
Symmetric Containers

by

Håkon Robbestad Gylterud

Thesis for the degree of

Master of Science

(Master i Matematikk)

Department of Mathematics

Faculty of Mathematics and Natural Sciences

University of Oslo

November 2011

2

Contents

Introduction 5

Notation 7

1 Containers 9
1.1 Data structures as functors . 9
1.2 Containers . 11
1.3 Examples . 13
1.4 Properties of containers . 14
1.5 Differentiating containers . 15
1.6 From containers to series . 17
1.7 Anti-derivatives? . 23

2 Categorified containers 25
2.1 Definition . 25
2.2 Properties . 33
2.3 Generalized differentiation? . 38

3 Symmetric containers 39
3.1 Definition and examples . 39
3.2 Differentiation . 43
3.3 Differentiation of sums and products 46
3.4 Composition and the chain rule . 48
3.5 Anti-derivatives . 48
3.6 Differential equations . 54
3.7 Relation to species . 55
3.8 Future work . 56

Appendix 59
Groupoids . 59
Group object in a category . 61
2-categories . 62
Haskell code . 64

References 67

3

4

Introduction

I was first introduced to the idea of a differential operator on data structures through
its practical application in Haskell programming. A data structure can be imagined
to have a set of shapes, and each shape has a set of positions where you can insert
data. If you differentiate a data structure you get the data structure with all possible
ways to remove a position from a shape. This is used to create data structures, called
Zippers, where you can traverse downwards in the structure, while maintaining
enough data to traverse back up again.

The Wikibook on Haskell (http://en.wikibooks.org/wiki/Haskell/), which
was my primary source of information on this subject back then, has a lovely analogy
with Ariadne’s thread. In their story Theseus, by Ariadne’s advice, instead of using
a thread, uses a Zipper structure to backtrack his way through the labyrinth. I
instantly fell for the beauty of the theory, where you could use familiar techniques
from calculus to analyse and write functional programs.

When I started working with this thesis, I had a vague idea of what anti-
derivatives of data structures could be. Differentiating them means to select a
position and remove it. In analogy anti-derivatives should somehow lack informa-
tion about where positions were located, so that in order to remove an element you
would have to give information about how the positions were located.

This idea of lack of information lead me at first to look at intuitionistic set theory,
especially the categorical variety topos theory. I hoped that since intuitionistic logic
is the logic of what an ideal mathematician could “know”, undecidable statements
could be used to model the lack of information I felt should be present in anti-
derivatives. But soon I started employing more combinatorial techniques, laying
aside the intuitionistic logic. In retrospect I can see that the machinery I ended
up using, namely groupoids, has a close relationship to intuitionistic logic. The
category of groupoids is in fact a model of intentional Martin-Löf type theory (Martin
Hofmann and Streicher 1998).

My thesis is based upon the work in (Michael Abbott, Thorsten Altenkirch, Neil
Ghani and Conor Mcbride 2008), which gives a mathematical foundation to the
study of differentiating data structures. Their central notion is that of a container.
For the ease of reading this thesis, the fundamentals container theory is placed in
the beginning of the first chapter. The first chapter also contains the development
of Taylor series of containers. Formal power series are powerful combinatorial tools
and the development of Taylor series of containers was mentioned as possible future
work in (Michael Abbott et al. 2008).

At the same time I that was reading papers about containers, I was also reading
about the process of categorification and higher categories. This inspired me to
categorify the notion of a container, which proved to be an interesting excursion to
the field of 2-categories. The second chapter of this thesis, with its definition of a

5

categorical container, reflects this work. I prove that the 2-category of categorical
containers has a full and faithful embedding into the 2-category of endofunctors on
the 2-category of small categories.

In the third chapter I keep the 2-category perspective, but specialise to a more
moderately categorified notion of containers, namely symmetric containers. I prove
that finite, decidable containers have anti-derivatives in the category of symmetric
containers.

The mathematical machinery used in this thesis is a mix of category theory,
combinatorics, logic and group theory. All proofs in this thesis are concrete con-
structions of some sort. This is because the matter at hand is of a constructive
nature, and because I feel that a proof by construction is more tangible than a proof
by logical argument. Although the proofs are constructive, they are not written in
a formal type system.

One thing the reader should be aware when reading this thesis is that the term
“group” will consistently refer to a groupoid with a single object, which we denote ∗.
Another is that the underlying set-theory of the category Set of sets and functions
is presumed to be intuitionistic, something like the free topos specified in (Joachim
Lambek and Scott 1986). However, the only consequence of this is that we distin-
guish between sets which are decidable and those which are not.

I would like to thank my advisor, Dag Normann, for his good advice and patience.
I also want to thank Kristian Moi, for all the fruitful discussions we have had about
topics which have greatly influenced this thesis, and Sigurd Segtnan for having
an open door at his office; in through which I have often peeked and got answer
to my questions. In the weeks leading up to my deadline I had good help from
people reading my thesis, correcting both mathematical and grammatical, as well
as typographical mistakes. For this I would like to thank Eivind, John, Sigurd and
my family.

Related work

The notion of a symmetric container is closely related to the notion of a combinatorial
species, developed by Joyal and others. This is elaborated in 3.7.

While working with this thesis, I also discovered that John Baez and James
Dolan, motivated by quantum physics, have developed the notion of stuff types,
which is basically symmetric containers on finite sets. This is perhaps most accessible
through Simon Byrne’s essay (Simon Byrne 2005) on the topic.

6

Notation

Ob(C) The type of objects in the category C, when no confusion will arise, we may
write A : C (or A ∈ C if C is locally small) instead of A : Ob(C) (A ∈ Ob(C)).

MorC(A,B) The type of morphisms (or arrows) from A : Ob(C) to B : Ob(C).
When the category in question can be inferred from the context, we may write
f : A→ B to say that f is a morphism from A to B, and refer to MorC(A,B)
as just A→ B.

◦ : MorC(B,C)×MorC(A,B)→MorC(A,C) The composition of morphisms in the
category C. Written in infix notation: g ◦ f . We suppress any mention of the
category C in this notation as it will be inferable from context.

idA : MorC(A,A) The identity morphism. Often we will write idA : A → A. We
suppress any mention of the category C in this notation as it will be inferable
from context.

Cat The category of small categories. The construction of functor categories makes
this into a 2-category.

Grpd The full subcategory of Cat of small groupoids. A groupoid is a category
where every arrow f : A → B has an inverse f−1, s.t. f ◦ f−1 = idB and
f−1 ◦ f = idA. We adopt the convention that any group is a groupoid with
1Set = {∗} as its set of objects. And that an action of a groupoid (or group)
G (on sets) is a functor m : G→ Set.

Set The category of sets. We may regard this as a full subcategory of Cat consisting
of discrete categories. Note that sets are small groupoids.

0C : Ob(C) The initial object in the category C (when existent). When clear from
context the subscript will be dropped.

�A The unique morphism 0→ A

1C : Ob(C) The terminal object in the category C (when existent). When clear from
context the subscript will be dropped.

�A The unique morphism A→ 1

A+B The coproduct of A,B : Ob(C), with injections lA,B : A → A + B and
rA,B : B → A+B. Injections are sometimes used as natural transformations.

f + g Co-product of morphisms. Given f : A → B and g : C → D, then f + g :
A+ C → B +D.

7

A×B The product of A,B : Ob(C), with projections π0,A,B : A×B → A and π1,A,B :
A×B → B. Projections are sometimes used as natural transformations.

f × g Product of morphisms. Given f : A → B and g : C → D, then f × g :
A× C → B ×D.

∆A : A→ A× A The diagonal morphism. Sometimes used as a natural transfor-
mation.

∇A : A+ A→ A The co-diagonal morphism. Sometimes used as a natural trans-
formation.

BA The exponential object of A,B : Ob(C).∫
X
F (X,X) The end of a functor C × Cop → D.∑
a∈AB(a) The sum over an A-indexed family of sets B : A → Set. Elements of

this set is of the form (a, b) where a ∈ A and b : B(a).∏
a∈AB(a) The product over an A-indexed family of sets B : A → Set. Elements

of this set is of the form f : A →
∑

a:AB(a) such that f(a) = (a, b) for some
b ∈ B(a).

A \X If X ⊆ A, then A \X is the set of elements in A which are not in X.

A− x If A is a set, and x ∈ A, then A − x denote the set of elements in A which
are not equal to x.

f |x,y If A and B are decidable sets, x ∈ A and y ∈ B and f : A → B is an
isomorphism such that f(x) = y, then f |x,y : (A − x) → (B − y) is the
isomorphism which results from restricting f .

A ↪→ B The set of injective functions from a set A to a set B. f : A ↪→ B means
that f is a function from A to B and is injective.

N Is the set of natural numbers, including 0. N+ = N− 0

Fin : N→ Set This functor is defined inductively as: Fin(0) = 0Set and Fin(n +
1) = Fin(n) + 1Set. Thus Fin(n) is a decidable set of n elements. We may
identity Fin(n) with {0, 1, · · · , n− 1}.

Im(f) If f : A→ B is a function, Im(f) denotes its image.

Sn The n-th symmetric group. We view this as the group isomorphism Fin(n) →
Fin(n).

8

1 Containers

In this chapter we give an introduction to containers and develop a notion of Taylor
series of containers.

1.1 Data structures as functors

While the current thesis is one of mathematics, not of computer science, the concept
of a container is motivated as giving a mathematical model of strictly positive data
types, which are very much in use when programming. Thus it seems fitting to
present this as motivation for the later abstract treatment. The reader content
with the study of mathematical abstractions for their own sake may safely skip this
subsection.

On an abstract level, one can look at computer programming as being concerned
with the manipulation of various data structures. At the bottom you have primitive
data types such as boolean values, fixed bit integers and floating point numbers
and arrays of bytes. On a higher lever you have tuples, lists, trees, arbitrary size
integers, even lists of lists and trees of lists etc. With lazy evaluation you can even
manipulate infinite lists and trees to a certain extent.

When programming data structures it is a virtue to make use of generic data
structures. What that means is that in stead of having to write separate code for
lists of integers and lists floating point numbers, you can just describe lists in general,
without regard to what they contain.

Various programming languages let you create generic data structures in various
ways. In untyped or dynamically typed languages (such as Lisp or Python), you just
have to be careful with what you assume about the content of the data structure.
In the statically typed language C++ you have a system of template classes and
functions, from which the compiler generates the specialized classes and functions.
In Haskell, type variables are a part of a system of algebraic data types, such that
generic types are really types in the language.

One way to view generic data structures is as an operator on data structures.
The structure of lists is an operator taking for instance the type of integers to the
type of lists of integers.

In languages such as Haskell this way of looking at generic data structures is
reflected in the syntax:

data List x = Empty | Cons x (List x)

This is the definition of the list data type in Haskell. The way to read this is “A
list with elements among x is either empty or it is an element of x (the head) and
a list (the tail)”.

9

Going from programming to mathematics one often translates data types and
instances into sets and elements. Though some set theories, such as ZF, contain
huge sets which makes no sense to a computer, the over-all categorical structures
are similar enough to pretend that data structures are sets.

(Note: The above claim is only true if we consider programs which terminates,
consisting of so called total functions. To deal with non-termination it is more
common to translate types into what is called domains (for reference see (Thomas
Streicher 2006)). But in the current treatment we will gladly restrict our attention
to total functions.)

Thus a more mathematical notation for the above, suppressing the names of the
constructors (Empty, Cons), would be:

L(X) ∼= 1 +X × L(X)

The 1 represents the singleton set containing only the empty list. + is disjoint
union and × the cartesian product. This is an equation of sets (up to bijections).
Note that we are not looking for an X satisfying it, but rather an operation on sets
called L, which for every set X satisfy this equation.

Given such an equation there are in particular two solutions which are of special
interests, namely the terminal and the initial algebras.

