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Outline of the talk

1 Present common intuition about multisets

2 Give a model of multisets in type theory

3 A result about W-types

4 Apply this result to the model

5 Outline of current and future work
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Mathematical context

In this talk...

We work in Martin-Löf type theory.

The notion of ”set” is that of a type in type theory (or rather element
in the type Set in the logical framework).

We will use the term ”iterative set” to refer to the notion of set
which is studied in Set Theory.

Juxtaposition denotes (left associative) function application. That is,
f x denotes f applied to x , and f x y := (f x) y

The technical parts are formalized in Agda.
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What are multisets?

Our intuition is that multisets...

Consists of elements.

Elements are considered to be unordered.

For each element the number of occurences is relevant.

The first two points are applies to sets as well. The third point
distinguishes the two notions.
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Examples

The roots of a polynomial is a multiset if we count multiplicity.
x3 − 2x2 + x has roots {0, 1, 1}.

Sequent calculus. A,A ` φ
Bags in computer science.
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Related work

Blizzard (1989), develops a classical, two sorted, first order theory of
multisets which, when restricted to sets, is equivalent to ZFC.
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Elementhood in multisets

Blizzard and others use the notation:

Notation (Blizzard)

x ∈n y denotes that x occurs in y exactly n times.

Instead of a ternary relation, we will keep the ∈-relation binary and invoke
the propositions-as-sets attitude of Martin-Löf type theory.

Our notation

x ∈ y denotes the set of occurences of x in y .

Example

(1 ∈ {0, 0, 1, 1, 1}) ∼= 3(
2 ∈ Roots(x3 − 2x2 + x)

) ∼= ∅.
(3 ∈ {3, 3, 3, · · · }) ∼= N.
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Exensionality

In set theory

Given two iterative sets x and y , if for each z we have that z ∈ x iff z ∈ y ,
then x and y are equal.

The principle of extensionality for multisets

Two multisets x and y are considered equal iff for any z , the number of
occurences of z in x and the number of occurences of z in y are in
bijective correspondence (in our symbolism: (z ∈ x) ∼= (z ∈ y)).
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Classical vs Constructive

Classically, one can model a multiset as a set X , called the domain, and a
function, e : X → N. Or if extended into the infinite, a function
e : X → Card.

Constructively, there might not be many interesting functions into N, and
the notion of cardinals is problematic.
A solution is to consider a multiset as a family. m : X → Set, or
m : I → X .
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Iterative multisets

Is it possible to parallell the construction of iterative sets?

For iterative sets, we consider the totality V, consisting of sets where all
elements of the sets, them selves are sets.
One may then wish for a totality M, consistsing of multisets of multisets,
all with with domain M it self.
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Trees

It is well known that (wellfounded) trees can serve as models of
(wellfounded) iterative sets.

Example

The iterative set {{{∅}, ∅}, {∅}} is represented by

but also by

For iterative multisets, we want to keep these two distinct.
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The W-type

Definition

Given a family A : Set, B : A→ Set, the set of all well founded trees with
branchings in this family, denoted Wa:ABa is inductively generated by the
rule:

For each a : A and f : Ba→Wa:ABa, there is a unique element
(sup a f ) : Wa:ABa.
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Aczel’s model of iterative sets in type theory

Definition

(Aczel) Given en a universe U : Set with decoding familty T : U → Set,
define a setoid (V ,=V ) by

V : Set

V := Wa:UTa

=V : V → V → Set

(sup a f ) =V (sup b g) :=∏
i :Ta

∑
j :Tb

(f i) =V (g j) ∧
∏
j :Tb

∑
i :Ta

(f i) =V (g j)
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Aczel’s model of iterative sets in type theory

Lemma

=V is equivalent to

=′V : V → V → Set

(sup a f ) =′V (sup b g) :=∑
α:Ta→Tb

∏
x :Ta

(f x) =V (g (α x)) ∧
∑

β:Tb→Ta

∏
y :Tb

(f (βy)) =′V (g y)

Proof.

W-induction on V and apply the (type theoretical) axiom of choice
twice.
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Aczel’s model of iterative sets in type theory

Diagramatically, (sup a f ) is equal, according to =V , to (sup b g) if the
diagrams

Ta
α //

f

��

Tb

g

��

Ta

f

��

Tb
β

oo

g

��

V V

commutes up to =V .

The natural change to make is to require that α and β form an
equivalence of types.
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The model

Definition

M : Set

M := Wa:UTa

=M : M → M → Set

(sup a f ) =M (sup b g) :=
∑

α:Ta∼=Tb

∏
x :Ta

(f x) =M (g (α x))

Ta
α
∼=

//

f

��

Tb

g

��

V
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The model

Definition

Elementhood between multisets is defined by

∈: M → M → Set

x ∈ (sup a f ) :=
∑
i :Ta

(f a =M x)
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The identity type and Equivalence

In Martin-Löf type theory, every A : Set is equipped with a type
IdA : A→ A→ Set, which is inductively generated by

If a : A then (refl a) : IdA a a.

