Symmetric Containers Representing functors on groupoids

Håkon Robbestad Gylterud

May 2013

Håkon Robbestad Gylterud ()

Symmetric Containers

Stockholm University 1 / 14

- Based on the work by Thorsten Altenkirch and others on containers and differentiation of containers.
- Generalised notions of containers.

We may give the following interpretation to Martin-Löf type theory:

We may give the following interpretation to Martin-Löf type theory:

• Types is interpreted as groupoids.

We may give the following interpretation to Martin-Löf type theory:

- Types is interpreted as groupoids.
- Terms are objects of the groupoids.

We may give the following interpretation to Martin-Löf type theory:

- Types is interpreted as groupoids.
- Terms are objects of the groupoids.
- More generally depentendent types are modelled by families of groupoids.

We may give the following interpretation to Martin-Löf type theory:

- Types is interpreted as groupoids.
- Terms are objects of the groupoids.
- More generally depentendent types are modelled by families of groupoids.

A family of groupoids is a pair (G, \mathcal{F}) , where G : Grpd and $\mathcal{F} : G \to Grpd$ is a functor.

Since our types now may be groupoids (or families of groupoids) let of give some examples what these might be:

• Sets are discrete groupoids.

Since our types now may be groupoids (or families of groupoids) let of give some examples what these might be:

- Sets are discrete groupoids.
- Setoids are groupoids.

Since our types now may be groupoids (or families of groupoids) let of give some examples what these might be:

- Sets are discrete groupoids.
- Setoids are groupoids.
- Groups are groupoids. In particular finite groups such as
 - The cyclic groups \mathbb{Z}_n for $n \in \mathbb{N}_+$.
 - The permutation groups S_n for $n \in \mathbb{N}$.

Since our types now may be groupoids (or families of groupoids) let of give some examples what these might be:

- Sets are discrete groupoids.
- Setoids are groupoids.
- Groups are groupoids. In particular finite groups such as
 - The cyclic groups \mathbb{Z}_n for $n \in \mathbb{N}_+$.
 - The permutation groups S_n for $n \in \mathbb{N}$.

• We may take disjoint unions of groups. For instance

•
$$\mathbb{Z}_{\bullet} = \sum_{n \in \mathbb{N}} \mathbb{Z}_n$$

• $S_{\bullet} = \sum_{n \in \mathbb{N}} S_n$

э

• We may take disjoint unions of groups. For instance

•
$$\mathbb{Z}_{\bullet} = \sum_{n \in \mathbb{N}} \mathbb{Z}_n$$

• $S_{\bullet} = \sum_{n \in \mathbb{N}} S_n$

• We are especially interested in families of groupoids where the fibres are (decidable) sets (discrete groupoids).

• We may take disjoint unions of groups. For instance

•
$$\mathbb{Z}_{\bullet} = \sum_{n \in \mathbb{N}} \mathbb{Z}_n$$

• $S_{\bullet} = \sum_{n \in \mathbb{N}} S_n$

- We are especially interested in families of groupoids where the fibres are (decidable) sets (discrete groupoids). Examples of such are
 - C: Z_● → Grpd, where each object n: Ob(Z_●) is mapped to the set Fin(n) = {0, 1, · · · , n - 1}, and the arrows (i.e. the elements of the group Z_n) act on Fin(n) by additon.

• We may take disjoint unions of groups. For instance

•
$$\mathbb{Z}_{\bullet} = \sum_{n \in \mathbb{N}} \mathbb{Z}_n$$

• $S_{\bullet} = \sum_{n \in \mathbb{N}} S_n$

- We are especially interested in families of groupoids where the fibres are (decidable) sets (discrete groupoids). Examples of such are
 - C: Z_● → Grpd, where each object n: Ob(Z_●) is mapped to the set Fin(n) = {0, 1, · · · , n - 1}, and the arrows (i.e. the elements of the group Z_n) act on Fin(n) by additon.
 - $P: S_{\bullet} \to Grpd$, where each object $n: Ob(S_{\bullet})$ is mapped to the set $Fin(n) = \{0, 1, \dots, n-1\}$, and the arrows (i.e. permutations) act on Fin(n) by permutation.

Definition

A symmetric container, $(S \triangleleft P)$, is a groupoid S together with a functor $P: S \rightarrow Set$. I.e. a family of groupoid where the fibres are discrete.

Definition

A symmetric container, $(S \triangleleft P)$, is a groupoid S together with a functor $P: S \rightarrow Set$. I.e. a family of groupoid where the fibres are discrete. We call S the groupoid of shapes, and for each shape s: Ob(S) we call P(s) the set of positions in s.

Definition

A symmetric container, $(S \triangleleft P)$, is a groupoid S together with a functor $P: S \rightarrow Set$. I.e. a family of groupoid where the fibres are discrete. We call S the groupoid of shapes, and for each shape s: Ob(S) we call P(s) the set of positions in s.

Definition

A morphism of symmetric containers, $(f, \sigma) : (S \triangleleft P) \rightarrow (T \triangleleft Q)$, is a functor $f : S \rightarrow T$ together with a natural transformation $\sigma : Q \circ f \Rightarrow P$.

Definition

A symmetric container, $(S \triangleleft P)$, is a groupoid S together with a functor $P: S \rightarrow Set$. I.e. a family of groupoid where the fibres are discrete. We call S the groupoid of shapes, and for each shape s: Ob(S) we call P(s) the set of positions in s.