It is important that these operations are uniform. For instance if two sets are in
bijective correspondence, we want the corresponding sets of lists to be in bijective
correspondence as well. This and much more we get from requiring that these
operations are functors.

An endofunctor F : Set → Set is a rule which assigns every set X another set
F (X) and every function f : X → Y a function F (f) : F (X) → F (Y), in a way
that preserves composition and identity functions.

As an example take L(X) to be the set of all finite sequences with elements in X.
So a typical element of L(x) are either the empty list, e, or looks like (x0, · · · , xn−1)
where n ∈ N+ and xi ∈ X for every 0 ≤ i < n.

Given f : X → Y we may lift this function to a function on lists in a canonical
way. Here defined by induction on the structure of lists:

L(f) : L(X)→ L(Y)

L(f)(e) = e

L(f)(x0 · xs) = f(x0) · L(f)(xs)

(e being the empty list and · meaning concatenation.)

10

An advantage of functors is that they are easily composed, so that from the
concept of lists and the concept of trees one gets a concept of lists of trees. It can
also be extended to several parameters.

In Haskell this idea is an integral part of the way data structures are implemented.
They always instantiate the Functor type class:

class Functor d where

fmap :: (a -> b) -> (d a -> d b)

instance Functor List where

fmap f Empty = Empty

fmap f (Cons h t) = Cons (f h) (fmap f tail)

Haskell takes the use of category theory much further than this simple example.
For an ingenious use of concept of monads to handle functions with side effects see
(Philip Wadler 1990).

1.2 Containers

In this subsection we give a brief introduction to the notion of a container, as defined
in (Michael Abbott, Thorsten Altenkirch and Neil Ghani 2005), which will provide
the basis for this thesis. We will restrict our attention to containers in one variable
(I = 1Set in the notation of (Michael Abbott et al. 2005)).

Definition 1.2.1. A container is a pair (S B P) where S : Set and P : S → Set.
The elements of the set S are called the shapes of the container. Given a shape s,
the elements of the set P (s) are called the positions of s.

The category of containers, Con, has containers as objects, and morphisms
MorCon(S B P, T BQ) =

∑
f :S→T σ :

∏
x∈S Q(f(x))→ P (x).

S
f

''
P

��

σ
ks T

Q
ww

Set

Figure 1.2.1: A diagram of a container morphism (f, σ) between the containers
S B P and T BQ

11

A container is like a set of templates where you can fill in information in each
position. Given a set X, we may construct the set of ways to fill positions with
elements from X. This is given as the set

∑
s∈S X

P (s), which elements are pairs
(s, p) where s ∈ S is a chosen shape and p : P (s) → X assigns to each position a
value in X.

This construction is functorial:

Definition 1.2.2. Given a container (SBP) we define the functor JS B P K : Set→
Set, by:

JS B P K (X) =
∑
s∈S

XP (s)

JS B P K (φ)(s, p) = (s, φ ◦ p)

where φ : X → Y is a function, thus JS B P K (φ) : JS B P K (X)→ JS B P K (Y).

Further more a container morphism (f, σ) : (SBP)→ (T BQ) gives us a natural
transformation Jf, σK : JS B P K⇒ JT BQK.

Definition 1.2.3. Given two containers (S B P) and (T B Q), and a container
morphism (f, σ) : (S B P)→ (T BQ) we define a natural transformation

Jf, σK : JS B P K⇒ JT BQK
Jf, σKX (s, p) = (f(s), p ◦ σs))

Naturality is easily checked. Given φ : X → Y and (f, σ) : (S B P)→ (T BQ)

(Jf, σKY ◦ JS B P K (φ))(s, p) = Jf, σKY (JS B P K (φ)(s, p))

= Jf, σKY (s, φ ◦ p)
= (f(s), (φ ◦ p) ◦ σs)
= (f(s), φ ◦ (p ◦ σs))
= JT BQK (φ)(f(s), p ◦ σs)
= JT BQK (φ)(Jf, σKX (s, p))

= (JT BQK (φ) ◦ Jf, σKX)(s, p)

Thus we conclude that J−K : Con→ SetSet is a functor.

12

Figure 1.2.2: A figure illustrating how a container morphism (f, σ) lets you
translate (s, p) into (f(s), p ◦ σs). Here we picture the sets of positions as stalks

above S and T .

1.3 Examples

Here we give some examples of containers with increasing level of sophistication.

Example 1.3.1: The identity container I has a single shape with a single position.
The name is suitable since JIK ∼= IdSet.

Example 1.3.2: The pair container I2 has a single shape ∗ with two positions
{0, 1}. The functor JI2K is naturally isomorphic to the functor X 7→ X2.

Example 1.3.3: Given a set A, the constant container K(A) has A as its set of
shapes, and an empty set of positions in each shape. The functor JK(A)K is naturally
isomorphic to the constant functor X 7→ A.

Example 1.3.4: The list container L = (NBFin(−)). The functor JLK maps a set
to (a set isomorphic to) the set of finite sequences in X.

Example 1.3.5: The stream container S = (1BPS) where PS(∗) = N. The functor
JLK is naturally isomorphic to the functor X 7→ XN

13

Example 1.3.6: While the set of natural numbers is defined as the initial algebra
of the functor F : Set→ Set given by F (X) = X + 1, the set of co-natural numbers
Nω is the terminal co-algebra of F .

The co-natural numbers are 0, 1, 2, · · ·ω. But they do not necessarily form a
decidable set. ω is formed by an infinite number of applications of the successor
function. Thus it cannot be decided in any finite stage if an element of Nω is ω.

Addition is definable on Nω by co-recursion. We can order the co-natural numbers
by saying that

x < y ⇔ ¬∃z ∈ Nω y + z = x (1.3.1)

Further more, the following mapping defines a container with Nω as its shapes:

PL∞Nω → Set

x 7→ {y ∈ Nω | y < x}

The container L∞ = (Nω B PL∞), is the container of possibly infinite lists. The
functor it represents sends a type X to the terminal coalgebra of the functor F (Y) =
1 +X × Y , and is in that respect dual to the list functor.

1.4 Properties of containers

In this section we briefly review what is known about the category of containers.

Products and co-products

We begin by stating the comforting propositions, proved in (Michael Abbott et al.
2005), that the category of containers have all finite products and coproducts.

Proposition 1.4.1. Given two containers F = S B P and G = T B Q, their
coproduct is F +G = (S + T B∇Set ◦ (P +Q)). Coproducts are preserved by J−K.

Proposition 1.4.2. Given two containers F = SBPand G = T BQ, their product
is F ×G = (S × T BR) where

R(s, t) = P (s) +Q(t)

Products are preserved by J−K.

Note the similarity with multiplying monomials, i.e. sXp × tXq = (t× s)Xp+q.

14

Representation

The following theorem, proved in (Michael Abbott et al. 2005), show us that con-
tainers are good representations of the functors they are mapped to with J−K.

Theorem 1.4.3. J−K : Con→ SetSet is fully faithful.

Cartesian closure

In 2010, it was shown (see (Thorsten Altenkirch, Paul Levy and Staton 2010)),
using the representation theorem, that the category of containers is in fact cartesian
closed.

Theorem 1.4.4. Con is a cartesian closed category

1.5 Differentiating containers

Consider the following “coincidence”:
Given a set X, the set of ordered triples with elements of X is X3. If we were

to pick and remove one of the elements in the triple, we would be left with a pair of
elements of X, but in possibly three different ways, depending on which of the three
elements we remove. So the information we are left with can be represented by the
elements of 3×X2.

The “coincidence” is of course that if we differentiate the expression X3 we get
3X2.

Figure 1.5.3: A figure illustrating the remove an element semantics of
differentiation.

15

If one thinks about it, one can even explain the product rule of differentiation
using this remove-an-element semantics. Removing an element from a pair of struc-
tures you either remove it from the left one or you remove it from the right one.

∂[F ×G] = ∂[F]×G+ F × ∂[G] (1.5.1)

This correspondence seems also to be valid for recursive expressions. Consider
removing an element from a list. It is impossible to do with the empty list, so we
can ignore that case. If we remove the first element, we have only the rest of the
list. Removing any other element leaves us with the first element and the rest of the
list with a hole.

This explains that from the recursive equation

L(X) ∼= 1 +X × L(X) (1.5.2)

we can differentiate to get the recursive equation

∂L(X) ∼= L(X) +X × ∂L(X) (1.5.3)

In (Michael Abbott et al. 2008) Abbott, Altenkirch, Ghani and Mcbride made
this interesting correspondence formal using containers. Here we shall review how
this is done and look at some at some examples.

The derivative of a container is to be a container composed of all the ways we
can remove a position in the container. If x ∈ A we use the notation A−x to denote
the set of elements in A not equal to x. I.e. A− x = {a ∈ A | a 6= x}.

We do not want to assume that our underlying set theory is classical, but we
want to be able to distinguish between positions in our shapes. Otherwise we run
into trouble when removing them.

Definition 1.5.1. A container (SBP) is called decidable if for every s ∈ S we have
that P (s) : Set is a decidable set. I.e. ∀x, y ∈ P (s)(x = y ∨ x 6= y) is true internally
in Set.

Definition 1.5.2. Let (S B P) : Con be a decidable container. Its derivative
∂(S B P) : Con is given by ∂(S B P) = (S ′ B P ′) where P ′ and S ′ are given by:

S ′ =
∑
s:S

P (s)

P ′(s, p) = P (s)− p

The name differentiation of this operation hints to the fact that it satisfy the
rules we normally associate with differentiation of functions. In (Michael Abbott
et al. 2008) it was shown that the following isomorphism hold in the category of
containers.

16

Theorem 1.5.3. For any decidable containers F and G, the following isomorphism
holds:

∂(F +G) ∼= ∂F + ∂G

∂(F ×G) ∼= ∂F ×G+ F × ∂G

1.6 From containers to series

In (Michael Abbott et al. 2008) it is hinted at the possibility of using the differential
operator on containers to develop Taylor series for containers. In this section we
write out the details of this process, which - to the knowledge of the author - has
not been done elsewhere. There is however a combinatorial idea closely related to
the idea of containers, called combinatorial species originally developed by Joyal and
others ((Bergeron, Labelle and Leroux 1998) is a good reference on combinatorial
species), where Taylor series play a major role. The relationship between these two
notions will be further expanded in the third chapter.

Now let us be inspired by the success of calculus and try to differentiate every-
thing in sight and make Taylor series, for the moment without thought to whether
it really makes sense.
Example 1.6.1: As we have stated already, the list container represent a functor
with the property that:

L(X) ∼= 1 +X × L(X) (1.6.1)

From this equation we see that L(0) ∼= 1. So our first coefficient in the Taylor
series is also 1. To obtain the next coefficient, we differentiate the above equation:

∂L(X) ∼= L(X) +X × ∂L(X)

∂L(0) ∼= 1

Another 1 for the series. We write out the next three steps in one batch, in order
to spot the pattern:

∂2L(X) ∼= ∂L(X) + ∂L(X) +X × ∂2L(X)
∼= 2× ∂L(X) +X × ∂2L(X)

∂3L(X) ∼= 3× ∂2L(X) +X × ∂3L(X)

∂4L(X) ∼= 4× ∂3L(X) +X × ∂4L(X)

(Each equation is obtained by differentiating the one above it)

17

A simple induction argument gives us ∂nL(0) = n!, and we see that our Taylor
series is constant 1. In a speculative moment we might wonder if L(X) = 1 + X +
X2 +X3 + · · · in some sense; and in a sense it does: The first coefficient represents
the empty list. X represents a list with a single element from X and X2 the list with
two elements from X, and so on. The fact that the coefficients are all ones reflects
that for each number of positions, there is only one shape in the list container which
has that number of positions. This will be more apparent in the next example.

