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@ Based on the work by Thorsten Altenkirch and others on containers
and differentiation of containers.

@ Generalised notions of containers.
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The groupoid interpretation of type theory

Martin Hofmann and Thomas Streicher (1996)
We may give the following interpretation to Martin-Lof type theory:
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The groupoid interpretation of type theory

Martin Hofmann and Thomas Streicher (1996)

We may give the following interpretation to Martin-Lof type theory:
@ Types is interpreted as groupoids.
@ Terms are objects of the groupoids.
@ More generally depentendent types are modelled by families of

groupoids.

A family of groupoids is a pair (G, F), where G : Grpd and F : G — Grpd
is a functor.

v
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Examples

Since our types now may be groupoids (or families of groupoids) let of
give some examples what these might be:

@ Sets are discrete groupoids.
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Examples

Since our types now may be groupoids (or families of groupoids) let of
give some examples what these might be:

@ Sets are discrete groupoids.
@ Setoids are groupoids.
@ Groups are groupoids. In particular finite groups such as

e The cyclic groups Z, for n € N,.
e The permutation groups S, for n € N.
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Examples

Examples (cont.)

o We may take disjoint unions of groups. For instance

C Z’ = ZnGN Z”
© 5' = ZnEN S"
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Examples

Examples (cont.)

o We may take disjoint unions of groups. For instance
° Z‘ = ZnGN Z"
© 5' = ZnEN 5”
@ We are especially interested in families of groupoids where the fibres
are (decidable) sets (discrete groupoids).
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Examples

Examples (cont.)

o We may take disjoint unions of groups. For instance
0 Ze = penLn
® S¢ =3 ,cnSn
@ We are especially interested in families of groupoids where the fibres
are (decidable) sets (discrete groupoids). Examples of such are
o C:Zs — Grpd, where each object n: Ob(Z,) is mapped to the set
Fin(n) ={0,1,---,n— 1}, and the arrows (i.e. the elements of the
group Z,) act on Fin(n) by additon.
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Examples

Examples (cont.)

o We may take disjoint unions of groups. For instance
0 Ze = penLn
® S¢ =3 ,cnSn
@ We are especially interested in families of groupoids where the fibres
are (decidable) sets (discrete groupoids). Examples of such are
o C:Zs — Grpd, where each object n: Ob(Z,) is mapped to the set
Fin(n) ={0,1,---,n— 1}, and the arrows (i.e. the elements of the
group Z,) act on Fin(n) by additon.
o P:S, — Grpd, where each object n: Ob(S,) is mapped to the set
Fin(n) ={0,1,---,n— 1}, and the arrows (i.e. permutations) act on
Fin(n) by permutation.
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Definition of symmetric containers

Definition

A symmetric container, (S < P), is a groupoid S together with a functor
P:S — Set. l.e. a family of groupoid where the fibres are discrete.
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Definition
A morphism of symmetric containers, (f,0) : (S<P) = (T < Q), is a
functor f : S — T together with a natural transformation o : Qo f = P.

H3akon Robbestad Gylterud () Symmetric Containers Stockholm University 6 /14



Definition of symmetric containers

A symmetric container, (S < P), is a groupoid S together with a functor
P:S — Set. l.e. a family of groupoid where the fibres are discrete.

We call S the groupoid of shapes, and for each shape s : Ob(S) we call
P(s) the set of positions in s.

Definition
A morphism of symmetric containers, (f,0) : (S<P) = (T < Q), is a
functor f : S — T together with a natural transformation o : Qo f = P.

Definition

A 2-morphism of symmetric containers, € : (f,0) — (g, ), is a natural
transformation € : f = g such that 70 Qe = o.

We assign the name SCon to the 2-category of symmetric containers, their
morphism and 2-morphisms.
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Representation theorem

Representing functors

We think about symmetric containers as data structures with some
symmetry actions which has to be respected.
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Representation theorem

Representing functors

We think about symmetric containers as data structures with some
symmetry actions which has to be respected.

Let (S < P) : SCon. Given a groupoid (or a set) X, we can construct a
groupoid, [S < P] (X), of ways to select a shape s € S, and fill the
positions P(s) with objects from X.That is:

Ob([S < P] (X)) =) _ XFB (1)
sES
Morjspix)((s: ), (1)) = > (¢ = ¢¥P(m)) (2)
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Represenation theorem

Let Grpd®™9 be the 2-category of 2-functors from Grpd to itself. There is
a full and faithful strict 2-functor [—] : SCon — Grpd®™?.
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Properties of symmetric containers

The 2-category of symmetric containers is closed under (and [—]
respects):
@ Finite products and co-products.

e Composition. That is, given (S < P) and (T < Q) there is a
symmetric container (S < P)o (T < Q) such that
[(S<P)o(T<Q)])=[S<P]o]T<Q]
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On containers (in the sense of Altenkirch et al) there is a differentiation
operation 0, satisfying leibniz rule, the chain rule and distribution over
sums. This defintion extends to a differentiation operation on symmetric
containers.
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On containers (in the sense of Altenkirch et al) there is a differentiation
operation 0, satisfying leibniz rule, the chain rule and distribution over
sums. This defintion extends to a differentiation operation on symmetric
containers.

This structure allow to use techniques such as Taylor-series to analyse
containers, and similar techniques can be used on symmetric containers.
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Differentiation, definition

Given a symmetric container (S < P) where the sets of positions are all

decidable, we may define the derivative symmetric container
I(S < P)=(S"<P) as follows:

=> P(s)

seS

Mors/((s,p), (t,q)) = Y P(m)(p) = q

m:s—t
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Properties of differentiation

Let F, G : SCon be symmetric containers, then

@ O(F) = 0 whenever F represents a constant functor.
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Properties of differentiation

Let F, G : SCon be symmetric containers, then
@ O(F) = 0 whenever F represents a constant functor.
e O(F+ G)=IJF +0G.
@ O(F x G)=2JF x G+ F x 0G.
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Properties of differentiation

Let F, G : SCon be symmetric containers, then

F) 2 0 whenever F represents a constant functor.
G) =2 0F + 0G.
G) =2 I0F x G+ F x 0G.

o(
o(F
o(F
(Fo G) = (9F 0 G) x DG.
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Properties of differentiation

Let F, G : SCon be symmetric containers, then

F) 2 0 whenever F represents a constant functor.
G) =2 0F + 0G.
G) =2 I0F x G+ F x 0G.

o(
o(F
o(F
(Fo G) = (9F 0 G) x DG.

All containers with discrete set of shapes and finite, decidable sets of
positions, have an anti-derivative. That is, if F : SCon satisfy the
hypothesis, then there is some G such that 0G ~ F.
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Current project

o Formalise definitions in Agda using E-categories and E-bicategories.
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Current project

o Formalise definitions in Agda using E-categories and E-bicategories.

@ Investigate fixed points of functors represented by symmetric
containers.
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Thank you all for listening!
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