3 (ESTIMATION IN A TWO REGIME MODEL)
Consider a two-regime model with only one unit as in Example 3.1. This allows dropping the unit
superscripts. Let the switch point list be given by S = (s12), where I0 < s12 < T . Then the
ML-estimates can be derived from (3.5) as

β̂1 =
|I1|

∫ s12

I0
X(t)Y (t) dt

, γ̂1 =
|τ1|

∫ s12

I0
Y (t) dt

, β̂2 =
|I2|

∫ T

s12
X(t)Y (t) dt

, γ̂2 =
|τ2|

∫ T

s12
Y (t) dt

.

The above is easily generalized to a general k-regime switching models, as long as l = 1. To
derive standard error for the ML-estimators one would have to go through the counting process
derivations of [Andersson and Britton, 2000, Section 9.2]. Furthermore, the easy derivation of
ML-estimates also encourages Gibbs updating for the various β, γ parameters of a regime SIR-
model in case of a partially observed epidemic.

3

EXAMPLE 3.4 (ESTIMATION IN TWO UNIT MODEL)
This example covers estimation in a two-unit model as in Example 3.2. Using Equation 3.5 the
ML-estimate for e.g. β1 is found by solving the following equation.

∂

∂β1





∏

ε∈I1

X1(t(ε))
(

β1Y 1(t(ε)) + βnY 2(t(ε))
)

exp

(

−
∫ T

I0

β1X1(t(ε))Y 1(t(ε)) dt

)



 = 0

Unfortunately, the term β1Y 1(t(ε)) + βnY 2(t(ε) makes it impossible to obtain a nice expression
from the above differentiation, because the sum within the product corresponds to a polynomial
of degree |I1|, with all terms being non-zero. Rephrasing the two population/unit model using
counting process methodology along the lines of [Britton, 1998] yields a more compact represen-
tation. To do this, two counting process are formulated.

Ii(t) = ni − Yi(t) with intensity Xi(t−)βi•Y (t−)

Ri(t) with intensity γiYi(t−),

where i = {1, 2},Y (t) = (Y1(t), Y2(t))
T ,β1• = (β1, βn), and β2• = (βn, β2). In other words

Ii counts the number of infected in unit i and Ri counts the number of recovered. Using Andersen
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et al. [1993, p.402] the log-partial-likelihood of the data observed up to time t can be written as

lt(β,γ) =
2
∑

i=1

∫ t

I0

log
(

Xi(u−)βi•Y (u−)
)

dIi(u)−Xi(u)βi•Y (u−)du

+

2
∑

i=1

∫ t

I0

log(γiYi(u−))dRi(u)− γiYi(u−)du (3.6)

ML estimators for the data are now found by differentiating lt(β,γ) with respect to each param-
eter, setting each such derivative to zero, and solving the obtained equation system. Introducing
the shorthand notation Gij(t) =

∫ t

I0
Xi(u−)Yj(u−)du the derivates are as follows.

∂lt(β,γ)

∂β1
=

∫ t

I0

Y1(u−)

β1•Y (u−)
dI1(u)−G11(t)

∂lt(β,γ)

∂β2
=

∫ t

I0

Y2(u−)

β2•Y (u−)
dI2(u)−G22(t)

∂lt(β,γ)

∂βn
=

∫ t

I0

Y2(u−)

β1•Y (u−)
dI1(u)−G12(t) +

∫ t

I0

Y1(u−)

β2•Y (u−)
dI2(u)−G21(t)

Because dIi(t) is 1 at times t, where the counting process increases and 0 otherwise, the integrals
involving dIi(u) are equal to sums. Because βn is part of the for both β1 and β2 it is necessary to
solve the system

{∂lt(β,γ)

∂β1
= 0,

∂lt(β,γ)

∂β2
= 0,

∂lt(β,γ)

∂βn
= 0}

simultaneously, which complicates the solution dramatically and makes a closed form solution
impossible. Lack of finding a closed solution for β also indicates that in case of partially ob-
servability it might not be possible to keep the Gibbs updating of the β parameters — instead
Metropolis-Hasting has to be used. Instead a numeric solution is required. Getting estimates for
γ on the other hand is easy.

∂lt(β,γ)

∂γi
=

∫ T

I0

1

γi
dRi(u)−

∫ T

I0

Yi(u−)du = 0 ⇔ γi =
|λi|

∫ T

I0
Yi(u)du

, (3.7)

corresponding to our earlier results. This also indicates that it will be easy to adopt the Gibbs
updating for γ in case of partial observability.

3

Concluding from the derivations of the above examples: Operating with several interacting spatial
units complicates the picture in a degree, where solution to the ML equations appears to become
hard if not intractable. Modeling with switched SIR regimes, on the other hand, is feasible.

3.3 Estimation with infection times missing

After the initial discussion in the previous section, this section takes a closer look on parameter
estimation based on only recovery times in the model extensions. For a setup with l units each
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having k regimes the parameters to estimate are the |l × k| sets of (β j
i , γ

j
i ) and the k βn

i ’s. Again
we consider Bayesian approach using MCMC and sketch an marginalized likelihood approach.
Derivations are of similar nature as in Section 2.2.