Example 1.6.2: Inspired by the previous example, let us count the number of strict
binary trees with up to five leaf by calculating the first six coefficients in the Taylor
series of the binary tree functor:

B(X) ∼= X +B(X)2

∂B(X) ∼= 1 + 2B(X)∂B(X)

∂2B(X) ∼= 2((∂B(X))2 +B(X)∂2B(X))

∂3B(X) ∼= 2(3∂2B(X)∂B(X) + T (X)∂3B(X))

∂4B(X) ∼= 2(4∂3B(X)∂B(X) + 3(∂2B(X))2 +B(X)∂4B(X))

∂5B(X) ∼= 2(5∂4B(X)∂B(X) + 10∂3B(X)∂2B(X) +B(X)∂5B(X))

Assuming B(0) = 0 (i.e. there is no empty tree), we get the following values:

B(0) ∼= 0

∂T (0) ∼= 1

∂2B(0) ∼= 2

∂3B(0) ∼= 12

∂4B(0) ∼= 96

∂5B(0) ∼= 1680

Which give the Taylor series B(X) = X + X2 + 2X3 + 5X4 + 14X5 + · · · . So
there is one tree with one leaf node, one with two, two with three, five with four
and twenty-four strict binary trees with five leaf nodes. In total there are 23 strict
binary trees with up to five leaf nodes. This of course is nothing revolutionary, as it
is well known that 1, 1, 2, 5, 14 is the beginning of the catalan numbers, which counts
the number of strict binary trees. But it does seem an odd coincidence that these
number occur by the mechanical operation of differentiation.

18

• • • • • • • • •

• • • •
•
• • • • • • • • • •

•

• • •
• • • • • •

•
•
• • •

•
• • • •

•
• • •

•
•
• • • •

• • • • • • • • • •

• • • • • • • • •
•
•
• • •

•
• • • • •

• • • •
•
• • •

•
•
• • • •

•

Figure 1.6.4:
A listing of all 23 binary trees with five or less leaf nodes. See the appendix for the

code which generated them.

In these two examples we have stated, but in no way proven, that the coefficients
of a Taylor series, obtained by differentiating the fix point equations counts the
number of shapes with a given number of positions. So let us prove just that!

Taylor series

Our first obstacle is the fact that each coefficient in the Taylor series is a fraction
of n!. We definitely want every coefficient to be a whole, natural number, so our
“division” must be justified in some way.

Lemma 1.6.3. For all n ∈ N and decidable F = (S B P) : Con, we have an
isomorphism

∂nF ∼= (
∑
s∈S

Fin(n) ↪→ P (s)BQ)

Where Q is given by:

Q(s, p) = P (s) \ Im(p)

19

Proof. By induction on n. The case n = 0 is trivial. If ∂nF ∼= (
∑

s∈S p : Fin(n) ↪→
P (s)BQ), then the set of shapes in ∂n+1F is

∑
(s,p)∈

∑
s∈S Fin(n)↪→P (s)

P (s) \ Im(p) (1.6.2)

∼=
∑
s∈S

∑
p:Fin(n)↪→P (s)

P (s) \ Im(p) (1.6.3)

∼=
∑
s∈S

Fin(n) + 1 ↪→ P (s) (1.6.4)

∼=
∑
s∈S

Fin(n+ 1) ↪→ P (s) (1.6.5)

Let us call the isomorphism from (1.6.2) to (1.6.5) f . Given a shape ((s, p), q),
we have that the set of positions is

P (s) \ Im(p)− q ∼= P (s) \ Im(p′)

where p′ is given by (s, p′) = f((s, p), q). So we have a natural isomorphism
between the sets of positions.

Lemma 1.6.4. For all n ∈ N and decidable F = (S B P) : Con, we have an
isomorphisms

J∂nF K (0) ∼=
∑
s∈S

p : Fin(n)
∼=→ P (s)

Proof. Follows from Lemma 1.6.3 and the fact that P (s) is decidable.

Lemma 1.6.5. For all n ∈ N, any decidable container F = (S B P) : Con and any
set X, there is a free action of Sn on J∂nF K (X).

Proof. By lemma 1.6.3, we can assume that

J∂nF K (X) =
∑
s:S

∑
p:Fin(n+1)↪→P (s)

XP (s)\Im(p)

So given σ ∈ Sn, we let σ(s, p, f) = (s, p ◦ σ, f), which is well defined since
precomposition with σ preserves the image.

20

Definition 1.6.6. Given a decidable container F : Con, we define its Taylor series
to be T (F) : N→ Set given by:

T (F)(n) = ∂nF (0)/Sn

where ∂nF (0)/Sn is the quotient of ∂nF (0) by the action of Sn discussed in
Lemma 1.6.5.

Lemma 1.6.7. If J∂nF K (0) is finite and decidable, so is J∂nF K (0)/Sn and

| J∂nF K (0)| = n! · | J∂nF K (0)/Sn|

Proof. Two elements x, y ∈ J∂nF K (0) are equal in J∂nF K (0)/Sn iff there is a σ ∈ Sn
such that the action of σ maps x to y. Since Sn is finite and J∂nF K (0) is by
assumption decidable, we need only search through Sn to decide equality between x
and y in J∂nF K (0)/Sn.

Now since both J∂nF K (0) and J∂nF K (0)/Sn are finite and decidable, and the
action of Sn is free, the statement about the cardinalities is basic group theory.

This justifies that we may call T (F) a Taylor series for F .

Container from a series

Definition 1.6.8. Given a series of sets A : N → Set, we define the container
with S as its coefficients as the container C(A) = (S B P) given by:

S =
∑
n:N

A(n)

P ((n, x)) = Fin(n)

Lemma 1.6.9. Given a series of sets A : N→ Set, we have a natural isomorphism
T (C(A)) ∼= A.

Proof. By lemma 1.6.4, T (C(A))(n) is isomorphic to the set of equivalence classes
of pairs [((i, a), p)] where a ∈ A(n) and p : Fin(n) ∼= Fin(i). The equivalence is
such that ((i, a), p) ∼ ((j, b), q) iff i = j, a = b and there exists σ ∈ Sn such that
p ∼= b ◦ σ. But if Fin(n) ∼= Fin(i) and Fin(n) ∼= Fin(j) then i = j = n, and such a
σ will always exist, so T (C(A))(n) ∼= A(n).

Definition 1.6.10. For any container F = (S B P), define N(F) : N → Set by
N(F)(n) = {s ∈ S | P (s) ∼= Fin(n)}.

21

Now we can formulate what we initially wanted to say:

Theorem 1.6.11. For any decidable container F = S B P , there is a natural
isomorphism N(F) ∼= T (F).

Proof. By lemma 1.6.4, T (F)(n) is isomorphic to the set of equivalence classes of
pairs [(s, p)], where p : Fin(n) ∼= P (S). Since any two isomorphisms p, q : P (s) ∼=
Fin(n), will be made equivalent by some σ ∈ Sn, T (F)(n) ∼= N(F)(n).

In other words, the n-th Taylor coefficient for a container is a set which has
exactly one element for each shape in the container with n positions.

Analytic containers

We proved that T (C(A)) ∼= A, but what about C(T (F)) how does it compare to F?
As the following example shows, they are not isomorphic in general.
Example 1.6.12: Let S be the stream container as discussed in Example 1.3.5.
No matter how many times we iterate the differential operator on this container,
there will be no empty shapes. So T (S)(n) = 0 for all n. Thus C(T (S)) is the
zero container which has no shapes. Since S clearly has a shape, these two are not
isomorphic.

This is in clear analogy to the situation in classical real analysis, where not every
infinitely differentiable function is equal to its Taylor expansion about 0. It is this
analogy which inspires the following definition.

Definition 1.6.13. Let F be a decidable container. We say that F is analytic if
F ∼= C(T (F)).

We happen to be so lucky that we can use Theorem 1.6.11 to fully characterise
the analytic containers. Remember that the theorem says that the Taylor series of
a container collects the shapes with finite positions. It is thus no wonder that if a
container is fully given by its Taylor series, it has only finite containers.

Theorem 1.6.14. A decidable container F = (SBP) is analytic iff for every shape
s ∈ S the set P (s) is finite (i.e. isomorphic to Fin(n) for some n ∈ N).

Proof. Assume that F is analytic and let (f, σ) : F → C(T (F)) be an isomorphism.
Fix a shape s. By definition of C(−) we have that f(s) = (n, a) for some n ∈ N
(and a ∈ T (F)(n)). Thus σs : Fin(n)→ P (s) is the desired isomorphism.

For the other way around, we assume that there are chosen isomorphisms φs :
Fin(ns)→ P (s). We can then construct an isomorphism (f, σ) : F → C(N(F)),

22

f(s) = (ns, s)

σs = φs

.
The function f : S →

∑
n∈N{s ∈ S | P (s) ∼= Fin(n)} is well defined by our

assumption that P (s) ∼= Fin(ns). Since both f and all φs are isomorphisms of sets
it is clear that (f, s) is an isomorphism of containers. By Theorem 1.6.11 we are
done.

1.7 Anti-derivatives?

So far, every concept from analysis which we have tried to import to containers
has been a success: Differentiation, Taylor series and analytic functions. Let us
consider something which at first appearance seems to not work out well, namely
anti-derivation.

In analysis every analytic function has anti-derivatives. To find an anti-derivative,
you simply apply the rules of differentiation backwards on each term in the Taylor
series of the function. For instance X2 becomes 1

3
X3. A crucial observation here is

that even though the Taylor series of a certain function has integral coefficients, its
anti-derivatives may all have fractional coefficients.

This does not work quite so well for our containers. Their series have sets as
coefficients and sets do not come in fractional sizes. So we may not expect all
analytic containers to have anti-derivatives.
Example 1.7.1: Let F = (S B P) where S = 1 and P (∗) = Fin(2). An anti-
derivative would have some shape which has three positions since F has one with
two positions. On the other hand, when you differentiate a shape with tree position
you get at least three shape in the result, so F cannot be the derivative of such a
container. Thus F has no anti-derivative.

There are many more examples of containers which lack anti-derivatives. Even
our friend L, the list container, is among them. This might seem a bit depressing. We
seem to lack some containers to fill the role of antiderivatives of common containers,
and we even seem to lack some sets with fractional cardinality to fill their Taylor
series. But we can think of it the other way around: If we find something to fill
these roles, we will have a richer notion of a container, and thus have more structure
to study.

Thus we set the programme for the rest of this thesis: To generalise the notion
of a container - first only to see how far it may go - in the end to find a suitable
level of generalisation where some interesting anti-derivatives live.

23

24

2 Categorified containers

In this section we define a categorified notion of a container.
We recall that a container is an object S : Set and - looking at S as a discrete

category - a functor S → Set. It is irresistibly tempting to view Set as replaceable
in that definition; the first thing which comes to mind is to replace it by Cat, the
category of small categories and functors. So let us do just that.

Everything we describe in this part of the thesis is generalisation of notions from
the case of containers. Thus, many of the proofs will be exactly parallel to the ones
for containers, with only the addition of checking that it all works out for the arrows
as well as the objects. Since this exercise in generalisation is undertaken mostly to
provide a foundation for the third chapter, we will focus on the explicit constructions,
and skip some of the tedious details which stem from the generalisation from sets
to categories.

Although the theory in this chapter is quite general, it has some concrete ap-
plications. Especially the representation theorem (Theorem 2.2.1), which gives a
combinatorial description of natural transformations of between certain endofunc-
tors on Cat. This is illustrated in Example 2.2.2.

Before we go on to the definition, we will fix some notation to make our life a
bit easier. Instead of writing

∑
a:AB(a), we will write

(
a : A; b : B(a)

)
with a

semicolon. This reflects that the elements of this type are pairs (a, b) where a : A
and b : B(a), and avoids subscripts.

