Univalent multisets
 V through the eyes of the identity type

Håkon Robbestad Gylterud

August 2014

Outline of the talk

(1) Present common intuition about multisets

Outline of the talk

(1) Present common intuition about multisets
(2) Give a model of multisets in type theory

Outline of the talk

(1) Present common intuition about multisets
(2) Give a model of multisets in type theory
(3) A result about W-types

Outline of the talk

(1) Present common intuition about multisets
(2) Give a model of multisets in type theory
(3) A result about W-types
(9) Apply this result to the model

Outline of the talk

(1) Present common intuition about multisets
(2) Give a model of multisets in type theory
(3) A result about W-types
(9) Apply this result to the model
(3) Outline of current and future work

Mathematical context

In this talk...

- We work in Martin-Löf type theory.

Mathematical context

In this talk...

- We work in Martin-Löf type theory.
- The notion of "set" is that of a type in type theory

Mathematical context

In this talk...

- We work in Martin-Löf type theory.
- The notion of "set" is that of a type in type theory (or rather element in the type Set in the logical framework).

Mathematical context

In this talk...

- We work in Martin-Löf type theory.
- The notion of "set" is that of a type in type theory (or rather element in the type Set in the logical framework).
- We will use the term "iterative set" to refer to the notion of set which is studied in Set Theory.

Mathematical context

In this talk...

- We work in Martin-Löf type theory.
- The notion of "set" is that of a type in type theory (or rather element in the type Set in the logical framework).
- We will use the term "iterative set" to refer to the notion of set which is studied in Set Theory.
- Juxtaposition denotes (left associative) function application. That is, $f x$ denotes f applied to x, and $f x y:=(f x) y$

Mathematical context

In this talk...

- We work in Martin-Löf type theory.
- The notion of "set" is that of a type in type theory (or rather element in the type Set in the logical framework).
- We will use the term "iterative set" to refer to the notion of set which is studied in Set Theory.
- Juxtaposition denotes (left associative) function application. That is, $f x$ denotes f applied to x, and $f x y:=(f x) y$
- The technical parts are formalized in Agda.

What are multisets?

What are multisets?

Our intuition is that multisets...

- Consists of elements.

What are multisets?

Our intuition is that multisets...

- Consists of elements.
- Elements are considered to be unordered.

What are multisets?

Our intuition is that multisets...

- Consists of elements.
- Elements are considered to be unordered.
- For each element the number of occurences is relevant.

What are multisets?

Our intuition is that multisets...

- Consists of elements.
- Elements are considered to be unordered.
- For each element the number of occurences is relevant.

The first two points are applies to sets as well. The third point distinguishes the two notions.

Examples

- The roots of a polynomial is a multiset if we count multiplicity. $x^{3}-2 x^{2}+x$ has roots $\{0,1,1\}$.

Examples

- The roots of a polynomial is a multiset if we count multiplicity. $x^{3}-2 x^{2}+x$ has roots $\{0,1,1\}$.
- Sequent calculus. $A, A \vdash \phi$

Examples

- The roots of a polynomial is a multiset if we count multiplicity. $x^{3}-2 x^{2}+x$ has roots $\{0,1,1\}$.
- Sequent calculus. $A, A \vdash \phi$
- Bags in computer science.

Related work

Blizzard (1989), develops a classical, two sorted, first order theory of multisets which, when restricted to sets, is equivalent to ZFC.

Elementhood in multisets

Blizzard and others use the notation:
Notation (Blizzard)
$x \in_{n} y$ denotes that x occurs in y exactly n times.

Elementhood in multisets

Blizzard and others use the notation:

Notation (Blizzard)

$x \in_{n} y$ denotes that x occurs in y exactly n times.
Instead of a ternary relation, we will keep the \in-relation binary and invoke the propositions-as-sets attitude of Martin-Löf type theory.

Elementhood in multisets

Blizzard and others use the notation:

Notation (Blizzard)

$x \in_{n} y$ denotes that x occurs in y exactly n times.
Instead of a ternary relation, we will keep the \in-relation binary and invoke the propositions-as-sets attitude of Martin-Löf type theory.

Our notation

$x \in y$ denotes the set of occurences of x in y.

