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Context

Based on the work by Thorsten Altenkirch and others on containers
and differentiation of containers.

Generalised notions of containers.
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The groupoid interpretation of type theory

Martin Hofmann and Thomas Streicher (1996)

We may give the following interpretation to Martin-Löf type theory:

Types is interpreted as groupoids.

Terms are objects of the groupoids.

More generally depentendent types are modelled by families of
groupoids.

A family of groupoids is a pair (G ,F), where G : Grpd and F : G → Grpd
is a functor.
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Examples

Examples

Since our types now may be groupoids (or families of groupoids) let of
give some examples what these might be:

Sets are discrete groupoids.

Setoids are groupoids.

Groups are groupoids. In particular finite groups such as

The cyclic groups Zn for n ∈ N+.
The permutation groups Sn for n ∈ N.
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Examples

Examples (cont.)

We may take disjoint unions of groups. For instance

Z• =
∑

n∈N Zn

S• =
∑

n∈N Sn

We are especially interested in families of groupoids where the fibres
are (decidable) sets (discrete groupoids). Examples of such are

C : Z• → Grpd , where each object n : Ob(Z•) is mapped to the set
Fin(n) = {0, 1, · · · , n − 1}, and the arrows (i.e. the elements of the
group Zn) act on Fin(n) by additon.
P : S• → Grpd , where each object n : Ob(S•) is mapped to the set
Fin(n) = {0, 1, · · · , n − 1}, and the arrows (i.e. permutations) act on
Fin(n) by permutation.
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Definition of symmetric containers

Definition

A symmetric container, (S C P), is a groupoid S together with a functor
P : S → Set. I.e. a family of groupoid where the fibres are discrete.

We call S the groupoid of shapes, and for each shape s : Ob(S) we call
P(s) the set of positions in s.

Definition

A morphism of symmetric containers, (f , σ) : (S C P)→ (T C Q), is a
functor f : S → T together with a natural transformation σ : Q ◦ f ⇒ P.

Definition

A 2-morphism of symmetric containers, ε : (f , σ)→ (g , τ), is a natural
transformation ε : f ⇒ g such that τ ◦ Qε = σ.

We assign the name SCon to the 2-category of symmetric containers, their
morphism and 2-morphisms.
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Håkon Robbestad Gylterud () Symmetric Containers Stockholm University 6 / 14



Representation theorem

Representing functors

We think about symmetric containers as data structures with some
symmetry actions which has to be respected.

Let (S C P) : SCon. Given a groupoid (or a set) X , we can construct a
groupoid, JS C PK (X ), of ways to select a shape s ∈ S , and fill the
positions P(s) with objects from X .That is:

Ob(JS C PK (X )) =
∑
s∈S

XP(s) (1)

MorJSCPK(X )((s, φ), (t, ψ)) =
∑

m:s→t

(φ⇒ ψP(m)) (2)
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Represenation theorem

Theorem

Let GrpdGrpd be the 2-category of 2-functors from Grpd to itself. There is
a full and faithful strict 2-functor J−K : SCon→ GrpdGrpd .
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Properties of symmetric containers

The 2-category of symmetric containers is closed under (and J−K
respects):

Finite products and co-products.

Composition. That is, given (S C P) and (T C Q) there is a
symmetric container (S C P) ◦ (T C Q) such that
J(S C P) ◦ (T C Q)K ∼= JS C PK ◦ JT C QK
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Differentiation

On containers (in the sense of Altenkirch et al) there is a differentiation
operation ∂, satisfying leibniz rule, the chain rule and distribution over
sums. This defintion extends to a differentiation operation on symmetric
containers.

This structure allow to use techniques such as Taylor-series to analyse
containers, and similar techniques can be used on symmetric containers.
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Differentiation, definition

Definition

Given a symmetric container (S C P) where the sets of positions are all
decidable, we may define the derivative symmetric container
∂(S C P) = (S ′ C P ′) as follows:

Ob(S ′) =
∑
s∈S

P(s)

MorS ′((s, p), (t, q)) =
∑

m:s→t

P(m)(p) = q

P(s, p) = P(s)− p

P(m) = P(m)|p
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Properties of differentiation

Let F ,G : SCon be symmetric containers, then

∂(F ) ∼= 0 whenever F represents a constant functor.

∂(F + G ) ∼= ∂F + ∂G .

∂(F × G ) ∼= ∂F × G + F × ∂G .

∂(F ◦ G ) ∼= (∂F ◦ G )× ∂G .

Theorem

All containers with discrete set of shapes and finite, decidable sets of
positions, have an anti-derivative. That is, if F : SCon satisfy the
hypothesis, then there is some G such that ∂G ' F .
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Current project

Formalise definitions in Agda using E-categories and E-bicategories.

Investigate fixed points of functors represented by symmetric
containers.
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Thank you all for listening!

Håkon Robbestad Gylterud () Symmetric Containers Stockholm University 14 / 14


