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Abstract

This paper investigates the role of strategic complementarities in the context of

network games and network formation models. In the general model of static games

on networks, we characterize conditions on the utility function that ensure the exis-

tence and uniqueness of a pure-strategy Nash equilibrium, regardless of the network

structure. By applying the game to empirically-relevant networks that feature nested-

ness – Nested Split Graphs – we show that equilibrium strategies are non-decreasing

in the degree. We extend the framework into a dynamic setting, comprising a game

stage and a formation stage, and provide general conditions for the network process to

converge to a Nested Split Graph with probability one, and for this class of networks

to be an absorbing state. The general framework presented in the paper can be applied

to models of games on networks, models of network formation, and combinations of

the two.

1 Introduction

Social interactions are a key feature of everyday life and individuals’ networks are widely

recognized as imperative to performance. For instance, [8] finds that peer pressure, proxied

by network centrality, boosts student performance and [16] argues that job-finding ability

depends on weak ties. The empirical literature has focused on either the behavioral (peer)

effects of networks, or on documenting the empirical regularities of social networks.1 This

∗We would like to thank Gabriel Carroll, Matthew O. Jackson, Michael D. König, Marco van der Leij,
Ismael Y. Mourifié, Anna Larsson Seim and Yves Zenou for helpful comments and discussions as well as
seminar participants at the MIT/Harvard Network Economics Workshop, the EEA meetings in 2010 and
the SAET conference in 2012.
†Department of Mathematical Statistics, Stockholm University
‡Department of Economics, University of Toronto, and Research Institute of Industrial Economics.
1For instance, [30] show that social networks are characterized by high clustering and short average path

lengths and [3] argue that the degree distribution follows a power-law. Examples of networks that are nested,
i.e. in which the neighborhood of nodes are contained within the neighborhoods of nodes with higher degrees,
are identified by [23]. See also, e.g., [11, 9], for network effects.
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has inspired two theoretical strands that seek to understand (i) how networks influence

behavior and (ii) how networks are formed. The first strand considers games on networks

and addresses how the nature of social interactions shape outcomes and how perturbations

of the network structure affect agents’ behavior. The second strand proposes frameworks for

link formation and studies the equilibrium properties of the resulting networks.2

A key challenge within the first strand is that even simple games played on networks are

often plagued by multiple equilibria. Since these equilibria typically possess very different

properties, qualitative and generic statements about the game are difficult to make. Recent

contributions have thus sought to identify general conditions that either ensure the exis-

tence of a unique equilibrium, or that all equilibria feature the same characteristics. Such

conditions may then assist researchers interested in specifying theoretical models of network

effects.

In [13] a general game-theoretic framework is constructed, where agents have private

and incomplete information about the network structure and it is shown that (symmetric)

equilibrium strategies are monotone in the number of connections, i.e. degree. In [5] a game

with complete information and linear best-response functions is considered and it is shown

that the existence and uniqueness of a Nash equilibrium depends on the lowest eigenvalue of

the network. When the magnitude of the lowest eigenvalue is small, interaction effects are

limited and one obtains uniqueness.

This paper contributes to this literature by providing a general framework for analyzing

simultaneous-action games on networks that feature the canonical form of social interactions

known as strategic complementarities. When an individual exerts more effort due to her

friend increasing her effort, we say that actions are strategic complementarities.34 We iden-

tify properties of the agent’s utility function that are sufficient conditions for the existence

and uniqueness of a Nash equilibrium, regardless of the network structure. The utility func-

tion is general, but the Hessian matrix, incorporating all network effects, must be strictly

positive definite, i.e. its lowest eigenvalue must be bounded from below by a positive num-

ber.5 The model thus ensures that own concavity effects always dominate interaction effects.

Importantly, the framework is related to [5], but while they consider linear best-response

functions and relate chosen parameter values to the smallest eigenvalue of the network, we

do not impose assumptions about functional form beyond the aforementioned restrictions

on the Hessian. In fact, the proposed framework encompasses the explicit model used to

2In [18], an endogenous network formation model that generates networks consistent with the empirically
observed properties of many networks, except nestedness, is proposed. The model laid out by [23] is able to
generate also nestedness.