3.3.1 Bayesian analysis using MCMC

Our dataset is D = τ 1
1 ∪ . . . ∪ τ l

k, therefore all the missing infection times, I0, I
1
1 , . . . , I l

k again
become parameters. To calculate posterior distributions we again look for a Markov Chain Monte
Carlo method as in the last chapter. Here, we were fortune that full-conditionals could be spec-
ified for β and γ allowing for a Gibbs-within-Metropolis construction. As before prior gamma
distributions are assumed for the β and γ parameters, i.e.

βj
i ∼ Γ(ν

β
j
i
, λ

β
j
i
), γj

i ∼ Γ(ν
γ

j
i
, λ

γ
j
i
).

Because the derivation of the full conditionals are tightly connected with the maximum likelihood
equations it is clear that it will not be possible to establish full conditionals in case of more
than one unit. Future work has to determine whether we can do something more efficient than a
cumbersome Metropolis Hasting for the β parameters. In the following we will only consider a
SIR model with k regimes, switch-points S = (s12, . . . , sk−1k) and a single unit. Deriving the
posterior for some βi is similar to (2.5) except that the likelihood from (3.5) is used.

π(βi|τ , I,S, I0,β\{βi},γ) ∝ f(τ , I|S,β,γ, I0)π(βi)

∝ β
|Ii|
i exp

(

−
∫ si(i+1)

s(i−1)i

βiX(t)Y (t) dt

)

β
νβi

−1

i exp(−λβi
βi)

∝ β
νβi

+|Ii|−1

i exp

(

−λβi
βi − βi

∫ si(i+1)

s(i−1)i

X(t)Y (t) dt

)

∼ Γ

(

νβi
+ |Ii|, λβi

+

∫ si(i+1)

s(i−1)i

X(t)Y (t) dt

)

Notice how the results in a setup with non-informative priors corresponds to the result of the
maximum likelihood derivations from Example 3.3. If regime i does not contain any infection
events, i.e. |Ii| = 0, νβi

> 0 is required – otherwise we would have an improper Γ distribution.
In case of many regimes it his very likely that one or more of the regimes will be empty as
infection times are moved around, i.e. it is wise to assign informative priors to all regimes. Similar
calculations for γi yield

π(γi|τ , I,S, I0,β,γ\{γi}) ∼ Γ

(

νγi
+ |τi|, λγi

+

∫ si(i+1)

s(i−1)i

Y (t) dt

)

.

Again it is wise to specify informative priors for γi in case τi should become empty.

Finally, the posterior of I0 given all other infection times is to be calculated. To do this, it is
sufficient to consider the time up to ε1, the first event occuring after I0 — this could either be the
next infection, (Iu)1, occuring in some unit u, the switch point s12, or the first recovery (λ1)1 in
case of a singleton epidemic. Using ε1 instead of I1, derivations are just as in Equation (2.5), thus

π(−I0|τ , I,S,β,γ) ∼ Exp(β1N + γ1 + θ). (3.8)



32 Chapter 3. Estimation in generalized SIR models

Finding the full conditional in case of several units is problematic, because βu for unit u is part of
the hazard function of other units as well. This makes Gibbs sampling from the full-conditional for
β impossible, instead a random-walk Metropolis updating scheme is applied to each component
of β. Proposing β ′u

i as the new value of βu
i in β we accept it with probability

α(βu
i , β′u

i ) = min

(

1,
f(τ , I|I0,S,γ, (β\{βu

i }) ∪ {β′u
i })π(β′u

i )

f(τ , I|I0,S,γ,β)π(βu
i )

)

.

The already described Gibbs-sampling for γ can be directly adopted for the spatial setting by
adding appropriate sums over all units, where as the full-conditional for I0 is changed to

π(−I0| . . .) ∼ Exp



θ + βu(I0)N(u(I0)) + γu(I0) +
∑

u′∈N4(u(I0))

βnNu′



 ,

where u(I0) is the unit, where I0 occurs, and N(·) denotes the number of initial susceptibles in
this unit. Note that the location of I0 remains fixed due to our assumptions. It is although not too
hard to relax this by treating I0 as any other element in I . Should a proposal – possibly from a
different unit – become the new first infection one just needs to take the prior of I0 into account
when calculating the acceptance probability of the Metropolis step.

3.3.2 Sketch of a Marginalized Likelihood approach

Again a Monte Carlo approximation of the marginalized likelihood is used to find its maximizer
(β̂, γ̂). Derivations are similar to the ones performed in Section 2.4.2 except that we now operate
with f(τ , I|I0,β, γ) as defined by Equation (3.5). Sampling uniformly over the space of all valid
{I0} ∪ I also becomes a little more complicated with the introduction of units, because we only
need to ensure that

• Y u(t) ≥ 0 while t ∈ [I0, T ], for each unit u ∈ U

•
∑

u∈U

Y u(t) > 0 while t ∈ [I0, τlast[, where τlast is the last observed recovery.

Opposite to the single unit setup, Y u(t) may drop to zero, because this does not mean the epidemic
necessarily dies in the unit; a new infection can occur by transmission from another unit u ′ ∈
N4(u) where Y u′

(t) > 0. Again, the crucial problem is how to sample the first value I0. Once
this value is found, the remaining values should be sampled independently, sorted, and compared
to the above constraints until a valid sample is found. We will refrain from a discussion on how
to sample I0 and just be content with an approximative solution as in Section 2.4.2.