Definition

A morphism of symmetric containers, $(f, \sigma) : (S \triangleleft P) \rightarrow (T \triangleleft Q)$, is a functor $f : S \rightarrow T$ together with a natural transformation $\sigma : Q \circ f \Rightarrow P$.

Definition

A 2-morphism of symmetric containers, $\epsilon : (f, \sigma) \to (g, \tau)$, is a natural transformation $\epsilon : f \Rightarrow g$ such that $\tau \circ Q\epsilon = \sigma$.

We assign the name *SCon* to the 2-category of symmetric containers, their morphism and 2-morphisms.

Håkon Robbestad Gylterud ()

Representing functors

We think about symmetric containers as data structures with some symmetry actions which has to be respected.

Representing functors

We think about symmetric containers as data structures with some symmetry actions which has to be respected.

Let $(S \triangleleft P)$: *SCon*. Given a groupoid (or a set) *X*, we can construct a groupoid, $[S \triangleleft P](X)$, of ways to select a shape $s \in S$, and fill the positions P(s) with objects from *X*.

Representing functors

We think about symmetric containers as data structures with some symmetry actions which has to be respected.

Let $(S \triangleleft P)$: *SCon*. Given a groupoid (or a set) *X*, we can construct a groupoid, $[S \triangleleft P](X)$, of ways to select a shape $s \in S$, and fill the positions P(s) with objects from *X*. That is:

$$Ob(\llbracket S \triangleleft P \rrbracket(X)) = \sum_{s \in S} X^{P(s)}$$
(1)

$$Mor_{\llbracket S \triangleleft P \rrbracket(X)}((s,\phi),(t,\psi)) = \sum_{m:s \to t} (\phi \Rightarrow \psi P(m))$$
(2)

Theorem

Let Grpd^{Grpd} be the 2-category of 2-functors from Grpd to itself. There is a full and faithful strict 2-functor $[-]: SCon \rightarrow Grpd^{Grpd}$.

The 2-category of symmetric containers is closed under (and $\llbracket - \rrbracket$ respects):

- Finite products and co-products.
- Composition. That is, given (S ⊲ P) and (T ⊲ Q) there is a symmetric container (S ⊲ P) ∘ (T ⊲ Q) such that
 [[(S ⊲ P) ∘ (T ⊲ Q)]] ≅ [[S ⊲ P]] ∘ [[T ⊲ Q]]

On containers (in the sense of Altenkirch et al) there is a differentiation operation ∂ , satisfying leibniz rule, the chain rule and distribution over sums. This definition extends to a differentiation operation on symmetric containers.

On containers (in the sense of Altenkirch et al) there is a differentiation operation ∂ , satisfying leibniz rule, the chain rule and distribution over sums. This definition extends to a differentiation operation on symmetric containers.

This structure allow to use techniques such as Taylor-series to analyse containers, and similar techniques can be used on symmetric containers.

Definition

Given a symmetric container $(S \triangleleft P)$ where the sets of positions are all decidable, we may define the derivative symmetric container $\partial(S \triangleleft P) = (S' \triangleleft P')$ as follows:

$$Ob(S') = \sum_{s \in S} P(s)$$
 $Mor_{S'}((s,p),(t,q)) = \sum_{m:s \to t} P(m)(p) = q$

Definition

Given a symmetric container $(S \triangleleft P)$ where the sets of positions are all decidable, we may define the derivative symmetric container $\partial(S \triangleleft P) = (S' \triangleleft P')$ as follows:

$$Ob(S') = \sum_{s \in S} P(s)$$
 $Mor_{S'}((s, p), (t, q)) = \sum_{m:s \to t} P(m)(p) = q$

$$P(s, p) = P(s) - p$$
$$P(m) = P(m)|_{p}$$

• $\partial(F) \cong 0$ whenever F represents a constant functor.

- $\partial(F) \cong 0$ whenever F represents a constant functor.
- $\partial(F+G) \cong \partial F + \partial G$.

• $\partial(F) \cong 0$ whenever F represents a constant functor.

•
$$\partial(F+G) \cong \partial F + \partial G$$
.

• $\partial(F \times G) \cong \partial F \times G + F \times \partial G$.

- $\partial(F) \cong 0$ whenever F represents a constant functor.
- $\partial(F+G) \cong \partial F + \partial G$.
- $\partial(F \times G) \cong \partial F \times G + F \times \partial G$.
- $\partial(F \circ G) \cong (\partial F \circ G) \times \partial G$.

- $\partial(F) \cong 0$ whenever F represents a constant functor.
- $\partial(F+G) \cong \partial F + \partial G$.
- $\partial(F \times G) \cong \partial F \times G + F \times \partial G$.

•
$$\partial(F \circ G) \cong (\partial F \circ G) \times \partial G.$$

Theorem

All containers with discrete set of shapes and finite, decidable sets of positions, have an anti-derivative. That is, if F : SCon satisfy the hypothesis, then there is some G such that $\partial G \simeq F$.

• Formalise definitions in Agda using E-categories and E-bicategories.

- Formalise definitions in Agda using E-categories and E-bicategories.
- Investigate fixed points of functors represented by symmetric containers.

Thank you all for listening!

2