Elementhood in multisets

Blizzard and others use the notation:

Notation (Blizzard)

$x \in_{n} y$ denotes that x occurs in y exactly n times.
Instead of a ternary relation, we will keep the \in-relation binary and invoke the propositions-as-sets attitude of Martin-Löf type theory.

Our notation

$x \in y$ denotes the set of occurences of x in y.

Example

- $(1 \in\{0,0,1,1,1\}) \cong 3$

Elementhood in multisets

Blizzard and others use the notation:

Notation (Blizzard)

$x \in_{n} y$ denotes that x occurs in y exactly n times.
Instead of a ternary relation, we will keep the \in-relation binary and invoke the propositions-as-sets attitude of Martin-Löf type theory.

Our notation

$x \in y$ denotes the set of occurences of x in y.

Example

- $(1 \in\{0,0,1,1,1\}) \cong 3$
- $\left(2 \in \operatorname{Roots}\left(x^{3}-2 x^{2}+x\right)\right) \cong \emptyset$.

Elementhood in multisets

Blizzard and others use the notation:

Notation (Blizzard)

$x \in_{n} y$ denotes that x occurs in y exactly n times.
Instead of a ternary relation, we will keep the \in-relation binary and invoke the propositions-as-sets attitude of Martin-Löf type theory.

Our notation

$x \in y$ denotes the set of occurences of x in y.

Example

- $(1 \in\{0,0,1,1,1\}) \cong 3$
- $\left(2 \in \operatorname{Roots}\left(x^{3}-2 x^{2}+x\right)\right) \cong \emptyset$.
- $(3 \in\{3,3,3, \cdots\}) \cong \mathbb{N}$.

Exensionality

In set theory

Given two iterative sets x and y, if for each z we have that $z \in x$ iff $z \in y$, then x and y are equal.

Exensionality

In set theory

Given two iterative sets x and y, if for each z we have that $z \in x$ iff $z \in y$, then x and y are equal.

The principle of extensionality for multisets

Two multisets x and y are considered equal iff for any z, the number of occurences of z in x and the number of occurences of z in y are in bijective correspondence (in our symbolism: $(z \in x) \cong(z \in y)$).

Classical vs Constructive

Classically, one can model a multiset as a set X, called the domain, and a function, $e: X \rightarrow \mathbb{N}$. Or if extended into the infinite, a function $e: X \rightarrow$ Card.

Classical vs Constructive

Classically, one can model a multiset as a set X, called the domain, and a function, $e: X \rightarrow \mathbb{N}$. Or if extended into the infinite, a function $e: X \rightarrow$ Card.
Constructively, there might not be many interesting functions into \mathbb{N}, and the notion of cardinals is problematic.

Classical vs Constructive

Classically, one can model a multiset as a set X, called the domain, and a function, $e: X \rightarrow \mathbb{N}$. Or if extended into the infinite, a function $e: X \rightarrow$ Card.
Constructively, there might not be many interesting functions into \mathbb{N}, and the notion of cardinals is problematic.
A solution is to consider a multiset as a family. $m: X \rightarrow$ Set,

Classical vs Constructive

Classically, one can model a multiset as a set X, called the domain, and a function, $e: X \rightarrow \mathbb{N}$. Or if extended into the infinite, a function $e: X \rightarrow$ Card.
Constructively, there might not be many interesting functions into \mathbb{N}, and the notion of cardinals is problematic.
A solution is to consider a multiset as a family. $m: X \rightarrow$ Set, or $m: I \rightarrow X$.

Iterative multisets

Is it possible to parallell the construction of iterative sets?

Iterative multisets

Is it possible to parallell the construction of iterative sets?
For iterative sets, we consider the totality V , consisting of sets where all elements of the sets, them selves are sets.

Iterative multisets

Is it possible to parallell the construction of iterative sets?
For iterative sets, we consider the totality V , consisting of sets where all elements of the sets, them selves are sets.
One may then wish for a totality M , consistsing of multisets of multisets, all with with domain M it self.

Trees

It is well known that (wellfounded) trees can serve as models of (wellfounded) iterative sets.

Trees

It is well known that (wellfounded) trees can serve as models of (wellfounded) iterative sets.

Example

The iterative set $\{\{\{\emptyset\}, \emptyset\},\{\emptyset\}\}$ is represented by

Trees

It is well known that (wellfounded) trees can serve as models of (wellfounded) iterative sets.