3.4 Model Selection

When choosing an appropriate extensions of the basic SIR-model to model available data, the im-
portant question is how much of an extension is actually needed to fit the data. A classical choice
is to select a full model and then try to investigate whether sub-models hereof are sufficient by use
of hypothesis testing. Other ways of performing model selection is to consider a tradeoff between
number of parameters and fit by using an information criterion such as AIC or BIC [DeGroot,
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1989]. We will only discuss model selection within a Bayesian context by use of posterior sam-
pling such as MCMC. To test model M0 against model M1 given data D the Bayesian choice is
to compute the Bayes Factor

B21 =
P (D|M1)

P (D|M2)
,

i.e. the ratio of the marginal likelihoods

P (D|Mk) =

∫

P (D|θk,Mk)P (θk|Mk)dθk,

where θk, k = 1, 2, are the parameters of model Mk and P (θk|Mk) is the prior density of these
parameters. Hence, B21 can be interpreted as the evidence for M2 against M1 provided by the
data. The following table taken from [Gilks et al., 1996, p.165] quantifies the evidence as follows.

B21 evidence for M2

< 1 negative (supports M1)
1 to 3 barely worth mentioning
3 to 12 positive
12 to 150 strong
> 150 very strong

The question is now how to calculate P (D|Mk) based on posterior samples obtained by e.g. an
MCMC method suffering from samples not independent and only approximatively drawn from the
desired distribution. Gilks et al. [1996, p.169] suggests using the harmonic mean of the likelihood
computed for each posterior sample, i.e.

P̂2(D|Mk) =

(

1

k

k
∑

i=1

1

LMk
(θ

(i)
k )

)−1

,

where LMk
(θ

(i)
k ) denotes the likelihood under Mk calculated from the i’th posterior sample of the

parameter vector. The estimator converges almost surely to the correct value as k → ∞, but it
has some instability problems, because θ

(i)
k ’s with small likelihood tend to dominate it. Various

proposals exist to overcome this problem, e.g. using a mixture of prior and posterior samples etc.,
but we will stick with P̂2(D|Mk) and refer to [Gilks et al., 1996, Chapter 10] for a discussion of
improvements.

An alternative way to guide the model selection is to use the Deviance Information Criterion
(DIC) [Spiegelhalter et al., 2002], but the problem is that this measure does not readily take
restrictions in the state space into account. In our case, the constraints on the infection times infer
problems when calculating the deviance of the posterior mean.

3.5 Testing the implementation

To investigate the applicability of theory presented in this chapter, the implementation from Sec-
tion 2.4 is extended and three examples are shown. Because programming and debugging the
stochastic algorithms has a great potential of being faulty, the capability to generate simulated
data from an extended SIR-regime model is a necessity. Contrary to Section 2.2 no analysis (at
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least not to our knowledge) with switched regimes exists in the literature, which could be used
to validate the implementation. By providing both infection and recovery times, simulated data
allows estimation in both the full and partial data scenario enabling a comparison and hence an
idea about the value of information embedded in the infection times.

3.5.1 The two regime model

Maximum likelihood estimation in the two regime from Example 3.3 using both infection and
recovery times shown in Figure 3.1 are β̂1 = 0.0107, γ̂1 = 0.2514, β̂1 = 0.0862, γ̂1 = 0.3492
which looks quite good compared to the true values.

To perform estimation in case of only recovery times in the Bayesian framework we base the
analysis on the following priors νβ1 = 0.01, λβ1 = 1, νγ1 = 0.3, λγ1 = 1, νβ2 = 0.1, λβ2 =
1, νγ2 = 0.3, and λγ1 = 1. After 1,000 burn-in samples, 5,000 samples are generated by taking
every 100th sample. Results are as follows.

Mean SD Naive SE MC Error Batch SE Batch ACF
β1 0.0225 0.009864 0.0001395 0.0002638 0.0002949 0.1444
β2 0.0904 0.09458 0.001338 0.0023174 0.002882 0.003100
γ1 0.4912 0.2492 0.003524 0.006798 0.007954 0.2292
γ1 0.4392 0.1476 0.002088 0.004848 0.005664 0.1557

Acceptance rate at the end is at 32.81%. Also of interest is how many infection times are present
in the two regimes, see Figure 3.3. Here, the first regime always contains at least 10 infection
times, i.e. |I1| > 10 at all times, because 10 recovery times are situated to the left of the switch
point, forcing the corresponding infection times to be in I1.
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Figure 3.3: Size of |I1| and |I2| as a function of the sample number. Note that at all times
|I1|+ |I2| = 34.

If we want to investigate whether a single regime model is sufficient to fit the data, one could
consider the Bayes factor between a model with one and two regimes. Such an analysis based on
1,000 samples yields P̂2(D|M2) = 334.26 against P̂2(D|M1) = 304.83 thus (barely) supporting
the two regime model. But it also becomes clear that the harmonic mean metric is dominated by
a few likelihood values.
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3.5.2 Two unit model

In the two-unit of Example 3.2 finding γ̂ is done by Equation (3.7), yielding γ1 = 0.3172 and
γ2 = 0.2642, which is in good agreement with the desired values. To find β̂ = (β1, β2, βn) Equa-
tion 3.6 is numerically maximized, which proved to be easier than solving the three dimensional
non-linear equation system of the derivates. Solutions for γ are inserted and a gradient descent
method with line optimizations, see [Press et al., 1992, Chapter 10], is used to find a maxima of
the log-partial-likelihood. Assuming that each parameter is greater than zero we optimize the log
of the parameter vector, which is unconstrained. Hereby we obtain β̂1 = 0.1165, β̂2 = 0.0939,
β̂n = 0.0009, a solution, which nicely agrees with the true values and also is surprisingly stable
to different starting values.