2.1 Definition

We mechanically replace Set by Cat, functions by functors and dependent functions
by natural transformations. What we obtain is the following:

Definition 2.1.1. The category of categorical containers, CCon, is the cat-
egory defined by:

• Ob(CCon) =
(
S : Cat; P : Fun(S,Cat)

)
= {(S B P)}.

• MorCCon((S B P), (T BQ)) =
(
F : Fun(S, T); σ : Q ◦ F ⇒ P

)
.

• (G, τ) ◦ (F, σ) = (G ◦ F, σ ◦ τF).

• Id(SBP) = (IdS, IdP)

An element (SBP) in Ob(CCon) is called a categorical container. Objects
in S are called shapes, and given s ∈ Ob(S), the objects of P (s) are called
positions.

25

This is a direct generalisation of the container notion. I think it is practical to
foreshadow some of the developments in the next chapter here, in order to motivate
our next step, namely defining CCon as a strict 2-category.

In the next chapter, in our search for anti-derivatives, it turns out that isomor-
phism of categorical containers is a very strict notion. In fact a bit too strict, we will
see. From the above definition, we can see that there are now morphism between
shapes, thus some shapes may be isomorphic.

It is customary in category theory not to distinguish between isomorphic objects.
But up to isomorphism of categorical containers, we can distinguish between a cate-
gorical container with a single shape and a categorical container with two isomorphic
shapes, even if every mentioned shape has the same category of positions. So we
seem to need a weaker notion of equivalence between categorical container.

One way of getting this sort of equivalence is to make CCon into a strict 2-
category. In every strict 2-category an equivalence between two objects A and B,
is a pair of morphism f : A → B and g : B → A, and 2-cells ε : f ◦ g ∼= idB and
δ : g ◦ f ∼= idA. In other words, it is a pair of morphism whose compositions need
not be the identities, but merely isomorphic to the identities.

We should think for a second about what could be our 2-morphism between cat-
egorical container morphisms. Given a pair of morphism, (F, σ) and (G, τ), between
two categorical containers, (S BP) and (T BQ), it feels natural that a 2-morphism
should entail a natural transformation, ε, between F and G. Like this:

S

P

��

F

((

G

66ε ⇓ T

Q

��

Cat

The natural transformations σ and τ are both morphisms into P , with their
respective domains Q ◦ F and Q ◦ G. We can push ε to fit between these two
codomains using Q, and it seems in analogue to how 1-morphism are created to
propose a natural transformation, α : σ → τ ◦Qε to be included in the 2-morphism.

26

Q ◦ F
Qε

((

σ

��

α +3 Q ◦G

τ
vv

P

Definition 2.1.2. Given two categorical containers (S B P), (T B Q) : CCon and
two morphism (F, σ), (G, τ) : (SBP)→ (T BQ), a 2-morphism between (F, σ) and
(G, τ) is a pair (ε, α), where ε : F ⇒ G and α : σ ⇒ τ ◦Qε.

We check that this does make Con into a strict 2-category.

• Vertical composition (where ◦ denote vertical composition of natural transfor-
mations):

(δ, β) ◦ (ε, α) = (δ ◦ ε, β(Qε) ◦ α)

S B P

(F,σ)

!!�� (ε,α)
(G,τ)

//
==

(H,ρ)

�� (δ,β)

T BQ

Q ◦ F
Qε

**
σ

��

α +3 Q ◦G

τ

tt

Qδ

��

P

β

��

Q ◦H

ρ

]]

• Horizontal Composition:

27

Given

S B P

(F,σ)
((

(G,τ)

66�� (ε,α) T BQ

(F ′,σ′)
((

(G′,τ ′)

77�� (δ,β) U BR

and assuming that we want δ ∗ ε to be the first component of the composition,
we are searching for a natural transformation to fill inn the diagram:

R ◦ F ′ ◦ F (R◦F ′◦F)(δ∗ε)
//

σ◦σ′F

��

R ◦G′ ◦G

τ◦τ ′G

��

?

P

The previous diagram can be expanded into the following diagram:

R ◦ F ′ ◦ F (R◦F ′)ε
//

σ′F

R ◦ F ′ ◦G (Rδ)G
//

σ′G

��

R ◦G′ ◦G

τ ′G

��

• =⇒ βG

Q ◦ F

σ

Qε
// Q ◦G

τ

��

=⇒ α

P

This enables us to define:

(δ, β) ∗ (ε, α) : (F ′ ◦ F, σ ◦ σ′F)⇒ (G′ ◦G, τ ◦ τ ′G)

(δ, β) ∗ (ε, α) = (δ ∗ ε, τ(((R ◦ F)ε)(βG) ◦ α(σ′F))

28

We leave out the rest of the details of checking that this form a strict 2-category.
Actually there were two ways of defining the horizontal composition, since you

can factor R ◦ F ′ ◦ F → R ◦G′ ◦G in two ways. Either like we did above,

R ◦ F ′ ◦ F → R ◦ F ′ ◦G→ R ◦G′ ◦G (2.1.1)

or like this:

R ◦ F ′ ◦ F → R ◦G′ ◦ F → R ◦G′ ◦G (2.1.2)

But it turns out that these two definitions are the same.
To follow the setup in the previous chapter, we will now define a functor J−K :

CCon → CatCat, which extends the definition for Con. But categories have much
more structure than sets, so writing out the definition will be tedious work. The
reader should not be discouraged by this. The definition is a very natural extension
of the original functor for containers. After the definition there is a set of diagrams,
intended to illustrate where all the different morphisms belong.

29

Definition 2.1.3. There is a strict 2-functor J−K : CCon→ CatCat defined by

• On objects (SBP) : Ob(CCon). JS B P K : Cat→ Cat is the 2-functor defined
by:

– Given C : Cat, we let JS B P K (C) be the category defined by:

∗ Ob(JS B P K (C)) =
(
s ∈ Ob(S); φ : P (s)→ C

)
∗ MorJSBP K(C)((s, φ), (t, ψ)) =(

m ∈MorS(s, t); α : φ⇒ ψ ◦ P (m)
)

∗ (n, β) ◦ (m,α) = (n ◦m,βP (m) ◦ α)

[Diagrams (2.1.3) left and right]

– Given C,D : Cat and a functor F : C → D let JS B P K (F) : JS B P K (C)→
JS B P K (D) be the functor defined by:

∗ On objects: JS B P K (F)(s, φ) = (s, F ◦ φ)

∗ On morphisms: JS B P K (F)(m,α) = (m,Fα)

[Diagram (2.1.4) left]

– Given C,D : Cat, functors F,G : C → D and a natural transformation
ε : F ⇒ G, we let JS B P K (ε) : JS B P K (F) ⇒ JS B P K (G) be the
natural transformation defined by:

JS B P K (ε)(s,φ) : JS B P K (F)(s, φ)→ JS B P K (G)(s, φ)

JS B P K (ε)(s,φ) = (ids, εφ)

[Diagram (2.1.4) right]

• On morphism (F, σ) : SBP → T BQ we let J(F, σ)K : JS B P K⇒ JT BQK be
the natural transformation defined by:

– J(F, σ)KC : JS B P K (C)→ JT BQK (C) is the functor defined by:

∗ J(F, σ)KC (s, φ) = (F (s), φ ◦ σs)
∗ J(F, σ)KC (m,α) = (F (m), ασs)

[Diagram (2.1.5)]

• On 2-morphisms (ε, α) : (F, σ)→ (G, τ), we let
J(ε, α)K : J(F, σ)K⇒ J(G, τ)K be the natural transformation defined by:

J(ε, α)KC,(s,φ) : J(F, σ)KC (s, φ)→ J(G, τ)KC (s, φ)

J(ε, α)KC,(s,φ) = (εs, φαs)

[Diagram (2.1.6)]

30

Here are the diagrams illustrating the above definition:

P (s)
P (m)

''
φ

��

α +3 P (t)

ψ
ww

C

P (s)
P (m)

))
φ

��

α +3 P (t)

ψ
uu

P (n)

��

C

β

��

P (u)

χ

[[

(2.1.3)

P (s)
P (m)

''
φ

��

α +3 P (t)

ψ
ww

C

F
��

D

P (s)

φ
��

C

F

��

G

��

ks
ε

D

(2.1.4)

In the following diagram (2.1.5), we see that the top square is a naturality square
for σ, and thus commutative.

Q(F (s))
σs

zz

Q(F (m))

**

P (s)
P (m)

**
φ

��

• Q(F (t))

σt
zz

α +3 P (t)

ψ
ttC

(2.1.5)

31

Q(F (s))
(Qε)s=Q(εs)

((

σs

��

αs +3 Q(G(s))

τs
vv

P (s)

φ
��

C

(2.1.6)

Example 2.1.4: Let · → · denote the category with two objects, 0 and 1, with
a single arrow µ : 0 → 1. Then we can define a categorical container I ·→·, with
the point 1Cat as its category of shapes, whose shape ∗, has · → · as its category of
positions.

· → ·

∗

Then given a category C, the category JI ·→·K (C) is simply the arrow category
C ·→·.

Example 2.1.5: The functor J−K preserves some interesting subcategories of Cat.
Notably:

• If S is a set (discrete category), and P (s) is a set for every s ∈ S, then (SBP)
is actually a container, and JS B P K can be restricted to a functor Set→ Set
which coincide with the one defined for containers.

• If S is a poset category, and the image of P : S → Cat is contained in the
subcategory Poset of poset categories, then it is clear from the definition of
JS B P K that it restricts to a functor
JS B P K : Poset→ Poset.

• If S is a groupoid, and the image of P : S → Cat is contained Grpd, then
JS B P K restricts to a functor JS B P K : Grpd→ Grpd.

Example 2.1.6: If S is any small subcategory of Cat we can construct a categorical
container R(S) : CCon. We define this by letting R(S) = (S B ι) where ι is the
inclusion of S into Cat.

32

This is a short cut to creating a some interesting categorical containers. For
instance, let Dia : Cat be some chosen skeletal subcategory of the category of finite
categories. Then given C : Cat, we find that JR(Dia)K (C) is the category of finite
diagrams in C.

A lot of categorical containers are equivalent to one of the form R(S) for some S.
For instance all containers are of this kind, as well as all the categorical containers
discussed so far. To see that not all categorical containers are of this kind: let S be a
non-trivial group, and let P be the functor which collapses S onto the trivial group.
This cannot be equivalent to R(S), because the trivial group has no non-trivial
automorphisms.

2.2 Properties

In this very general setting, with a 2-category of categorical containers, we will work
out some typical constructions.

Representation

As we saw in the previous chapter, it was shown in (Michael Abbott et al. 2005)
that, for containers, the functor J−K : Con → SetSet is fully faithful. A similar
result is also true about our categorical containers. This is important because we
want categorical containers to model the functors they represent as well as possible.
This theorem says that all interaction between functors represented by categorical
containers can be studied by studying their representations. The proof is parallel to
the one for containers, only with more arrows.

Theorem 2.2.1. The strict 2-functor J−K : CCon→ CatCat is fully faithful. That
is for any (S B P), (T B Q) : CCon, we have that J−K induces an isomorphism of
categories MorCCon(S B P, T BQ) ∼= MorCatCat(JS B P K , JT BQK).

Proof. For every 2-cell JS B P K
F

,,

G

22�� χ JT BQK in CatCat, we must construct a

2-cell (S B P)

(f,σ)
,,

(g,τ)
22�� (ε,α) (T BQ) in CCon, such that J−K maps the second 2-cell

to the first. The proof is analogue to the one for containers.