Example

The iterative set $\{\{\{\emptyset\}, \emptyset\},\{\emptyset\}\}$ is represented by

but also by

Trees

It is well known that (wellfounded) trees can serve as models of (wellfounded) iterative sets.

Example

The iterative set $\{\{\{\emptyset\}, \emptyset\},\{\emptyset\}\}$ is represented by

but also by

For iterative multisets, we want to keep these two distinct.

The W-type

Definition

Given a family A : Set, $B: A \rightarrow$ Set, the set of all well founded trees with branchings in this family, denoted $W_{a: A} B a$ is inductively generated by the rule:

The W-type

Definition

Given a family $A:$ Set, $B: A \rightarrow$ Set, the set of all well founded trees with branchings in this family, denoted $W_{a: A} B a$ is inductively generated by the rule:

- For each $a: A$ and $f: B a \rightarrow W_{a: A} B a$, there is a unique element $(\sup a f): W_{a: A} B a$.

Aczel's model of iterative sets in type theory

Aczel's model of iterative sets in type theory

Definition

(Aczel) Given en a universe U : Set with decoding familty $T: U \rightarrow$ Set, define a setoid $(V,=v)$ by

Aczel's model of iterative sets in type theory

Definition

(Aczel) Given en a universe U : Set with decoding familty $T: U \rightarrow$ Set, define a setoid $(V,=v)$ by

$$
\begin{aligned}
& V: \text { Set } \\
& V:=W_{a: U} T a
\end{aligned}
$$

Aczel's model of iterative sets in type theory

Definition

(Aczel) Given en a universe U : Set with decoding familty $T: U \rightarrow$ Set, define a setoid $(V,=v)$ by

$$
\begin{aligned}
& V: \text { Set } \\
& V:=W_{a: U} T a
\end{aligned}
$$

$$
\begin{aligned}
& =v: V \rightarrow V \rightarrow \text { Set } \\
& \left(\begin{array}{c}
\text { sup a } f
\end{array}\right)=v(\sup b g):= \\
& \qquad \prod_{i: T a} \sum_{j: T b}(f i)=v(g j) \wedge \prod_{j: T b} \sum_{i: T a}(f i)=v(g j)
\end{aligned}
$$

Aczel's model of iterative sets in type theory

Lemma

$=v$ is equivalent to

$$
\begin{aligned}
& =_{V}^{\prime}: V \rightarrow V \rightarrow \text { Set } \\
& (\sup a f)={ }_{V}^{\prime}(\sup b g):= \\
& \sum_{\alpha: T_{a} \rightarrow T b x: T_{a}} \prod_{\beta: T b \rightarrow T a y: T b}(f x)=v(g(\alpha x)) \wedge \sum_{{ }_{\beta}} \prod_{V}(f(\beta y))=_{V}^{\prime}(g y)
\end{aligned}
$$

Aczel's model of iterative sets in type theory

Lemma

$=v$ is equivalent to

$$
\begin{aligned}
& =_{V}^{\prime}: V \rightarrow V \rightarrow \text { Set } \\
& (\sup a f)={ }_{V}^{\prime}(\sup b g):= \\
& \sum_{\alpha: T_{a} \rightarrow T b x: T_{a}} \prod_{\beta: T b \rightarrow T a y: T b}(f x)=v(g(\alpha x)) \wedge \sum_{{ }_{\beta}} \prod_{V}(f(\beta y))=_{V}^{\prime}(g y)
\end{aligned}
$$

Proof.

W-induction on V and apply the (type theoretical) axiom of choice twice.

Aczel's model of iterative sets in type theory

Diagramatically, $(\sup a f)$ is equal, according to $=v$, to $(\sup b g)$ if the diagrams

commutes up to $=v$.

Aczel's model of iterative sets in type theory

Diagramatically, $(\sup a f)$ is equal, according to $=v$, to $(\sup b g)$ if the diagrams

commutes up to $=v$.
The natural change to make is to require that α and β form an equivalence of types.