Estimation from recovery times alone is done using the above described MCMC method. The
analysis is based on 2,000 samples using a filtration factor of 5,000 and a burn-in of 100,000
samples. The acceptance rates are 4.39%, 73.33%, and 1.26% for I , average of β i, i ∈ {1, 2},
and βn respectively. The low acceptance rate for I indicates that the proposal distribution is not
very good requiring a large number of samples before an actual jump in state space is performed.
Despite the large number of samples used, the chain does not appear to have converged as trace
plots of the β’s show in Figure 3.4. Looking at the posterior distribution of the parameters, the

0 500 1000 1500 2000

0
2

4
6

8

β1

0 500 1000 1500 2000

0
1

2
3

4
5

6

β2

(a) β1 (b) β2

Figure 3.4: Trace plots of β1 and β2 values. Note the high serial correlation indicating non-
convergence.

values for γ look nice (mean 0.3257 and 0.2982) despite of non-convergence, whereas the values
for β of course are doubtful as revealed by Figure 3.4. Even by tuning option parameters to give
slightly higher acceptance rates the convergence problem remains. Convergence could of course
just be a matter of a (time-wise tractable) extra number of samples, but a characteristic of the
example draws attention: in both sections all susceptibles eventually become infected. This might
cause problems, because the great extent of the epidemic does not provide any upper bounds for
the β’s. Hence, the posterior distribution for the high values will be quite flat making the chain
mix badly. A different example provides additional support for this hypothesis.

EXAMPLE 3.5 (TWO UNIT MODEL)
Still considering a two unit model with N = (24, 25) and a = (1, 0) we alter the parameters
slightly to obtain a less categorical final size distribution as in Figure 3.2(b). Using β 1 = β2 =
βn = 0.1 and γ1 = γ2 = 3 a final size distribution as in Figure 3.5 is obtained.

3
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Figure 3.5: (a) Final size of the model obtained by 10,000 simulation. (b) Trajectory from the
model selected for estimation with a final size of 26, i.e. an epidemic spreading to both units but
stopping before everything is infected.

Estimation for the epidemic shown in Figure 3.5(b) is done as before, except that 2,000 samples
with a filter of 500 and burn-in of 100,000 is sufficient. Posterior distribution of the parameters
are as follows, where we also given the lower and upper bounds of a 95% credibility interval.

Mean SD CI-lower CI-upper
β1 0.1334 0.07407 0.0170 0.311
β2 0.1379 0.06523 0.0432 0.299
βn 0.0661 0.03207 0.0161 0.143
γ1 4.6728 2.48680 1.6150 10.978
γ2 2.8982 1.24720 1.2287 6.076

For comparison, the ML estimate when the true infection times are know are as follows. β̂1 =
0.1036, γ̂1 = 2.6215, β̂2 = 0.1983, γ̂2 = 4.6569, and β̂n = 0.0568. That is, the MCMC γ

looks good, where as β reflects that in a spatial setup it is hard to distinguish between within and
between unit infections – especially if infection times are missing. But more important; this time
the trace plots show a more desired pattern with respect to convergence, see Figure 3.6. Providing
a single example to support the hypothesis that convergence is easier to obtain if the extent of
the epidemic is moderate of course is not sufficient, but we discovered the phenomena more than
once while using other trajectories.

3.5.3 The Classical Swine Fever epidemic in the Netherlands

To move beyond toy-epidemics using simulated numbers, this section looks at data from the
classical swine fever (CSF) epidemic in Holland 1997-1998 [Pluimers et al., 1999]. The analysis
is made to emphasize the applicability of the method rather than thoroughly analyzing the data
and interpret the results. If the latter is of interest, analysis should be performed on a more detailed
dataset than the one available to us.

Classical swine fever is a viral disease where symptoms such as dullness and anorexia may be
observed within the first days after infection. In its acute form, which need not occur, CSF has a
rapid development towards mortality, sometimes even without showing any clinical signs. Often
only secondary symptoms such as diarrhea or respiratory problems are observed [Elbers et al.,
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Figure 3.6: Trace plots of the 2,000 β1 and β2 samples for the trace shown in Figure 3.5(b). Note
the apparent improved convergence.