First we observe that JS B P K (1) ∼= S and JT BQK (1) ∼= T . So in Cat the cell

33

JS B P K (1)

F1
--

G1

11�� χ1 JT BQK (1)

is naturally isomorphic to a cell

S

f
((

g

66�� ε T

for suitable f, g : S → T and ε : f ⇒ g. So we let this define f ,g and ε.
To define σ : Q ◦ f ⇒ P , τ : Q ◦ g ⇒ P and α : σ ⇒ τ ◦ Qε we first fix an

s ∈ Ob(S). Then we find components σs,τs and αs to fill the diagram:

Q(f(s))
Qεs

((

σs

��

αs
+3 Q(g(s))

τs
vv

P (s)

Unravelling the definition of JS B P K (P (s)), we see that it has a very natural
object (s, idP (s)). From JS B P K (P (s)) there are two functors FP (s) and GP (s) into
JS B P K (P (s)), and between them we have a natural transformation χP (s). So if we
look at the image of (s, idP (s)) under these two functor and the component of χP (s)

between them we get:

FP (s)(s, idP (s))
χP (s),(s,idP (s))

// GP (s)(s, idP (s)) (2.2.1)

From the definition of JS B P K (P (s)) we know that this is of the form:

(t, φ)
(m,β)

// (t′, ψ)

Where t, t′ ∈ T , φ : Q(t) → P (s), ψ : Q(t′) → P (s), m : t → t′ and β : φ ⇒
ψ ◦Q(m).

But because of naturality of F , G and χ, and how we defined f ,g and ε, we know
that (2.2.1) is actually

34

(f(s), φ)
(εs,β)

// (g(s), ψ)

for some φ : Q(f(s))→ P (s), ψ : Q(g(s))→ P (s) and β : φ⇒ ψ ◦Q(εs).
Thus, to complete our construction, we define:

σs = φ

τs = ψ

αs = β

The category SCon is of a more combinatorial nature than CatCat. One of the
reasons for this is that SCon does not involve any functors ranging over large cate-
gories, and is locally small. The following example shows how we can use this com-
binatoriality to characterise natural transformation between categorical container
functors.

Example 2.2.2: Let C : Cat→ Cat be the functor which maps a category X to the
category of non-empty, finite chains in X. We consider the problem of characterising
natural transformations C ⇒ C. This can be solved by noticing that C can be
represented by a categorical container. Let [n] define the poset category with n+ 1
objects {0, · · · , n}, and a unique arrow from k to l if k ≤ l. Then JNB [−]K ∼= C.
So we know, by the representation theorem, that there is a bijective correspondence
between

∑
f :N→N

∏
n ([f(n)]→ [n]) and natural transformations C ⇒ C.

Sums and products

Sums and products in CCon are analogous to their Con counterparts. Proving
this can be done in two ways. Either by showing that the sum/product object
has the universal property, or by using the fully faithful functor J−K and showing
that the image of the sum/product is isomorphic to the product / coproduct in
CatCat. The later approach has the advantage of showing at the same time that J−K
preserves products, but has the disadvantage of being more cumbersome. For the
sake of variation we use the first strategy to prove existence of sums and the later
for existence of products.

Theorem 2.2.3. Given (S B P), (T BQ) : CCon then the object
S+T = (S+T,∇Cat ◦ (P +Q)), with the injections (lS,T , idP) and (rS,T , idQ),is the
co-product of (S B P), T BQ).

35

Proof. Let (U BR) : CCon and assume we have some morphism (F, σ), (G, τ):

(S B P)

(F,σ)

��

(T BQ)

(G,τ)

��

(U BR)

Because of (2.2.2), we have that Φ = (∇U ◦ (F +G),∇Cat(σ + τ)) is the unique
morphism which makes (2.2.3) commute.

S + T
F+G

//

P+Q

��

U + U

R+R

ww

∇U

��

σ+τ⇐=

Cat+ Cat

∇Cat

��

• U

R

vv

Cat

(2.2.2)

(S + T,∇Cat ◦ (P +Q))

Φ

��

(S B P)

(lS,T ,idP)

99

(F,σ)

%%

(T BQ)

(G,τ)

yy

(rS,T ,idQ)

ee

(U BR)

(2.2.3)

36

Theorem 2.2.4. Given (S B P), (T B Q) : CCon then their product is given by
the object (S B P) × (T B Q) = (S × T, P ◦ π0 + Q ◦ π1) and the projections p0 =
(π0, lP◦π0,Q◦π1) and p1 = (π1, rP◦π0,Q◦π1).

Proof. Because of the representation theorem it suffices to show that
J(S B P)× (T BQ)K ∼= J(S B P)K× J(T BQ)K.

We have natural isomorphisms:

Ob(J(S B P)K× J(T BQ)K (C)) = (s ∈ S;CP (s))× (t ∈ T ;CQ(t)) (2.2.4)

∼= ((s, t) ∈ S × T ;CP (s) × CQ(t)) (2.2.5)

∼= ((s, t) ∈ S × T ;CP (s)+Q(t)) (2.2.6)

∼= ((s, t) ∈ S × T ;C(P◦π0+Q◦π1)(s,t)) (2.2.7)
∼= Ob(J(S B P)× (T BQ)K (C)) (2.2.8)

Call the isomorphism from (2.2.4) to (2.2.8) f . Then we have:

MorJ(SBP)K×J(TBQ)K(C)(((s, φ), (s′, φ′)), ((t, ψ), (t′, ψ′)))

=(m ∈MorS(s, s′);α : φ′ ◦ P (m)⇒ φ)

× (n ∈MorT (t, t′); β : ψ′ ◦Q(n)⇒ ψ)
∼=((m,n) ∈MorS(s, s′)×MorT (t, t′)

; (α, β) ∈ (φ′ ◦ P (m)⇒ φ)× (ψ′ ◦Q(n)⇒ ψ))
∼=((m,n) ∈MorS×T ((s, t), (s′, t′))

; γ ∈ ((φ′ ◦ P (m))× (ψ′ ◦Q(n))⇒ φ× ψ))
∼=((m,n) ∈MorS×T ((s, t), (s′, t′))

; γ ∈ (((φ′ × ψ′) ◦ (P (m)×Q(n))⇒ φ× ψ))
∼=(x ∈MorS×T ((s, t), (s′, t′))

; γ ∈ (((φ′ × ψ′) ◦ (((P ◦ π0)× (Q ◦ π1))(x))⇒ φ× ψ))
∼=(x ∈MorS×T ((s, t), (s′, t′))

; γ ∈ (((φ′ × ψ′) ◦ (((P ◦ π0)× (Q ◦ π1))(x))⇒ φ× ψ))

=MorJ(SBP)×(TBQ)K(C)(f((s, φ), (s′, φ′)), f((t, ψ), (t′, ψ′)))

37

Composition

Just like containers, categorified containers represent functors which can be com-
posed. Thus it makes sense to ask if we can find a categorified container which
represents this composition.

Definition 2.2.5. Given (S B P), (T B Q) : CCon we define their composition
(S B P)[(T BQ)] = (JS BQK (T)BR) where R : JS BQK (T)→ Cat is given by:

Ob(R((s, f))) =(p ∈ Ob(P (s)); p′ ∈ Ob(Q(f(p))))

MorR((s,f))(p, p
′, q, q′) = (l : p→ q; k : (Q(f(m)))(p′)→ q′)

on objects, and on morphisms (m,α) : (s, φ)→ (t, ψ) we have the function:

R(m,α)(p, p′) = (P (m)(p), (Qα)(p′))

R(m,α)(l, k) = (P (m)(l), (Qα)(k))

This construction is parallel to how the composition of a container is defined, so
we will not write out the proof that the object defined represents the composition.

2.3 Generalized differentiation?

Our motivation for looking at more general notions of containers was that we hoped
to find the missing anti-derivatives. But so far we have not even defined differenti-
ation of categorical containers.

The way differentiation was defined on decidable containers involved tearing out
an arbitrary point from a set. Categories are quite different from decidable sets,
they may have morphisms between their objects and just cutting out an object from
a category would be evil.

To make this more precise: The object we cut out may be isomorphic to a
another object, and if we leave this object in the category we end up with a category
equivalent to the one we started with. And it would continue to be the same category
up to equivalence until we have removed the whole isomorphism class. This process
would necessarily distinguish between equivalent categories, which is the technical
definition of evil.

Another problem is that we now have functors between our position categories,
which needs to be reconstructed when we “remove an element” from the positions.
What if one of these functors hit something which is removed?

In the next chapter we will begin by restricting to a subcategory of categorical
containers where these issues are easily fixed.

38

3 Symmetric containers

In this chapter we restrict the notion of a categorical container to the notion of
a symmetric container. This enables the definition of a differential operation on
symmetric container, which we show has familiar properties such as distributivity
over sums and Leibniz’s rule for products. We find sufficient conditions on a sym-
metric container for constructions of an anti-derivative, and use this construction
to find anti-derivatives for all analytic containers. This inspires some examples of
differential equations of symmetric containers. Towards the end of this chapter we
compare symmetric containers to combinatorial species and present some ideas for
future study.

3.1 Definition and examples

In the previous chapter we described a very generalized notion of a container, and
investigated how they represent endofunctors on the category of small categories. It
was less clear if derivation makes sense for such a general definition.

The first problem was that removing objects from a category felt unnatural. This
we will sidestep by just returning to discrete categories, i.e. sets. The second problem
will be mediated by considering only categories of shapes which are groupoids.

This leads us to the definition:

Definition 3.1.1. A symmetric container is a categorical container (SBP) such
that S is a groupoid, and the image of P is contained in Set, considered as a full
subcategory of Cat.

The category of symmetric containers, SCon, is the full subcategory of CCon
generated by symmetric containers.

Since SCon is a subcategory of CCon, the construction J−K makes sense for
symmetric containers as well. If (S B P) : SCon, we observe that if we restrict the
domain of JS B P K : Cat→ Cat to Grpd, the codomain also restricts. Thus we have
a meaningful restriction J−K : SCon→ GrpdGrpd.

Furthermore, if C is a set (discrete category), and given a morphism
(m,α) : MorJSBP K(C)((s, φ), (t, ψ)), α has to be the identity transformation, so that
we really have:

MorJSBP K(C)((s, φ), (t, ψ)) = {m : s→ t | φ = ψ ◦ P (m)}

39

P (s)

φ

��

P (m)
// P (t)

ψ

��

C

Compared to an arbitrary category, a groupoid is more like a topological space.
We will freely use words like contractable, connected and component, when talking
about groupoids. For a short introduction to groupoids, see the Appendix.

We will let SCon inherit the strict 2-category structure from CCon and use
the accompanying notion of equivalence for comparing symmetric containers. An
equivalence between two symmetric containers amount to an equivalence of the
categories of shapes, with compatible isomorphisms of sets of positions.

Inspection of the constructions in the previous chapter, shows that symmetric
containers are closed under sums, products and composition.

To give some geometric intuition to the symmetric containers, we may sometimes
sketch them. The convention will be that we draw the groupoid of shapes at the
bottom of the sketch, and draw the sets of positions as dot clouds above their
respective shapes. The action of the groupoid is indicated by lines between dots.

Observing that our symmetric containers are nothing more than groupoid actions
on sets, we should have no shortage of examples.

Example 3.1.2: Any group has a natural action on its underlying set, defined by
multiplication. A myriad of symmetric containers can be generated by sum from
these containers.

Consider the cyclic group Z5. The symmetric container where Z5 acts on its
underlying set is sketched in the Figure 3.1.5. Let us call this symmetric container
F and let C5 be given by (Z5 B C5) = F .

40

Figure 3.1.5: The symmetric container from the action of Z5 on its underlying set.

Given a set X, what does the groupoid JF K (X) look like? According to the
definition of J−K, its objects are 5-tuples of elements in X, and a morphism between
two such 5-tuples is an element of of Z5 whose action on one 5-tuple rotates it into
the other. In relation to the drawing we just made, we can picture each of the
dots in the pentagon decorated by an element from X, but being free to rotate the
decorated pentagon using the Z5 action.