The model

Definition

$$
\begin{aligned}
& M: \text { Set } \\
& M:=W_{a: U T a} \\
& =M: M \rightarrow M \rightarrow \text { Set } \\
& (\sup a f)=M(\sup b g):=\sum_{\alpha: T a \cong T b} \prod_{x: T a}(f x)=M(g(\alpha x))
\end{aligned}
$$

The model

Definition

$$
\begin{aligned}
& M: \text { Set } \\
& M:=W_{a: U T a} \\
& =M: M \rightarrow M \rightarrow \text { Set } \\
& (\sup a f)=M(\sup b g):=\sum_{\alpha: T a \cong T b x: T a} \prod_{T}(f x)=M(g(\alpha x))
\end{aligned}
$$

The model

Definition

Elementhood between multisets is defined by

$$
\begin{aligned}
& \in: M \rightarrow M \rightarrow \text { Set } \\
& x \in(\sup a f):=\sum_{i: T_{a}}(f a=M x)
\end{aligned}
$$

The identity type and Equivalence

In Martin-Löf type theory, every A : Set is equipped with a type $I d_{A}: A \rightarrow A \rightarrow$ Set, which is inductively generated by

- If $a: A$ then (refl $a): I d_{A}$ a a.

The identity type and Equivalence

In Martin-Löf type theory, every A : Set is equipped with a type $I d_{A}: A \rightarrow A \rightarrow$ Set, which is inductively generated by

- If $a: A$ then (refl $a): I d_{A}$ a a.

This induces a notion of extensional equality on functions, and a notion of equivalence between types, which are essential in Homotopy Type Theory.

The identity type and Equivalence

In Martin-Löf type theory, every A : Set is equipped with a type $I d_{A}: A \rightarrow A \rightarrow$ Set, which is inductively generated by

- If $a: A$ then (refl $a): I d_{A} a$ a.

This induces a notion of extensional equality on functions, and a notion of equivalence between types, which are essential in Homotopy Type Theory. If A, B : Set we denote by $A \cong B$ the type of equivalences from A to B. And if $f, g: A \rightarrow B$, we denote by $f \simeq g$ the type of extensional equalities (homotopies) from f to g.

A result on the identity type of W types

A result on the identity type of W types

Lemma

For any A : Set and $B: A \rightarrow$ Set, and all $(\sup$ a $f),(\sup b g): W_{A} B$, there is an equivalence

$$
I d_{W_{A} B}(\sup a f)(\sup b g) \cong \sum_{\alpha: I d_{A} a b} I d f(B \alpha \cdot g)
$$

A result on the identity type of W types

$$
l d_{W_{A} B}(\sup a f)(\sup b g) \cong \sum_{\alpha: l d_{A} a b} I d f(B \alpha \cdot g)
$$

Proof.

There is a map going from left to right by induction on $I d_{W_{A} B}$. That is, for each (sup af) the element $\left(r e f l_{a}\right.$, refl $\left._{f}\right)$ works. Call this map ϕ.

A result on the identity type of W types

$$
l d_{W_{A} B}(\sup a f)(\sup b g) \cong \sum_{\alpha: l d_{A} a b} I d f(B \alpha \cdot g)
$$

Proof.

There is a map going from left to right by induction on $I d_{W_{A} B}$. That is, for each (sup af) the element (refl ${ }_{a}$, refl $_{f}$) works. Call this map ϕ.
To show that this map is an equivalence, we need to show that the inverse images of each element is a singleton.

A result on the identity type of W types

$$
l d_{W_{A} B}(\sup a f)(\sup b g) \cong \sum_{\alpha: l d_{A} a b} I d f(B \alpha \cdot g)
$$

Proof.

There is a map going from left to right by induction on $I d_{W_{A} B}$. That is, for each (sup af) the element (refl ${ }_{a}$, refl $_{f}$) works. Call this map ϕ.
To show that this map is an equivalence, we need to show that the inverse images of each element is a singleton.
So assume that $p: \sum_{\alpha: I d_{A} a b} \operatorname{ld} f(B \alpha \cdot g)$.

A result on the identity type of W types

$$
I d_{W_{A} B}(\sup a f)(\sup b g) \cong \sum_{\alpha: I d_{A} a b} I d f(B \alpha \cdot g)
$$

Proof.

There is a map going from left to right by induction on $I d_{W_{A} B}$. That is, for each (sup af) the element (refl ${ }_{a}$, refl $_{f}$) works. Call this map ϕ.
To show that this map is an equivalence, we need to show that the inverse images of each element is a singleton.
So assume that $p: \sum_{\alpha: l d_{A} a b} \operatorname{ld} f(B \alpha \cdot g)$.
By induction (on the Σ-type and the two Id-types), it is enough to consider the case where $p \equiv\left(\right.$ refl $_{a}$, refl $\left._{f}\right)$.