1999]. On the 4th of February 1997 an outbreak of CSF on a pig farm in the southern part of
the Netherlands was laboratory wise confirmed. Before the epidemic was proclaimed as ceased
in May 1998, a total of 429 infected farms were detected and approximately 700,000 pigs from
these farms were slaughtered. Figure 3.7(a) shows the number of newly infected herds per week
as a function of time. During the progress of the epidemic, several control strategies were applied
to dike the outbreaks. Among them pre-emptive slaughtering, i.e. slaughtering of herds who have
been in contact with or are located within close proximity of an infected herd. In the CSF case, a
total of 1286 herds (approximately 1.1 million pigs) were pre-emptively slaughtered - only 44 of
the herds could later be diagnosed as infected - either by clinical signs or by blood samples taken
just before depopulation. This makes pre-emptive slaughtering a highly controversial measure
due to the killing of many apparently healthy animals. Both Elbers et al. [1999]; Stegeman et
al. [1999] although argue that pre-emptive slaughtering is a necessary measure: It was first when
this measure was applied that the epidemic started to cease! They argue that signs of CSF take
time to develop — some of the terminated herds would ultimately have proven as infected had no
interaction occured.
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Figure 3.7: (a) Number of newly infected herds per week for each week after the occurrence of
the first case in week 51 1996 [Stegeman et al., 1999] (b) Distribution of the interval (number
of days) between CSF laboratory diagnosis and depopulation. Negative numbers originate from
some cases detected through pre-emptive slaughtering. Taken from [Elbers et al., 1999, p.173].



38 Chapter 3. Estimation in generalized SIR models

If an analysis could show that pre-emptive slaughtering – or other measurements – have an ac-
tual effect, this would be a great advantage when deciding, which measures to apply next time.
To investigate on the subject, the strategies applied by the authorities in the detection and fight
against the CSF outbreak are divided into five consecutive phases, each implemented from a
known date [Stegeman et al., 1999].

Phase 1 Before detecting the first case. Obligation to report clinical suspicion of CSF and inves-
tigation of tonsils from pigs sent in for routine post-mortem examinations.

Phase 2 After the first case, EU required measures came into force: Stamping out infected herds,
establishing of surveillance zones around infected herds, no transportation of pigs allowed
within zone, and all herds within zone are inspected clinically once a week. Same applied
to all herds known to have been in contact with the infected herd.

Phase 3 Added pre-emptive slaughtering of all herds in contact with infected herds or within a
1km radius. Due to logistical problem it could take up to 4 weeks between detection of
infected an herd and the pre-emptive slaughtering of the neighboring herds.

Phase 4 Interval between detection of infection and pre-emptive slaughtering brought down to
a maximum of seven days. Breeding ban and killing of 3-17 day old piglets instead of
transporting them.

Phase 5 Included monthly serological survey for enclosed areas to detect sub-clinical cases.
Compartmentalized transportation, i.e. trucks were only allowed to travel in specific zones.

It is now of interest to see, what type of effect the different measurements had on the course
of the epidemic. To do this Stegeman et al. [1999] used detailed knowledge about each case, to
determine for each week i the number of newly infected Ci, number of susceptible Si, and number
of infectious Ii. This allows calculating βi from the expression

Ci =
βi

N
IiSi,

which is a discretized version of the SIR-model. The population size N is set equal to 21,500 —
the total number of pig herds in the Netherlands. In other words, each βi is seen as independent
from the others given information about Ci. Forming averages for each phase and testing for
equality brings them to the conclusion that the periods are significantly different and that the
basic reproduction ratio R0 = βN/γ = (6.76, 1.33, 0.91, 0.53, 0.59) is below one in phases
three to five [Stegeman et al., 1999]. It is not possible to argue from the numbers, whether the
measures had an effect, due to lack of comparison opportunities, but it is clear that introduction
of new measures and reduction in R0 coincides.

Instead of the individual weekly estimation of parameters, we will estimate parameters directly
in a switched SIR model. Within the context of a SIR-epidemic, we let the pig herd be the
unit of modeling and a removal time corresponds to the day, where the herd was depopulated.
Unfortunately, the exact time of occurrence is not available to us, instead data from [Stegeman
et al., 1999, Table 1] specifying the number of newly infected herds for each week shown in
Figure 3.7(a), is used. Based on Figure 3.7(b) we claim that depopulation approximately happens
within the same week.
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That is, a number of 13 new infections for week 97-06 is thus translated to 13 recoveries that
week, where the exact time within the week is found by sampling 13 numbers uniformly within
the week. This is not as good as knowing the exact depopulation time, but feels sufficient for our
purposes. Compared to the total length of the epidemic, small unreliabilities on recovery time
should not be of importance. Based on 5,000 samples obtained by taking each 100th sample after
a burn-in of 100,000 samples yields the following results.

Mean SD Naive SE MC Error Batch SE Batch ACF
β1 0.79492 0.216765 3.066e-03 9.253e-03 0.0121006 0.1943
β2 0.62654 0.194427 2.750e-03 1.073e-02 0.0149983 0.5089
β3 0.38605 0.128587 1.818e-03 7.048e-03 0.0103225 0.5077
β4 0.06816 0.070617 9.987e-04 3.981e-03 0.0057916 0.5594
β5 0.08776 0.074351 1.051e-03 2.491e-03 0.0030370 0.1903
γ1 0.56086 0.193367 2.735e-03 8.566e-03 0.0114645 0.3291
γ2 0.53966 0.177245 2.507e-03 9.746e-03 0.0137178 0.5136
γ3 0.39699 0.110225 1.559e-03 5.980e-03 0.0087810 0.5493
γ4 0.22770 0.065201 9.221e-04 3.194e-03 0.0045453 0.5346
γ5 0.19200 0.079728 1.128e-03 2.205e-03 0.0027275 0.1058

The total of 600,000 samples takes 1143 seconds to complete, with the acceptance rate for I being
32.10%. Trace plots for two selected β’s are found in Figure 3.8. Especially β4 looks problematic,
but the variations might be explained by the small number of infection residing in that particular
regime resulting in great variations, when the infection times change. For the other parameters
the trace plots look fine.