3Under mild technical conditions the concept is equivalent to supermodularity, see for instance [28].
4There is ample empirical evidence of complementarities in networks. [6] finds that the probability of a

youth being involved in criminal activities increases when the family moves to a neighborhood with more
crime. Strategic complementarities in actions are also present in labor markets, in R & D activity and within
families. See [9] for an extensive survey of neighborhood effects in economics.

5Our methodology applies the work by [21, 22] and [29] to a network setting, where payoffs depend only
directly on own and neighbors’ actions.

2



describe criminal behavior in [2].

While the existence and uniqueness result obtains even in a general setting, we proceed

by applying the framework to a class of networks that are nested in order to make qual-

itative statements about equilibrium strategies. In such Nested Split Graphs (NSG) 6 the

neighborhood of an agent is contained in the neighborhood of each node with higher degree.

These graphs are sometimes referred to as Hierarchy Graphs, as the individuals’ degrees are

reflected in their ranking, in terms of centrality measures. Such hierarchical networks are

common in the real world, yet have not been extensively studied from a theoretical point of

view. The unambigous hierarchy of nodes according to degree that these networks exhibit

harmonizes well with the sociology literature. [24, 25, 26] proposes a theory of social capital

based on a given hierarchy of individuals in terms of valued attributes such as wealth, status

or power. Connections with people in top positions are desirable because these people are

able to influence decisions that may benefit the individual. Moreover, their popularity makes

more people want to connect with them which makes them hubs of informational flows, which

further amplifies their social capital Their social status thus becomes synonymous with their

degree. [23] provide examples of other real-world networks that exhibit nestedness and neg-

ative assortativity, and build a network-formation model consistent with nestedness as well

as other empirical regularities of social networks. Consistent with these works, when apply-

ing our general framework to NSGs, we find that, in the unique pure-strategy equilibrium,

strategies are non-decreasing in degree.

In some applications, it is crucial to study games on networks and endogenous network

formation simultaneously. Many complex real-world networks are the outcome of the in-

terplay between strategic interactions on given networks and the endogenous creation and

destruction of links. The final part of the paper extends the static model into a dynamic

framework, where each period consists of a game stage, in which the static game is myopi-

cally played by all agents, and a formation stage, in which one arbitrarily chosen agent has

the opportunity to add or delete a link. For games that feature strategic complementarities

and increasing utility in neighbors’ actions, our framework delivers the following results: the

network structure converges to the class of NSGs with probability one and this class of net-

works is an absorbing state. This result contributes to an emerging literature that combines

games on networks with a dynamic network formation process. In particular, our framework

is a generalization of the model in [23]. This part of the paper is also related to the liter-

ature that combines strategic interactions with network formation, as in [4, 7, 19, 12, 15].7

Relative to this literature, the framework that we provide is general and dynamic, i.e. allows

for a wide range of applications and features a network structure that changes over time.

6Nested Split Graphs have been studied in the fields of physics and mathematics. They also go under the
names Threshold Graphs, for a review see [27].

7This part is also related to dynamic models of network formation, such as [20, 1, 31, 10], where the shape
of the network is dynamically changing. Although the resulting networks are the outcome of endogenous link
choices, these models do not feature the combined element of strategic interactions and network formation
present in this paper.
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While maintaining generality, our framework is able to retain sharp predictions of (mono-

tone) strategies in the unique equilibrium and characterize the properties of the network

process.

The outline of the paper is as follows. Section 2 presents the static game. Section 3

introduces Nested Split Graphs and analyzes games played on such networks. Section 4

extends the framework into a dynamic model. Section 5 concludes.

2 The static model

We represent a network consisting of a finite set N = {1, 2, 3, . . . , n} of agents or nodes

by the adjacency matrix G (of dimension n × n). The agents may be individuals, business

partners, students, firms etc. Entry gij ∈ {0, 1} denotes whether a link between i and j is

present or not and, conventionally, gii = 0. The network is undirected, implied by gij = gji.