An interpretation of the groupoid JF K (X) is that we have 5-tuples of elements
of X but only partial information of about their relative positions. We know their
order, but because of the Z5 action, we have no information about which one is first.

For example, the lack of information manifests that there is no natural trans-
formation (natural in X) JF K (X) → X, since there are no container morphisms
F → I. We can however get answers to questions of the kind: Are there two consec-
utive elements of the 5-tuple with a given decidable property? The word consecutive
is used here in the sense that includes that first element is consecutive to the last
element. Formally this manifest in an element of the end:

f ∈
∫
X

(
2X×X → 2JF K(X)

)
fX(p)(q) =

{
1 ∃m ∈ Z5 p(q(m), q(m+ 1)) = 1

0 otherwise

We see that if there is a morphism k : q → q′ then fX(p)(q) = fX(p)(q′), so this
is well defined. So intuitively we can answer this question because the answer is
invariant under rotation.

41

In this example, we might as well have considered a general groupoid X. It
would have made minimal difference.

Example 3.1.3: Let F be as in the previous example. Another group with a natural
action on the set {0, 1, 2, 3, 4} is the symmetry group S5. Thus we let G = (S5BP5)
be the corresponding symmetric container.

Following the lack-of-information interpretation of groupoids discussed in the
previous example, JGK (X) is the set of 5-tuples in X, where we know nothing of the
relative positions of the tuple’s elements.

Given an element of JF K (X), we may forget the order of the 5-tuple, to obtain
an element of JGK (X). This stems from the inclusion i : Z5 → S5, and the natural
transformation σ : P5◦i⇒ C5 which is the identity of the set {0, 1, 2, 3, 4}. Together
they form a morphism (i, σ) : F → G. While there are many choices of i : Z5 → S5

and σ, the morphism (i, σ) : F → G is unique up to isomorphism of morphisms.

Example 3.1.4: Let Z∗ =
∑

n∈N+
Zn be the co-product of all the finite cyclic groups

as a groupoid. For simplicity we let Ob(Z∗) = N+. There is an action C : Z∗ → Set
defined by

C(n) : Set

C(n) = MorZ∗(n, n) = {0, · · · , n− 1}

on objects, and on morphisms k : MorZn(∗, ∗):

C(k) : P (n)→ P (n)

C(k) = λl.(k ◦ l) = λl.(k + l mod n)

We then have a symmetric container (Z∗ B C).

Example 3.1.5: Let Sn be the n-th symmetric group. That is, Sn = Aut(Fin(n)),
the set of isomorphism Fin(n) → Fin(n). And let S∗ =

∑
n∈N Sn. For simplicity

we let Ob(S∗) = N. We have a natural action P : S∗ → Set defined by objects by

P(n) : Set

P(n) = Fin(n)

and on morphisms σ : MorSn(∗, ∗) by

42

P(σ) : Fin(n)→ Fin(n)

P(σ) = λx.σ(x)

We then have a symmetric container (S∗ B P). Given X, we can think about
JS∗ B PK (X) as all finite sequences with elements in X but where we do not know
anything about their order. In that respect we can see them as multisets.

3.2 Differentiation

Now we can define what it means to differentiate a symmetric container. The defi-
nition is a generalization of the one for containers and makes use of the translation
groupoid construction B(S, P) (See the Appendix).

Definition 3.2.1. A symmetric container (SBP) is decidable if P (s) is a decidable
set for every s ∈ Ob(S).

Definition 3.2.2. Let F = (SBP) be a decidable symmetric container. Its deriva-
tive ∂F = (B(S, P)B P ′), were:

P ′(s, p) = P (s)− p
P ′(m : (s, p)→ (t, q)) = P (m)|p,q

Example 3.2.3: Let us differentiate (Z4 B C4), the symmetric container where
Z4 acts on it self. The translation groupoid B(Z4, C4) has four objects, namely
(∗, 0),(∗, 1),(∗, 2) and (∗, 3). A morphism from (∗, x) to (∗, y) is a morphism k in Z4

such that x + k = y mod 4. There is a unique morphism from any object to any
other object, and the sets of positions each have three elements.

43

Figure 3.2.6: The symmetric container from the action of Z4 on its underlying set.

Figure 3.2.7: The symmetric container ∂(Z4 B C4).

Differentiation of symmetric containers, like differentiation of containers, is not
functorial. But it preserves both isomorphism and equivalence of symmetric con-
tainers. This is not surprising, but it would be very disturbing if it was not true.

Proposition 3.2.4. If (SBP) ' (TBQ), then ∂(SBP) ' ∂(TBQ). Furthermore,
if (S B P) ∼= (T BQ), then ∂(S B P) ∼= ∂(T BQ).

Proof. We only prove that differentiation preserves equivalence. The proof that it
preserves isomorphism is similar but easier.

44

An equivalence (S B P) ' (T B Q) contains the following data: (f, σ) : (S B

P) → (T B Q), (g, τ) : (T B Q) → (S B P), (ε, α) : id(SBP)

∼=→ (g, τ) ◦ (f, σ) and

(δ, β) : id(TBQ)

∼=→ (f, σ) ◦ (g, τ).
So what we need to construct is:

f ′ : B(S, P)→ B(T,Q)

σ′ : Q′ ◦ f ′ ⇒ P ′

g′ : B(T,Q)→ B(S, P)

τ ′ : P ′ ◦ g′ ⇒ Q′

ε′ : idS′
∼=→ g′ ◦ f ′

α′ : idP ′
∼=→ (σ′ ◦ (τ ′f ′)) ◦ P ′ε′

δ′ : idT ′
∼=→ f ′ ◦ g′

β′ : idQ′
∼=→ (τ ′ ◦ (σ′g′)) ◦Q′δ′

Starting with f ′, the diagram,

Cat

S

P

77

τ
+3

ε
+3 T

g

gg Q

XX

S

idS

FF

f

77

enables us to define it like this:

f ′(s, p) = (f(s), (τf ◦ Pε)s(p))
f ′(m) = f(m)

Naturality of τf ◦ Pε ensures that if m is in MorB(T,Q)((s, p), (t, q)) then f(m)
is in MorB(T,Q)(f

′(s, p), f ′(t, q)).
Unravelling the definition of derivation, we see that σ′(s,p) should a be function:

σ′(s,p) : Q(f(s))− (τf ◦ Pε)s(p)→ P (s)− p

45

Thus, if we can prove that σ ◦ τf ◦ Pε = idP , we can let σ′ be defined by

σ′(s,p) = σ|(τf◦Pε)s(p),p

Actually we have a proof of that at hand, namely α. A bit of unravelling of the
definition of a 2-morphism, gives:

P

idP

��

Pε // P ◦ g ◦ f

τf

��

• α

P Q ◦ fσ
oo

While α is only a natural isomorphism, we know that the diagram commutes
since all fibres of P are discrete.

We can construct g′ and τ ′ in a similar fashion:

g′(t, q) = (g(t), (σg ◦Qδ)t(q))
g′(m) = g(m)

τ ′(t,q) = τ |(σg◦Qδ)t(q),q

To finish this off, we can see that (g′ ◦ f ′)(s, p) = (g(f(s)), P εs(p)), so we may
let ε′(s,p) = εs. By carefully observing that all the points cut in the definitions match
up, we can construct α′ as well as α(s,p),q = αs,q. The construction of δ′ and β′ is
dual.

3.3 Differentiation of sums and products

We now turn to proving that the familiar rules from calculus which tell us how to
differentiate sums and products are also true for our symmetric containers.

Proposition 3.3.1. For symmetric containers F and G, we have

∂(F +G) ∼= ∂F + ∂G

46

Proof. Let F = (SBP) and G = (TBQ). And let (B(S+T,∇Cat◦(P +Q))BR′) =
∂(F +G) and (B(S, P) +B(T,Q),∇Cat(P

′ +Q′) = ∂P + ∂Q, where P ′ and Q′ are
the ones given by the definition of ∂F and ∂G.

First we construct an isomorphism f : B(S + T,∇Cat ◦ (P + Q)) → B(S, P) +
B(T,Q).

On objects:

f((lS,T (s), p)) = lB(S,P),B(T,Q)(s, p)

f((rS,T (t), q)) = rB(S,P),B(T,Q)(t, q)

On morphisms

f(lS,T (m)) = lB(S,P),B(T,Q)(m)

f(rS,T (m)) = rB(S,P),B(T,Q)(m)

since we can define f−1 by reversing the above equations, f is an isomorphism.
Given (lS,T (s), p) ∈ Ob(B(S + T,∇Cat ◦ (P +Q))), we observe:

R′(lS,T (s), p) = ∇Cat((P +Q)(lS,T (s)))− p
= P (s)− p

Furthermore:

∇Cat(P
′ +Q′)(f(lS,T (s), p)) = ∇Cat(P

′ +Q′)(lB(S,P),B(T,Q)(s, p))

= P ′(s, p)

= P (s)− p
Thus we can let σ(lS,T (s),p) be the identity on P (s)−p. Dually we can let σ(rS,T (t),q)

be the identity on Q(t)−q. Thus we can conclude that (f, σ) : ∂(F +G)→ ∂F +∂G
is an isomorphism.

Proposition 3.3.2. Leibniz’s rule For symmetric containers F and G, we have

∂(F ×G) ∼= ∂F ×G+ F × ∂G
Proof.

f : B(S × T, (+) ◦ (P ×Q))→ B(S, P)× T + S ×B(T,Q)

f((s, t), lP (s),Q(t)(p)) = lB(S,P)×T,S×B(T,Q)((s, p), t)

f((s, t), rP (s),Q(t)(q)) = rB(S,P)×T,S×B(T,Q)(s, (t, q))

We see that f is an isomorphism. A similar argument to the one in the proof of
Prop 3.3.1 shows that there is also a σ such that (f, σ) becomes an isomorphism.

47

3.4 Composition and the chain rule

Remember that if we had two categorical containers, F and G, we could find their
composition F [G]. Inspecting the construction, we see that if F and G are symmetric
containers, their composition is also a symmetric container.

Proposition 3.4.1. The chain rule For symmetric containers F and G, we have

∂(F [G]) ∼= ∂F [G]× ∂G

Proof. Let F = (S B P) and G = (T B Q). We construct the isomorphism (f, σ) :
∂(F [G])→ ∂F [G]× ∂G

Objects in the groupoid of shapes for ∂(F [G]) are of the form ((s, φ), (p, q)) where

s : S

φ : P (s)→ T

p : P (s)

q : Q(f(p))

On the other hand, the groupoid of shapes for ∂F [G] × ∂G has objects of the
form (((s, p), ψ), (t, q)) where

s : S

p : P (s)

ψ : P (s)− p→ T

t : T

q : Q(t)

So given a shape ((s, φ), (p, q)) in ∂(F [G]), we can define

f((s, φ), (p, q)) = (((s, p), φ|P (s)−p), (φ(p), q))

We leave out the rest of the details, as they introduce nothing new.

3.5 Anti-derivatives

Our motivating example is L. The container of lists. Viewed as a container in the
non-symmetric sense, it has no anti-derivative. For instance it contains only one

48

shape with three positions. Any decidable anti-derivative would have to have at
least one shape with four positions. But by differentiation, this shape would give
rise to not only one, but four shapes with five positions.

This is reflected in the fact that
∫
x3 dx = 1

4
x4 + C, and we cannot have 1

4

of a shape with four positions. But if we allow groupoids, it would seem that we
can. Following the definition of cardinality of a groupoid (see the Appendix), Z4 has
cardinality 1

4
. Looking at the derivative of the symmetric container where Z4 acts

on the set of four elements, which we calculated in an earlier example; it is clear
that it is equivalent to a single shape with three positions. Maybe we can find some
symmetric container which is the anti-derivative of L, not up to isomorphism, but
up to equivalence of symmetric containers.