0 1000 2000 3000 4000 5000

0.
5

1.
0

1.
5

2.
0

β 1

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

β 4

Figure 3.8: Trace plots for β1 and β4 for the CSF outbreak.

Based on the above estimates, the basic reproduction ratio for the 5 phases are 1.42, 1.16, 0.97,
0.30, 0.46. Compared to the numbers from Stegeman et al. [1999] especially our first R0 is
substantially lower, the others are comparable. Furthermore, our results agree on whether R0 > 1
for a phase or not. Again, we can only conclude that there is a certain correlation between different
measures and R0 reductions. Investigating, whether using a five regime model, M5, is reasonable
for the CSF data, we tested it against a model with three regimes (i.e. using only the first two
switch points of M5) and one with only one regime. Testing was done using Bayes Factors based
on 1000 samples (Thinning 100, 10,000 Burn-in samples) we obtained

P̂2(D|M5) = 1.08 · 1039 · k2, P̂2(D|M3) = 2.23 · 1027 · k2, P̂2(D|M1) = 9.62 · 1011 · k2,
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with k2 = exp(1222). This means that the data provides strong evidence of M5 against both M3

and M1, respectively.

To get convincing ideas about effects an analysis should not work with a fixed switch time oc-
currence, but instead have S as a parameter as well. That way, both number of regimes, k, and
location of their switch-points are to to be determined, e.g. by a reversible-jump MCMC algo-
rithm [Waagepetersen and Sorensen, 2001]. Only if the estimated S is in concordance with the
known measure-implementational time, an effect could be claimed. A further extension might
be to improve the discrete-time to continuous-time-data transformation scheme. Discrete time
observations providing the number of recoveries happening on e.g. daily basis is a quite common
situation when collecting epidemic data. Letting the exact recovery times be parameters, subor-
dinate to the constraint that the number occuring within a specified interval corresponds to the
discrete time observation, one could handle the situation at the expense of even more unknowns.



Chapter 4

Conclusions and Future Work

This report dealt with parameter estimation in various settings of the continuous time stochastic
SIR-model – a process oriented model to describe infectious diseases. Aim has been to extend
the basic model to deal with the domain of animal production. This implied handling inhomo-
geneity in contact introduced by stalling and handling interaction into the course of the epidemic
by control measures. Central point of the tale has been the adaptation of the models to actual
observations.

In our context this meant that parameter estimation had to be based on just recovery times. Mod-
eling interactions into the epidemic through the concept of regime switching proved via MCMC
to be relatively easy, even for the case of partial observable epidemics. Here, a Gibbs updating
scheme could be used for the parameters of the epidemic. Introducing spatially arranged popula-
tions, on the other hand, required more work. Gibbs updating was not possible for the transmis-
sion rates, for which reason Metropolis-Hastings steps were introduced. In general the estimation
worked well for non-extensive epidemics, i.e. epidemics where not all susceptibles got infected.
While investigating a case of an all-embracing epidemic we although experienced convergence
problems. Future investigations have to reveal, whether this is common feature for all-embracing
epidemics. Also, a connection could exist to the assumption about observing the epidemic to its
end. If the number of recoveries equals the number of susceptible the epidemic definitely ceases
at the last recovery time. On the other hand, if there still are susceptible left at the last recovery,
declaring the epidemic as terminated means we either waited for a while with nothing happen-
ing or that we simply assumed nothing more is happening. Extending the framework to handle
non-terminated epidemics as in [O’Neill and Roberts, 1999] would provide valuable insights.

Distinguishing between within and between section transmissions is not always easy in a spatial
setup, which was reflected by the parameter estimates obtained. The possibility for an infection to
originate from several places brings along fewer constraints on the location of the infection times.
A trick would be to augment each infection with an additional parameter indicating the origin.
This would make the likelihood expression nicer enabling Gibbs updating for the transmission
parameters at the expense of more parameters.

4.1 Application

In order to use an extended SIR-model as core of an on-site disease prediction system operation
in a pig production facility, more thoughts on how to gather the steps of estimation and prediction
are required. Initially, the prediction problem corresponds to estimation in an partially observed
epidemic not monitored till end: we do not know the exact number of infections occured, but can
use the already seen recoveries to estimate the parameters with some certainty. Interest is although
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not in the parameter values; simultaneously we would like to find distributions for future values
of infected and recovered and report these predictions to the user in an intuitive manner [Höhle,
2002].

Application of the spatial extension is highly relevant to many other already existing data from
animal production, e.g. disease transmission experiments conducted at the Royal Veterinary and
Agricultural University, Copenhagen, Denmark. Two containers, each hosting a specified number
of pigs, were connected using a controllable ventilation system. One or more pigs in the first con-
tainer were inoculated with pneumonia strains after which the course of the epidemic is observed
in order to quantify the air-borne spread of the disease. Information was collected by testing
weekly blood samples for zero-conversion, i.e. presence of anti-bodies against the disease. This
common data situation unfortunately does not immediately fit into our estimation framework, be-
cause anti-bodies are usually found a – individually varying – number of weeks after infection.
Using some distributional assumption about time between infection and creation of antibodies we
would be able to deduce information about infection times instead of recovery times. For non-
lethal diseases, diagnosed pigs are not culled and hence remain infectious throughout the entire
experiment, not providing any informative recovery times at all.