This induces a notion of extensional equality on functions, and a notion of
equivalence between types, which are essential in Homotopy Type Theory.
If A,B : Set we denote by A ∼= B the type of equivalences from A to B.
And if f , g : A→ B, we denote by f ' g the type of extensional equalities
(homotopies) from f to g .
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A result on the identity type of W types

Lemma

For any A : Set and B : A→ Set, and all (sup a f ), (sup b g) : WAB, there
is an equivalence

IdWAB (sup a f ) (sup b g) ∼=
∑

α:IdA a b

Id f (Bα · g)
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A result on the identity type of W types

IdWAB (sup a f ) (sup b g) ∼=
∑

α:IdA a b

Id f (Bα · g)

Proof.

There is a map going from left to right by induction on IdWAB . That is,
for each (sup a f ) the element (refla, refl f ) works. Call this map φ.

To show that this map is an equivalence, we need to show that the inverse
images of each element is a singleton.
So assume that p :

∑
α:IdA a b Id f (Bα · g).

By induction (on the Σ-type and the two Id-types), it is enough to
consider the case where p ≡ (refla, reflf ).
We check that φ refl(sup a f ) ≡ p, by the above definiton. And by induction
on Id , we can show that every element in the inverse image of p is equal
to refl(sup a f ).
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Håkon Robbestad Gylterud Univalent multisets Stockholm University 20 / 25



A result on the identity type of W types

IdWAB (sup a f ) (sup b g) ∼=
∑

α:IdA a b

Id f (Bα · g)

Proof.

There is a map going from left to right by induction on IdWAB . That is,
for each (sup a f ) the element (refla, refl f ) works. Call this map φ.
To show that this map is an equivalence, we need to show that the inverse
images of each element is a singleton.
So assume that p :

∑
α:IdA a b Id f (Bα · g).

By induction (on the Σ-type and the two Id-types), it is enough to
consider the case where p ≡ (refla, reflf ).
We check that φ refl(sup a f ) ≡ p, by the above definiton. And by induction
on Id , we can show that every element in the inverse image of p is equal
to refl(sup a f ).

Håkon Robbestad Gylterud Univalent multisets Stockholm University 20 / 25



A result on the identity type of W types

IdWAB (sup a f ) (sup b g) ∼=
∑

α:IdA a b

Id f (Bα · g)

Proof.

There is a map going from left to right by induction on IdWAB . That is,
for each (sup a f ) the element (refla, refl f ) works. Call this map φ.
To show that this map is an equivalence, we need to show that the inverse
images of each element is a singleton.
So assume that p :

∑
α:IdA a b Id f (Bα · g).

By induction (on the Σ-type and the two Id-types), it is enough to
consider the case where p ≡ (refla, reflf ).

We check that φ refl(sup a f ) ≡ p, by the above definiton. And by induction
on Id , we can show that every element in the inverse image of p is equal
to refl(sup a f ).
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The univalence axiom

Definition

The axiom of extensionality states that for each f , g : A→ B, the obvious
function

Id f g → f ' g

is an equivalence of types.

Definition

The axiom of univalence for a universe U : Set with decoding family
T : U → Set, states that for each a, b : U, the obvious function

Id a b → Ta ∼= Tb

is an equivalence of types.
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Id is equivalent to =M

Theorem

The univalence axiom implies that for any m,m′ : M we have that

Id m m′ ∼= m =M m′
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Proof.

By W-induction. Assume a, b : U and f : Ta→ M and g : Tb → M. Then

(sup a f ) =M (sup b g) ≡
∑

α:Ta∼=Tb

∏
x :Ta

(fx) =M (g(αx))

Inducion hypotheis ∼=
∑

α:Ta∼=Tb

∏
x :Ta

Id (f x) (g(αx))

Definition of ' ≡
∑

α:Ta∼=Tb

f ' g · α

Extensionality ∼=
∑

α:Ta∼=Tb

Id f (g · α)

Univalence ∼=
∑
α:a=b

Id f (g · Tα)

Previous lemma ∼= Id (sup a f ) (sup b g)

Håkon Robbestad Gylterud Univalent multisets Stockholm University 23 / 25



Axiomatisation of multiset theory

Extensionality

∀xy x = y ∼= ∀z (z ∈ x ∼= z ∈ y)

∏
x ,y :M

(Id x y) ∼=
∏
z:M

(z ∈ x ∼= z ∈ y)

Pairing

∀xy∃u∀z z ∈ u ∼= (z = x ∨ z = y))

Restricted separation

∀x∃u∀z z ∈ u ∼= (z ∈ x ∧ φ(z))

Håkon Robbestad Gylterud Univalent multisets Stockholm University 24 / 25



Axiomatisation of multiset theory

Extensionality

∀xy x = y ∼= ∀z (z ∈ x ∼= z ∈ y)

∏
x ,y :M

(Id x y) ∼=
∏
z:M

(z ∈ x ∼= z ∈ y)

Pairing

∀xy∃u∀z z ∈ u ∼= (z = x ∨ z = y))

Restricted separation

∀x∃u∀z z ∈ u ∼= (z ∈ x ∧ φ(z))
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Håkon Robbestad Gylterud Univalent multisets Stockholm University 24 / 25



Conclusion

This is work in progress, but the result on the identity type of M indicates
that it is a good model of multisets in type theory. The current project is
to give this more substance to this claim by giving an axiomatisation of
iterative multiset theory.
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