To search for an anti-derivative for L, we could begin by integrating its Taylor-
series: ∫ (∑

n:N

xn
)
dx =

∑
n:N+

1

n
xn +D

From this we see that we need a container with 1
n

shapes with n elements for
all n. The obvious candidate for an anti-derivative for L is (Z∗ B C), the cyclic
container. At least it has the correct number of shapes. So what happens when we
differentiate it?

The translation groupoid of C consists of a countably infinite number of con-
tractable components, namely the simplices (see figure below). Thus it is equivalent
to N as a groupoid. In each n-simplex component, the shapes have exactly n posi-
tions. We conclude that we have that ∂(Z∗ B C) is equivalent to L as a symmetric
container.

Figure 3.5.8: The first four components of B(Z∗, C), the groupoid of shapes in
∂(Z∗ B C). (Identity morphisms not included.)

49

Definition 3.5.1. Given two symmetric containers F,G : SCon, we say that G is
an anti-derivative of F if F ' ∂G.

Example 3.5.2: In calculus, anti-derivatives are unique up to a constant. But
this is not true for symmetric containers. Consider the two containers Z4 B C4 and
Z2 × Z2 B P , where P : Z2 × Z2 → Set is the canonical action of Z2 × Z2 on it
self by addition. These are clearly not equivalent since Z4 6' Z2 × Z2. But if you
differentiate them, they will both become equivalent to I3.

On the other hand, if two decidable symmetric containers differ only by a con-
stant, i.e. F ' G + K(A), then they are anti-derivatives of the same container:
∂F ' ∂G.

These examples of anti-derivatives suggest a strategy to construct anti-derivatives
for symmetric containers with discrete groupoids of shapes (i.e. containers). For each
shape, if we could select a group structure on the set of positions of that shape with
an extra position added, we could use the coproduct (as groupoids) of those groups
as our new groupoid of shapes. We then get a symmetric container where the groups
act on them selves. When differentiated, this new symmetric container would have
one contractable component for each of the shapes of the original container. It would
not be difficult to see that it is an anti-derivative of the original container.

If we employed the axiom of choice to select group structures, the above rea-
soning would produce a theorem saying that all containers have an anti-derivative
among the symmetric containers. But invoking the axiom of choice to create a con-
tainer makes it less useful for combinatorial or computational purposes. Instead
we will focus on generalising the procedure to other symmetric containers, keeping
the assumption that necessary structures are provided. To do this we will need to
stitch together groups indexed over a groupoid in a uniform way. We achieve this
by using the tools of internal logic in categories. In particular we use the idea of
an internal group object (See the Appendix) and a tiny bit of topos theory. For a
reference on logical topos theory, see (Rupert Goldblatt 1984) or (Joachim Lambek
and Scott 1986).

Let (S B P) be a symmetric container and consider the topos SetS, where P is
an object. In SetS there is also an object P + 1, constructed by adding an element
to every set of positions in P . A topos also has enough structure so that we can talk
about group objects, and in particular the internal automorphism group of P + 1,
which we will denote Aut(P + 1).

The following theorem is a bit surprising as it gives sufficient conditions for the
existence of an anti-derivative for a general container which at first sight seem to
have little to do with differentiation.

Theorem 3.5.3. Let (S B P) : SCon be a decidable symmetric container. Given a
group object Ψ : SetS, and an internal group action ψ : Ψ → Aut(P + 1) such that

50

the morphism (λx.ψ(x)(r(∗))) : Ψ→ P + 1 is an isomorphism, we may construct a
symmetric container (S̃ B P̃) which is an anti-derivative of (S B P).

Proof. Notice that, because Ψ in an internal group in SetS, the fibres Ψ(s) are
groups. We will denote by es the identity in Ψ(s) and juxtaposition will denote
multiplication.

We define S̃ : Grpd by:

Ob(S̃) = Ob(S)

MorS̃(s, t) = MorS(s, t)×Ψ(s)

(m, g) ◦ (n, h) = (m ◦ n,Ψ(m−1)(g)h)

(Functoriality of Ψ shows that multiplication is associative.)
We define P̃ : S̃ → Set by:

P̃ (s) = P (s) + 1

and given (m, g) : MorS̃(s, t):

P̃ (m, g) : (P + 1)(s)→ (P + 1)(t)

P̃ (m, g) = (P + 1)(m) ◦ ψs(g)

To show that we have found an anti-derivative, we need to construct an equiva-
lence (S B P) ' ∂(S̃ B P̃).

f : S → B(S̃, P̃)

f(s) = (s, r(∗))
f(m) = (m, es)

g : B(S̃, P̃)→ S

g(s, p) = s

g(m, g) = m

Let φ : P + 1→ Ψ be the inverse of (λx.ψ(x)(r(∗))) : Ψ→ P + 1.

ε : IdS̃′ ⇒ f ◦ g
ε(s,p) : (s, p)→ (s, r(∗))
ε(s,p) = (ids, φs(p))

51

Which has the inverse:

ε−1 : f ◦ g ⇒ IdS̃′

ε−1
(s,p) : (s, p)→ (s, r(∗))
ε−1

(s,p) = (ids, φs(x)−1)

On the other hand, we see that g ◦ f actually is idS, so it is the easy direction of
the equivalence.

Creating an invertible natural transformation σ : P̃ ′ ◦ f ⇒ P is also straight
forward since P̃ ′(f(s)) = P (s) + 1− r(∗) which is naturally isomorphic to P (s).

Similarily for τ : P ◦ g ⇒ P̃ ′(s, p) we have that P (g(s, p)) = P (s) and P̃ ′(s, p) =
P (s) + 1− p, which is isomorphic to P (s) if P (s) is decidable.

Example 3.5.4: Let us test the theorem on a simple test case. Let F = (Z2 B C2)
be the cyclic action of Z2 on it self. The topos we are to look at is SetZ2 , the category
of Z2-sets. Let Ψ : SetZ2 be given by:

On objects:

Ψ(∗) = {0, 1, 2}

On morphisms, generated by 1 in Z2:

Ψ(1) : {0, 1, 2} → {0, 1, 2}
Ψ(1)(x) = x+ 1 mod 3

So Ψ is the Z2-set, {0, 1, 2} where Z2 acts by swapping 1 and 2. Consider C2 + 1
which is the Z2-set {l(0), l(1), r(∗)} where Z2 acts by swapping l(0) and l(1). There
is a group action ψ : Ψ→ Aut(C2 + 1) defined by:

ψ∗(1)(l(0)) = l(1)

ψ∗(1)(l(1)) = r(∗)
ψ∗(1)(r(∗)) = l(0)

We see that λx.ψ(x)(r(∗)) is an isomorphism as required. Its inverse φ : C2+1→
Ψ is given by:

52

φ∗(r(∗)) = 0

φ∗(l(0)) = 1

φ∗(l(1)) = 2

Since the definition of S̃ in the theorem preserves the set of objects, the groupoid
of shapes we get in this case will be a group. We see that the group will have six
elements. The question is thus which six element group will we get? There are only
two options, either Z6 or S3.

The underlying set is {0, 1} × {0, 1, 2}, so at first we might think that it is
obviously Z2 ×Z3

∼= Z6. But looking at the way the multiplication is defined might
complicate the matter:

(a, x) ◦ (b, y) = (a+ b,Ψ(a−1)(x) + y)

A simple way to distinguish between Z6 and S3 is to see how many idempotent
elements there are. Not counting the identity, Z6 has one, while S3 has two. In fact
both (1, 0) and (1, 1) are idempotent:

(1, 0) ◦ (1, 0) = (1 + 1,Ψ(0)(0) + 0)

= 0

(1, 1) ◦ (1, 1) = (1 + 1,Ψ(1)(1) + 1)

= (0, 2 + 1)

= (0, 0)

From this we conclude that the resulting symmetric container has S3 as its
groupoid of shapes. To decide how an element (a, x) of this group acts on the
set of positions {0, 1} + 1 we can see from the definition that it first uses ψ∗(x) to
rotate all three elements around, then the action of a to swap l(0) and l(1) iff a = 1.
We know that this generates the usual permutation action of S3 on a set with three
elements.

In retrospect we should praise that it was not Z6 which came out of this con-
struction, as it could not possibly have created an anti-derivative of our container.
It could only have acted on the three positions by rotation, so that if one element
was fixed, every element would be fixed, making it impossible for Z2 to show up.

This theorem has a satisfying corollary, which is that every analytic container
has an anti-derivative.

53

Corollary 3.5.5. Let (S B P) be an analytic container, considered as a symmetric
container. Then (S B P) has an anti-derivative.

Proof. Remember that given a series of sets A : N → Set, we constructed C(A),
which was a container. An analytic container F was one that was isomorphic to
C(T (F)). Thus it clearly suffices to show that C(A) has an anti-derivative for any
A.

Let (SBP) = C(A). From the definition of C(A) we know that S =
∑

n∈NA(n),

we can therefore define Ψ : SetS by:

Ψ(x, n) = {0, · · · , n}

Addition modulo n+1 in each fibre makes Ψ a group object. From the definition
of C(A) we see that P (x, n) ∼= {0, · · · , n− 1}, thus P (x, n) + 1 ∼= {0, · · · , n− 1, n},
so we may define ψ by:

ψ(x,n) : {0, · · · , n} → Aut({0, · · · , n})
ψ(x,n)(k)(i) = k + i mod n+ 1

3.6 Differential equations

Having found some anti-derivatives, it might be fun to look at some examples of
differential equations.
Example 3.6.1: Let F = (S∗BP) be the previously discussed symmetric container.
It is the solution to the following differential equation, with the initial condition
JF K (0) = 1

∂F ' F

We can see this by observing that B(Sn+1,Pn+1) ' Sn, since the subgroup of
Sn+1 which fixes a given position is all permutations of the other positions, of which
there are n.

Given a groupoid X, with cardinality |X| = x, the cardinality

| JF K (X)| =
∑

n∈Ob(S∗)

|X|n

|MorSn(∗, ∗)|

=
∑
n∈N

xn

n!
= ex

54

Hence F plays the role as the exponential function!

Example 3.6.2:
Consider the following differential equation of symmetric containers.

∂F ' F × F

In other words, removing a position from this kind structure would give us an
pair of structures of the same kind. Adding an initial condition, we can attempt to
solve this equation by iteratively making pairs and anti-differentiating the result to
generate new shapes. For instance, the initial condition JF K (0) = 1, and calculation
of the first three iterations gives the symmetric container sketched below.

Figure 3.6.9: The first components of a possible solution to the differential
∂F ' F × F , given JF K (0) = 1.

There is also another solution to this differential equation, namely the list con-
tainer L.

3.7 Relation to species

The notion of a symmetric container is closely related to the notion of a species of
structure. But while symmetric containers operate on all sets, species operate only
on finite sets. In the following we let E be the category of finite sets and functions,
and B be the category of finite sets and bijections.

Definition 3.7.1. A species of structure is a functor F : B → E. An element
s ∈ F (X) is called an F -structure on X.

Definition 3.7.2. Given a species of structure F and a finite set X, there is an
associated groupoid F̃ (X), defined as follows.

55

Ob(F̃ (X)) = F (X)

MorF̃ (X)(s0, s1) = {σ : X
∼=→ X | F (σ)(s0) = s1}

Given a species of structure F , we can define a groupoid,

SF =
∑
n∈N

F̃ (Fin(n)),

and a functor P : S → Set,

PF (n, s) = Fin(n)

PF (σ) = σ.

This defines for each species of structure a symmetric container (SF BPF). Since
symmetric species can have infinite numbers of positions, there can be no going
back.

3.8 Future work

Let us allow our self a moment of speculation about what other things which could
be investigated in relation to the subject of symmetric containers.