Because monitoring for zero-conversion is the preferred way to perform experiments of disease
transmission between individuals in pig production, accommodation of the estimation procedure
would open the doors to a large number of interesting data sets [Vraa-Andersen, 1994; Stärk et
al., 2000]. A recurrent feature of these (and many other) data sets is although that recordings are
performed on a discrete time scale, e.g. daily or weekly. In our opinion a continuous time model
better captures the dynamics of the epidemic and hence provides more explanatory power. But,
depending on the application, it might be beneficial to take the discrete time nature of the data
into account when estimating. For example by letting the appropriate event times be parametric
but subject to the constraint that the number of events in each discrete time interval corresponds
to the data.

Adding an additional exposed phase to the model to cope for the non-negligible latency time of
the disease would probably give a better fit to the data and correspond better to the physiological
knowledge available about the disease. Also, more realistic distributional assumptions regarding
length of latency and infection time as in [O’Neill and Becker, 2001] would enhance realism and
thus the integration of prior knowledge. Such model extensions definitely intensify a demand
to perform model-comparisons. Bayes factors seem an obvious choice, but better approaches to
compute them than ours seem necessary, e.g. the method by Carlin and Chib or reversible-jump
MCMC [Han and Carlin, 2000].

Another hot topic of application could be the 2001 UK food and mouth outbreak [Ferguson et
al., 2001; Keeling et al., 2001]. Operating on e.g. county level it might be interesting to quan-
tify spread according to airborne transmission. Taking contact patterns when exchanging and
transporting animals into account a nearest neighbor approach might although not be sufficient,
here introduction of an additional background risk or an entire contact hierarchy could perhaps
improve the realism.

4.2 Implementation

Implementation of MCMC methods is a tedious task – especially debugging is cumbersome,
because all results are a mixture of possible “systematic” (read: programming) error and random
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error. Tiny programming errors can lead to convergence problems, where one does not know,
whether this lack is due to methodology, too short chains or due to a simple bug. As a help to
others, the software together with the simulated datasets is made available for download1. It has
been tested by confirming the results of [O’Neill and Roberts, 1999] and by verifying it against
simulated data. By adopting an open-source policy with respect to our code we do not only invite
others to confirm our results, it also forces us as developers to pay regard to decent documentation.
We are very interested in receiving feedback about its use should anyone decide to give it a try.

4.3 Summing up

Formulation of process models and their fitting to actual epidemics is definitely a valuable tool to
gain insight into disease dynamics. Selecting a useful model and collecting good data is certainly
not trivial. Even done with success, it might not save your computer from the newest virus or
reduce health management on the farm to pure routine, but at least we end up knowing a little
more on the how and why. Scary tales on the other hand, will nevertheless still wait for you on
bookshelves or in the media.

1Visit http://www.dina.kvl.dk/~hoehle/software/sir/





Appendix A

Implementation

The SIR estimation routines are gathered in the program LadyBug implemented in Java JDK 1.3,
see [Sun, 2002]. Class files, source, and documentation is is available for download from the url

http://www.dina.kvl.dk/~hoehle/software/sir/

Class documentation is available through the JavaDoc generated HTML documentation. To in-
voke the LadyBug program from the prompt three files are required: a recovery file specifying the
environment of the epidemic together with observed recovery times, an optional file containing
infectious time, and an options file contains information about the estimation method to use.

A.1 The recovery and infection time files

The recovery file contains a (3 + l) line header, where the dimension of the grid formed by the
spatial layout is given by l1 · l2 = l. The header specifies the environment of the epidemic, i.e.
unit layout and possible regime switches, using the following format.

switch s12 . . . sk−1k

unit 1 1 N1,1 a1,1 ν
β

1,1
1

λ
β

1,1
1

ν
γ
1,1
1

λ
γ
1,1
1

. . . ν
β

1,1
k

λ
β

1,1
k

ν
γ
1,1
k

λ
γ
1,1
k

...
unit l1 l2 Nl1,l2 al1,l2 ν

β
l1,l2
1

λ
β

l1,l2
1

ν
γ

l1,l2
1

λ
γ

l1,l2
1

. . . ν
β

l1,l2
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λ
β

l1,l2
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ν
γ

l1,l2
k

λ
γ

l1,l2
k

betan νβn
1

λβn
1

. . . νβn
k

λβn
k

theta θ

If there is only one regime use switch NA as the first line. Currently, LadyBug only supports
models, where all neighbor effects are equal, i.e. ∀i, j : i 6= j : β i→j ≡ βn. The prior for βn is
specified in the betan line – in case of only one unit, the specified values are of course ignored.
Following the header, the recovery times are provided one per line together with the unit they
occur in.