Further, let Ni be the neighborhood of i, i.e. Ni = {j ∈ N : gij = 1}, and denote the degree

of i, i.e. the number of i’s neighbors, by di = |Ni|.
Each agent i simultaneously undertakes action xi ∈ R+ in order to maximize a utility or

payoff function8 ui(x1, . . . , xn;G), i.e. the utility of node i on the graph G when node j exerts

effort xj ∈ R+ for j = 1, . . . , n. All nodes have homogenous utility in the following sense.

There exists a function u(x0, . . . , xn) from Rn+1
+ to R symmetric in its last n arguments, i.e.

u(x0, x1, . . . , xn) = u(x0, xπ(1), . . . , xπ(n)) for all permutations π of {1, . . . , n}, such that

ui(x1, . . . , xn;G) = u(xi, gi1x1, . . . , ginxn).

This means that the absence of a link between i and j has the same effect for i’s utility as

if there were a link between them and j’s effort were zero.9 Superficially xi enters twice on

the right hand side, but since gii = 0 and thus giixi = 0, only the first argument matters.

Before turning to the class of utility functions considered, we define the concept of strongly

positive definiteness. Let A(x) be a matrix-valued function defined on some set D ⊆ Rn.

Definition 1. A(x) is strongly positive definite if there exists an ε > 0 such that y′A(x)y ≥
ε‖y‖2 for all y ∈ Rn \ {0} and all x ∈ D.

We now proceed by postulating general conditions on the utility function which configure

the nature of this non-cooperative game. Embedded in the utility function is the dependence

on neighbors’ actions. We start out by making the following assumptions regarding the

complete graph.

Definition 2. The utility of node i, ui (x1, . . . , xn;K), where K is the adjacency matrix of

the complete graph, ui : Rn
+ → R is three times continuously differentiable. To ease notation,

8We will refer to this mapping as a utility function for simplicity, but as the framework is general and
applicable to different economic and social settings, it may well represent other types of payoffs as well.

9This representation implies both that the utility of own effort is constant across players and that the
utility from neighbors’ actions is the same.
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we define marginal utility of own effort as

hi(x1, . . . , xn;K) = ∂
∂xi
ui(x1, . . . , xn;K). It satisfies:

C1. hi (x1, . . . , xi−1, 0, xi+1, . . . , xn;K) > 0.

C2. ∂hi(x1,...,xn;K)
∂xj

≥ 0, i 6= j, with equality only if xj = 0.

C3.
(
−∂hi(x1,...,xn;K)

∂xj

)
i,j=1,...,n

is strongly positive definite.

C4. ∂2hi(x1,...,xn;K)
∂xk∂xj

≥ 0 i 6= k and for all j.

These conditions may be described as follows. Condition 1 (C1) is simply a regular-

ity condition, stating that as marginal utility of own effort is positive at zero, it is always

worthwile to exert effort. The complementarity of neighbors’ efforts is defined by C2, which

states that marginal utility of own effort is non-decreasing in neighbor’s actions, i.e. super-

modularity.10 In order to avoid positive feedback loops between neighbors pushing efforts

toward infinity, C3 bounds potential complementarity effects. In particular, we assume that

marginal utility in own effort is decreasing, ∂
∂xi
hi(x1, . . . , xn;K) < 0. At the same time, this

condition ensures that own concavity always exceeds potential complementarity effects. C4

means that complementarity effects from any particular neighbor are non-decreasing in all

neighbors’ efforts (i 6= j), and that the concavity in own effort is non-increasing in neighbor’s

effort (i = j).

By imposing conditions on the utility functions on the complete graph, we ensure that

the game is feasible in the case where positive or negative feedback loops are the greatest.

The following lemma generalizes the definition to arbitrary adjacency matrices.

Lemma 1. If the conditions in Definition 2 hold, then they also hold with K replaced by an

arbitrary adjacency matrix.

Proof. Assume the conditions in Definition 2 hold. The absence of a possible neighbor is

equivalent to the neighbor exerting no effort. Since the conditions hold for all x ∈ Rn
+, they

in particular hold when some of the elements of x are zero. Hence C1, C2 and C4 hold for

graphs in general. It remains to be shown that also C3 holds in general. We will need the

following lemma, which lets us change the set Rn \ {0} in the definition of strongly positive

definiteness to Rn
+ \ {0} when we place some restrictions on A(x).