A result on the identity type of W types

$$
l d_{W_{A} B}(\sup a f)(\sup b g) \cong \sum_{\alpha: l d_{A} a b} I d f(B \alpha \cdot g)
$$

Proof.

There is a map going from left to right by induction on $I d_{W_{A} B}$. That is, for each (sup af) the element (refl ${ }_{a}$, refl $_{f}$) works. Call this map ϕ.
To show that this map is an equivalence, we need to show that the inverse images of each element is a singleton.
So assume that $p: \sum_{\alpha: l d_{A} a b} \operatorname{ld} f(B \alpha \cdot g)$.
By induction (on the Σ-type and the two $I d$-types), it is enough to consider the case where $p \equiv\left(\right.$ refl $_{a}$, refl $\left._{f}\right)$.
We check that $\phi \operatorname{refl}_{(\text {sup a } f)} \equiv p$, by the above definiton. And by induction on Id, we can show that every element in the inverse image of p is equal to $r e f l_{(\text {sup } a f)}$.

The univalence axiom

Definition

The axiom of extensionality states that for each $f, g: A \rightarrow B$, the obvious function

$$
\operatorname{ld} f g \rightarrow f \simeq g
$$

is an equivalence of types.

Definition

The axiom of univalence for a universe U : Set with decoding family $T: U \rightarrow$ Set, states that for each $a, b: U$, the obvious function

$$
I d a b \rightarrow T a \cong T b
$$

is an equivalence of types.

Id is equivalent to $=M$

Theorem

The univalence axiom implies that for any $m, m^{\prime}: M$ we have that

$$
I d m m^{\prime} \cong m=M m^{\prime}
$$

Proof.

By W-induction. Assume $a, b: U$ and $f: T a \rightarrow M$ and $g: T b \rightarrow M$. Then

$$
(\sup a f)=M(\sup b g) \equiv \sum_{\alpha: T_{a} \cong T b x: T_{a}} \prod_{M}(f x)=M(g(\alpha x))
$$

Inducion hypotheis

$$
\cong \sum_{\alpha: T_{a} \cong T b x: T_{a}} \prod_{a} l d(f x)(g(\alpha x))
$$

$$
\begin{aligned}
\text { Definition of } \simeq & \equiv \sum_{\alpha: T_{a} \cong T b} f \simeq g \cdot \alpha \\
\text { Extensionality } & \cong \sum_{\alpha: T_{a} \cong T b} I d f(g \cdot \alpha)
\end{aligned}
$$

Univalence

$$
\cong \sum_{\alpha: a=b} I d f(g \cdot T \alpha)
$$

Previous lemma $\cong I d(\sup a f)(\sup b g)$

Axiomatisation of multiset theory

Axiomatisation of multiset theory

Extensionality

$$
\forall x y x=y \cong \forall z(z \in x \cong z \in y)
$$

Axiomatisation of multiset theory

Extensionality

$$
\forall x y x=y \cong \forall z(z \in x \cong z \in y)
$$

$\prod_{x, y: M}(I d x y) \cong \prod_{z: M}(z \in x \cong z \in y)$

Axiomatisation of multiset theory

Extensionality

$$
\forall x y x=y \cong \forall z(z \in x \cong z \in y)
$$

$$
\prod_{x, y: M}(I d x y) \cong \prod_{z: M}(z \in x \cong z \in y)
$$

Pairing

$$
\forall x y \exists u \forall z z \in u \cong(z=x \vee z=y))
$$

Axiomatisation of multiset theory

Extensionality

$$
\forall x y x=y \cong \forall z(z \in x \cong z \in y)
$$

$$
\prod_{x, y: M}(I d x y) \cong \prod_{z: M}(z \in x \cong z \in y)
$$

Pairing

$$
\forall x y \exists u \forall z z \in u \cong(z=x \vee z=y))
$$

Restricted separation

$$
\forall x \exists u \forall z z \in u \cong(z \in x \wedge \phi(z))
$$

Conclusion

This is work in progress, but the result on the identity type of M indicates that it is a good model of multisets in type theory. The current project is to give this more substance to this claim by giving an axiomatisation of iterative multiset theory.