The above syntax is definitely cumbersome for larger spatial specifications, but as LadyBug cur-
rently only handles moderate sized layouts in tractable time the syntax is sufficient. Future ver-
sions should allow for a direct symbolic specification of the β-matrix, e.g in order to specify that
infectious material can travel from unit one to two, but that the opposite is impossible. Further-
more, the current specification requires specification of priors — even for non MCMC analysis. It
might therefore be beneficial to make prior specification part of the MCMC method in the options
file instead.
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Using the 5-case epidemic described in Section 2.4.1 as an example, the oneill.rec looks as
follows.

switch NA
unit 1 1 9 1 0.1 1 0.1 0.1
betan 0 0 0 0
theta 0
1 1 0
1 1 1.52292
1 1 1.55004
1 1 1.93064
1 1 2.67492

Here, the recovery times are sorted according to time and written one per line together with the
unit the event occured in. A similar approach is used to specify infection times in the infection-
file. No header is necessary here, infection times are just listed in time wise order one per line
together with the unit they occured it.

A.2 The options file

Using the option file, the user can control the estimation method to use together with its various
parameters. Specification of this happens according to the following grammar.

OPTIONSFILE ← OPTIONS METHOD
OPTIONS ← (class seed=SEED timescale=float)
SEED ← NA | int
METHOD ← (method METHODTYPE )

METHODTYPE ← ml

| mml samples=int mcsamples=int sumscale=double
| mcmc samples=int thin=int burnin=int betaRWsigma=double
betaNRWsigma=double hmeanscale=double

The options class allows fixing the seed value of the random generator, this might be beneficial
in debugging situations, where one wants to ensure operating on the same numbers. Also by
setting timescale to a constant k1 all recovery and infection times are divided by k1, which
could be due to modeling reasons or because it is numerically practical. Note although that the
obtained parameter estimates constitute k1 times the non-scaled estimates.

In case of an MCMC analysis one has to specify the number of samples to base the estimation
on. These samples will be generated by taking each thin’th sample after an initial burnin
samples. Further control options are the standard deviation of the gaussian proposal distributions
for β and βn when these are updated using the Metropolis sampler, i.e. in case of l > 1. The
hmeanscale=k2 options allows intermediate scaling when computing P̂2. All contributions are
then divided by exp(k2), which might be necessary to avoid numeric overflow.

For a maximum marginalized likelihood analysis, one can control the number of samples used in
the Monte Carlo approximation of the integral. In some situations it might be beneficial to get
an idea of the effect of this Monte Carlo approximation. It is therefore possible to let LadyBug
repeat the entire estimation procedure with new samples samples number of times. Monitoring
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the optimizer’s convergence towards the maximum of the marginalized likelihood can be done by
veroboseOptimizer.

Summarizing the above in an example, the option file, oneill.sir, of a MCMC estimation for
the 5-case epidemic from Section 2.4.1 looks as follows.

// \./
// (o o)
//-------------------------oOOo-(_)-oOOo-------------------------
// Author: Michael Höhle <hoehle@dina.kvl.dk>
// Description: Use MCMC to estimate parameters in the 5-case epidemic
// presented in the O’Neill article.
//

(options
seed=1999 //Fix seed value, so we can restore results.
timescale=1.0 //No need to scale time.

)

(method mcmc
samples=5000
thin=100
burnin=1000
betaRWsigma=0.05 //not really used in a one unit setup
betaNRWsigma=0.025 //not used in a one unit setup.
hmeanscale=0 //exp(0)=1, i.e. no scaling necessary.

)

Invoking the analysis by the corresponding call to the Java engine yields the following program
output.

$ java sir.estimate.LadyBug ../data/oneill.rec NA ../data/oneill.sir
...
I acceptance rate : 36.74291417%
----- Parameter Estimates = (E,V) of posterior --------
beta[1][1][1] = (0.09631495 , 0.00348988)
gamma[1][1][1]= (0.79477083 , 0.21700828)
\hat{P}_2(D|M) = 5.8253572170989247E-8 * exp(0.0)

Job done...used 28 s.

The three prompt parameters to the LadyBug class are the filenames of the recovery, infection,
and option file, respectively. In case infection times are not available as in the above example, the
string NA is used to indicate this. In the program output, the I-acceptance rate is the percentage of
the proposed infection times in the Metropolis sampler that is accepted. For each parameter in the
model, e.g. beta[x][y][r]=βx,y

r , the mean and variance of the posterior distribution samples is
reported. Finally, P̂2, i.e. the harmonic mean of the likelihood values calculated on the basis of
the posterior samples is reported. For further analysis such as convergence checks with BOA [B.
, 2001], etc. a log-file log.txt contains all parameter samples together with acceptance rate and
the log likelihood of the sample.
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A.3 Miscellaneous

Part of the program, implementing the MCMC estimation, takes advantage of the HYDRA pack-
age [Warnes, 2001]. Unfortunately, the Gibbs-within-Metropolis sampling scheme is not directly
supported by the package. Only the basic structure of a MCMC chain, together with its generate
method could be used from the package together with some modified listeners allowing for burnin
and filtering. In our opinion the HYDRA package can be of great help for basic MCMC, but
for our purposes the lack of file structure and documentation complicated its use. Most of the
LadyBug program is therefore own code. An exception is the nonlinear numerical optimizer,
which is integrated from the “Nonlinear Optimization Java Package”, see Verrill [1998].

Besides the estimation program, a program was developed, which is able generate appropriate
datasets for estimation by simulation from the extended SIR-models. Simulatation from continu-
ous Markov chains follows the approach of [Hillier and Lieberman, 1995, Chapter 14].
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