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Håkon Robbestad Gylterud

March 2014
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Outline of the talk

1 Present common intuition about multisets

2 Iterative multisets and Aczel’s V

3 Give a model

4 A simple result about W-types

5 Apply this result to the model
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Håkon Robbestad Gylterud () Univalent multisets Stockholm University 2 / 19



Mathematical context

In this talk...

We work in Martin-Löf type theory.

The notion of ”set” is that of a type in type theory (or rather element
in the type Set in the logical framework).

We will use the term ”iterative set” to refer to the notion of set
which is studied in Set Theory.

Juxtaposition denotes (left associative) function application. That is,
f x denotes f applied to x , and f x y := (f x) y

The technical parts are formalized in Agda.
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What are multisets?

Our intuition is that multisets...

Consists of elements.

Elements are considered to be unordered.

For each element the number of occurences is relevant.

The first two points are applies to sets as well. The third point
distinguishes the two notions.
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Håkon Robbestad Gylterud () Univalent multisets Stockholm University 4 / 19



What are multisets?

Our intuition is that multisets...

Consists of elements.

Elements are considered to be unordered.

For each element the number of occurences is relevant.

The first two points are applies to sets as well. The third point
distinguishes the two notions.
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Examples

The roots of a polynomial is a multiset if we respect multiplicity.
x3 − 2x2 + x has roots {0, 1, 1}.

Sequent calculus. A,A ` φ
Bags in computer science.

Håkon Robbestad Gylterud () Univalent multisets Stockholm University 5 / 19



Examples

The roots of a polynomial is a multiset if we respect multiplicity.
x3 − 2x2 + x has roots {0, 1, 1}.
Sequent calculus. A,A ` φ

Bags in computer science.
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Håkon Robbestad Gylterud () Univalent multisets Stockholm University 5 / 19



Classical vs Constructive

Classically, a multiset is modelled as a set X , called the domain, and a
function, e : X → N. Or if extended into the infinite, a function
e : X → Card.

Constructively, there might not be interestion functions into N, and the
notion of cardinals is problematic.
The general solution is to define

Definition

A multiset with domain X : Set is a family M : X → Set.
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Iterative multisets

Is it possible to parallell the construction of iterative sets?

For iterative sets, we consider the totality V, consisting of sets where all
elements of the sets, them selves are sets.
One may then wish for a totality M, consistsing of multisets of multisets,
all with with domain M it self.
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Trees

It is well know that (wellfounded) trees can serve as models of
(wellfounded) iterative sets.

Example

The iterative set {{{∅}, ∅}, {∅}} is represented by

but also by

For iterative multisets, we want to keep these two distinct.
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Aczel’s model of iterative sets in type theory

Definition

(Aczel) Given en a universe U : Set with decoding familty T : U → Set,
define a setoid (V ,EV ) by

V : Set

V := Wa:UTa

EV : V → V → Set

EV (sup a f )(sup b g) :=
∏
x :Ta

∑
y :Tb

EV (f x)(g y) ∧
∏
y :Ta

∑
x :Tb

EV (f x)(g y)
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Aczel’s model of iterative sets in type theory

Lemma

EV is equivalent to

E ′V : V → V → Set

E ′V (sup a f )(sup b g) :=∑
α:Ta→Tb

∏
x :Ta

EV (f x)(g (α x)) ∧
∑

β:Tb→Ta

∏
y :Tb

EV (f (βy))(g y)

Proof.

W-induction on V and apply the axiom of choice twice.
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Aczel’s model of iterative sets in type theory

Diagramatically, (sup a f ) is equal, according to EV , to (sup b g) if the
diagrams

Ta
α //

f

��
2222222222222 Tb

g

���������������
Ta

f

��
2222222222222 Tb
β

oo

g

���������������

V V

commutes up to EV .

The natural change to make is to require that α and β form an
equivalence of types.
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The model

Definition

M : Set

M := Wa:UTa

EM : M → M → Set

EM(sup a f )(sup b g) :=
∑

α:Ta∼=Tb

∏
x :Ta

EM(f x)(g (α x))

Ta
α
∼=

//

f

��
2222222222222 Tb

g

���������������

V
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The identity type and Equivalence

In Martin-Löf type theory, every A : Set is equipped with a type
=A: A→ A→ Set, which is inductively generated by

If a : A then (refl a) : a =A a.

This induces a notion of extensional equality on functions, and a notion of
equivalence between types, which are essential in Homotopy Type Theory.
If A,B : Set we denote by A ∼= Bthe type of equivalences from A to B.
And if f , g : A→ B, we denote by f ' g the type of extensional equalities
(homotopies) from f to g .
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A result on the identity type of W types

Lemma

Let a, a′ : A and f : Ba→WAB and g : Ba′ →WAB.
If α : a = a′ is such that f = (g · Bα) then (sup a f ) = (sup a′ g).

Proof.

By induction on α it is sufficient to show the claim for the case α ≡ refl a.
In this case, Bα ≡ idBa, and so the second hypothesis becomes f = g · id .
Now g · id ≡ λx .g x . We have g = λx .g x (but not g ≡ λx .g x). So we
conclude f = g .
By induction, we can proove that if f = g , then (sup a f ) = (sup a′ g).
Apply this to the above, and we get our desired conclusion.
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The univalence axiom

Definition

The axiom of extensionality states that for each f , g : A→ B, the obvious
function

f = g → f ' g

is an equivalence of types.

Definition

The axiom of univalence for a universe U : Set with decoding family
T : U → Set, states that for each a, b : U, the obvious function

Ta = Tb → Ta ∼= Tb

is an equivalence of types.
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Id ↔ EM

Theorem

The univalence axiom implies that for any m,m′ : M we have that

m = m′ ↔ EMmm′
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Proof.

(→) follows from reflexivity of EM .
(←) By W-induction. Assume a, b : U and f : Ta→ M and g : Tb → M.
Then

EM(sup a f )(sup b g) :=
∑

α:Ta∼=Tb

∏
x :Ta

EM(fx)(g(αx)) (1)

Inducion hypotheis ↔
∑

α:Ta∼=Tb

∏
x :Ta

fx = g(αx)) (2)

Definition of ' ≡
∑

α:Ta∼=Tb

f ' g · α) (3)

Extensionality ∼=
∑

α:Ta∼=Tb

f = g · α) (4)

Univalence ∼=
∑
α:a=b

f = g · Tα (5)

Previous lemma ↔ (sup a f ) = (sup b g) (6)
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Axiomatisation of multiset theory

Extensionality

∀xy x = y ↔ ∀z (z ∈ x ∼= z ∈ y)

Pairing

∀xy∃u∀z z ∈ u ∼= (z = x ∨ z = y))

Restricted separation

∀x∃u∀z z ∈ u ∼= (z ∈ x ∧ φ(z))
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Conclusion

This is work in progress, but the result on the identity type of M indicates
that it is a good model of multisets in type theory. The current project is
to give this more substance to this claim by giving an axiomatisation of
iterative multiset theory.
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