First of all it would be interesting look at symmetric containers where the posi-
tions are from a different category than Set. If replace Set by V eck, the category of
vector spaces over a field k, we could perhaps use the tools of representation theory.
On vector spaces with interior products, differentiation could give a groupoid version
of the projective spaces acting on subspaces of codimension 1.

It might also be interesting to try to create a formal language with a differential
operator on types. Maybe with a Haskell-like GADT syntax (General Algebraic
Data Type), so that for instance a representation of F = (S∗BP) would be defined
as:

data F a where

empty : F a

sym : F a -> dF a

This definition reflects the differential equation and initial conditions satisfied by
F . With a canonical projection p : a -> dF a -> F a, you could construct ele-
ments of F a by recursion. For instance you could represent the forgetful morphism
from lists to F by:

56

forget : [a] -> F a

forget [] = empty

forget (x : xs) = p x (sym (forget xs))

The cyclic container (Z∗BC), being an anti-derivative of the list container, could
be represented by:

data C a where

e : dC a

cons : a -> dC a -> dC a

Pattern matching could be used on the projection p : a -> dF a -> F a,
given that all the variables matched are encapsulated in p again. Like in the following
recursive definition:

f : C a -> F a

f (p x e) = p x (sym empty)

f (p x (cons y ys)) = p x (sym (f (p y xs)))

Such a language could be useful for manipulating data types with symmetries.
An application would be to create a programming language where some data type
invariants are enforced on type-level, without introducing dependent types.

57

58

Appendix

Groupoids

While the name “groupoid” correctly suggests that groupoids are generalised groups,
we see them more as special categories where every morphism is an isomorphism.
Consequently we see groups as specialised groupoids with only one object.

An easy way to make more complicated groupoids from groups is taking their
coproduct. Coproducts in the category of groupoids is more like the coproduct in
Set than the free product of groups. Given two groupoids G and H, their coproduct
G + H has as its objects the disjoint union of the objects in G and the objects in
H. The morphisms in each component are simply the ones inherited from G and H
and we add no morphism between.

This construction can be extended easily to countable coproducts. For instance
we can take some well known families of groups and make them into groupoids:

Z∗ =
∑
n:N+

Zn

S∗ =
∑
n:N

Sn

For simplicity of notation we let Ob(Z∗) = N+ and Ob(S∗) = N.
An action of a groupoid G in some category C is simply a functor G → C.

Sn is defined by its action on Fin(n), so there is a canonical permutation action
P : S∗ → Set defined by:

P (n) = Fin(n)

P (σ)(x) = σ(x)

To provide a similar action for Z∗ we need to pick a bijection |Zn| ∼= Fin(n). So
by recursion we define bijections φ : ∀n ∈ N+ Fin(n)→ |Zn| by:

φ1(∗) = 0

φn+1(l(x)) = φn(x)

φn+1(r(∗)) = n

This bijection lets us think of Fin(n) as the set {0, 1, · · · , n}.
And so we can define an action C : Z∗ → Set by:

59

C(n : N) = Fin(n)

C(x : |Zn|)(a : Fin(n)) = φ−1(φ(a) + x)

In other words C cycles the elements of Fin(n) in a particular order, while P
allow any permutation.

A useful construction is the translation groupoid of a groupoid action on sets.
Given any groupoid action P : G → Set we can form the translation groupoid
B(G,P):

• Ob(B(G,P)) = (s : Ob(G);P (s))

• MorB(G,P)((s, p), (t, q)) = {g : MorG(s, t) | P (g)(p) = q}

• Composition as inherited from G.

Figure A.1 : The first four components of B(Z∗, C). Each line represents a pair of
isomorphisms going oposite in directions. Identity morphisms excluded.

60

Figure A.2 : The translation groupoid of S3 acting on Fin(3). The elements of S3

are the identity (not shown), the translations t1 and t2 and the reflections m0, m1

and m2.

Cardinality of a groupoid

There is a notion of cardinality of a groupoid, where groupoids have a positive real
number as its cardinality. Given a groupoid G, its cardinality is defined to be

|G| ∼=
∑

[x]∈Ob(G)/∼=

1

|MorG(x, x)|

Where [x] ∈ Ob(G)/∼= choses an object from each isomorphism class of objects,
and |MorG(x, x)| is the cardinality of the set of morphisms from x ot itself. If the
sum diverges we say that G has infinite cardinality.

This notion is based on classical mathematics, as it involves choice and cardinality
of sets. In this thesis we only use this notion on groupoids where it is natural to
chose a skeleton and the sets of morphisms are finite and decidable.

The definition of cardinality of groupoids can be found in (John Baez, Alexander
Hoffnung and Christopher Walker 2009), along with other groupoidifications.

Group object in a category

In category theory, one can take structures which are normally defined in terms of
sets and functions, and describe them in terms of objects and morphisms in order
to look for similar structures in other categories. This has for instance been done
for groups.

61

Definition 3.8.1. Given a category C with products and a terminal object 1, an
internal group is an object G along with morphisms m : G×G→ G, e : 1→ G and
i : G → G, called multiplication, identity and inverse, such that the following
diagrams commute:

Associativity:

G×G×G idG×m //

m×idG
��

G×G
m
��

G×G m
// G

Identity (idG × e is short for (idG × (e ◦�G)) ◦∆G):

G
idG

%%

idG×e//

e×idG
��

G×G
m
��

G×G m
// G

Inverse:

G
�G

##
(i×idG)◦∆G

��

(idG×i)◦∆G
// G×G

m

��

1
e

##

G×G m
// G

In Set an internal group is just a group. In Top, the category of topological
spaces, an internal group is a topological group. A Lie-group is a group internal to
Diff, the category of smooth manifolds and smooth functions.

2-categories

A 2-category is a like a category, but between two objects, instead of a set of mor-
phism, we have a small category of morphisms. Further more, composition should be
functorial. A 2-category is weak if associativity and the other identities which hold
in a category only hold up to isomorphism, and strict if they holds up to equality.
We will work with strict 2-categories in this thesis. For reference on 2-categories,
see (Saunders Mac Lane 1998).

62

In 2-categories we have both horisontal and vertical composition. We will denote
vertical composition by ◦ and horizontal composition by ∗.

Vertical composition:

A

f

""�� εg
//
<<

h

�� δ
B

A
f

))

h

55�� δ◦ε B

Horizontal composition:

A
f
&&

f ′
88�� ε B

g
&&

g′
88�� δ C

A
g◦f

))

g′◦f ′
55�� δ∗ε C

Whiskering of 2-cells is denoted by juxtaposition.
Right whiskering:

A
f
// B

g
&&

h

88�� ε C

A
g◦f

))

h◦f ′
55�� εf C

Left whiskering:

A
f
&&

g
88�� ε B

h // C

A
h◦f

))

g◦h
55�� hε C

63

Haskell code

The following code is a demonstration of how differentiation can be used to generate
trees. We saw in the first chapter how we could calculate the number of trees by
differentiation. But if we refrain from using the associativity and commutativity
of the cartesian product, we get the actual structures of the trees. It is however
horribly inefficient as it generates each tree n! times, where n is the number of leaf
nodes. This is because differentiation disciminiates between different orderings of
leaf nodes. The code may be improved by creating more specialised rules for addition
and multiplication which simplifies the expressions in the right way.

-- Define binary trees

import Data.List

data BinTree = L | B BinTree BinTree

deriving (Eq, Show, Ord)

-- Define a tree generator

data TreeGenerator = Zero -- No trees

| One -- Filled

| X -- Leaf node

| Y -- Recursion stopper

-- Branching:

| Plus TreeGenerator TreeGenerator

| Mult TreeGenerator TreeGenerator

deriving (Eq, Show)

-- Plus wrapper:

plus Zero a = a

plus (Mult One a) (Mult One b) = mult One (plus a b)

plus a b = Plus a b

-- Multiplication wrapper:

mult Zero _ = Zero

mult Y (Plus a b) = plus a (Mult Y b)

mult a b = Mult a b

-- Generate a set of trees from TreeGenerator

generate :: TreeGenerator -> [BinTree]

64

generate Zero = []

generate One = return L

generate X = []

generate Y = []

generate (Plus l r) = generate l ++ generate r

generate (Mult l r) = do

x <- generate l

y <- generate r

return (B x y)

-- Differentiate a tree generator:

differentiate :: TreeGenerator -> TreeGenerator

differentiate Zero = Zero

differentiate One = Zero

differentiate X = One

differentiate Y = Zero

differentiate (Mult Y r) = mult Y (differentiate r)

differentiate (Plus l r) =

plus (differentiate l) (differentiate r)

differentiate (Mult l r) =

plus (mult l (differentiate r)) (mult (differentiate l) r)

-- Strict Binary Trees:

t = Plus X (Mult Y (Mult t t))

--- Get a list of all strict binary trees, grouped by size.

trees = map (unique . sort . generate) $ iterate differentiate t

unique [] = []

unique (a:[]) = [a]

unique (a:b:xs) = if (a == b) then ur else a:ur where

ur = unique (b:xs)

65

For example you can list all strict binary trees with up to five leaf nodes by
running the following code in GHCi (The Glasgow Haskell Compiler interactive
mode):

> take 5 trees

[[],[L],[B L L],[B L (B L L),B (B L L) L],

[B L (B L (B L L)),B L (B (B L L) L),B (B L L) (B L L),

B (B L (B L L)) L,B (B (B L L) L) L]]

The output is a list of five lists. Each list contains all strict binary trees with a
certain number of leaf nodes.

66

References

Bergeron, Labelle and Leroux: 1998, Combinatorial species and tree-like structures,
Vol. 67 of Encyclopedia of Mathematics and its Applications, Cambridge Uni-
versity Press, Cambridge.

Joachim Lambek and Scott, P. J.: 1986, Introduction to higher order categorical
logic, Vol. 7 of Cambridge Studies in Advanced Mathematics, Cambridge Uni-
versity Press, Cambridge.

John Baez, Alexander Hoffnung and Christopher Walker: 2009, Higher-dimensional
algebra VII: Groupoidification.

Martin Hofmann and Streicher, T.: 1998, The groupoid interpretation of type theory,
Twenty-five years of constructive type theory (Venice, 1995), Vol. 36 of Oxford
Logic Guides, Oxford Univ. Press, New York, pp. 83–111.

Michael Abbott, Thorsten Altenkirch and Neil Ghani: 2005, Containers: construct-
ing strictly positive types, Theoretical Computer Science 342(1), 3–27.

Michael Abbott, Thorsten Altenkirch, Neil Ghani and Conor Mcbride: 2008, ∂ for
data: Differentiating data structures.

Philip Wadler: 1990, Comprehending monads, 1990 ACM Conference on Lisp and
Functional Programming, ACM, ACM Press, pp. 61–78.

Rupert Goldblatt: 1984, Topoi, Vol. 98 of Studies in Logic and the Foundations
of Mathematics, second edn, North-Holland Publishing Co., Amsterdam. The
categorial analysis of logic.

Saunders Mac Lane: 1998, Categories for the working mathematician, Vol. 5 of
Graduate Texts in Mathematics, second edn, Springer-Verlag, New York.

Simon Byrne: 2005, On groupoids and stuff.
URL: http://www.math.mq.edu.au/ street/ByrneHons.pdf

Thomas Streicher: 2006, Domain-theoretic foundations of functional programming,
World Scientific.

Thorsten Altenkirch, Paul Levy and Staton, S.: 2010, Higher-order containers, in
F. Ferreira, B. Löwe, E. Mayordomo and L. M. Gomes (eds), Programs, Proofs,
Processes, 6th Conference on Computability in Europe, CiE 2010, Ponta Del-
gada, Azores, Portugal, June 30 - July 4, 2010. Proceedings, Vol. 6158 of Lecture
Notes in Computer Science, Springer, pp. 11–20.
URL: http://dx.doi.org/10.1007/978-3-642-13962-8

67