Lemma 2. Let A(x) have positive elements on its diagonal and non-positive elements off its

diagonal. A(x) is strongly positive definite if there exists an ε > 0 such that z′A(x)z ≥ ε‖z‖2
for all z ∈ Rn

+ \ {0} and all x ∈ D.

Proof. Let y = (y1, . . . , yn)′ be an arbitrary element in Rn \ {0} and set s = (s1, . . . , sn)′

with si = sign(yi) and z = (z1, . . . , zn)′ with zi = |yi|. Let x be an arbitrary element in D

10We focus on differentiable utility functions allowing us to state supermodularity in partial derivatives.
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and, for notational convenience, define the elements of A(x): A(x) = (aij). We have aii > 0

and aij ≤ 0 for i 6= j.

y′A(x)y − ε‖y‖2 =
∑
i

aiiy
2
i +

∑
i 6=j

aijyiyj − ε‖y‖2

=
∑
i

aiiz
2
i +

∑
i 6=j

aijsisjzizj − ε‖z‖2

=
∑
i

aiiz
2
i +

∑
i 6=j,si=sj

aijzizj −
∑

i 6=j,si=−sj

aijzizj − ε‖z‖2

≥
∑
i

aiiz
2
i +

∑
i 6=j,si=sj

aijzizj +
∑

i 6=j,si=−sj

aijzizj − ε‖z‖2

= z′A(x)z − ε‖z‖2.

Thus w′A(x)w ≥ ε‖w‖2 for all w ∈ Rn
+ \ {0} implies that w′A(x)w ≥ ε‖w‖2 for all w ∈

Rn \ {0}, and hence that A is strongly positive definite.

We continue the proof of C3 holding for general graphs. Fix x and, to ease the notation,

let aij = − ∂
∂xj
hi(x;K) and bij = − ∂

∂xj
hi(x;G). Note that (aij) fulfills the criteria of Lemma

2. We want to show that (bij) also does that. By C4 of Definition 2, bij ≥ aij, once again

due to the fact that absence of a possible neighbor is equivalent to that neighbor exerting no

effort. Going from K to G thus implies less complementarity and more concavity. It follows

that
∑

i,j bijzizj >
∑

i,j aijzizj for all z ∈ Rn
+, and by Lemma 2, we conclude that C3 holds

for all graphs.

With this result in hand, we now turn to the main result of this section.

Theorem 3. There exists a unique internal pure strategy Nash equilibrium for the non-

cooperative game on any network G featuring the utility functions defined in Definition 2.

Proof. Condition 3 of Definition 2 implies, by Theorem 3.1(iii) in [21], that the function

h = − (h1 (x1, . . . , xn) , . . . , hn (x1, . . . , xn)) ,

is strongly monotone (i.e. there exists a constant ε > 0 such that (x − y) · (h(x) − h(y)) ≥
ε‖x− y‖2 for all x and y). The existence of a unique pure Nash equilibrium follows directly

from Theorem 5.1 in [22]. The equilibrium is internal since, by Condition 1 of Definition 2,

it is never optimal to exert no effort.
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3 Nested split graphs

We now turn to a class of networks called Nested Split Graphs (NSG). These graphs are

sometimes referred to as threshold graphs or hierarchy graphs, because of an apparent hier-

archy of nodes according to degree being their key property. Before laying out the formal

definition, we provide an illustrative example of these networks. Take a given network of

7 players and arrange the adjacency matrix according to degree in descending order, such

that the nodes with the highest degree are placed in the first rows and so on. On a NSG, we

obtain a characteristic step-wise pattern in the matrix (ignoring the diagonal which consists

of zeros by convention). The top player(s) is connected to all other agents that have at least

one link, the second most connected player(s) is connected to the top one(s) and everybody

else except those with the second lowest degree of those that possess at least one link and

so on. This feature is illustrated in the following example matrix:

0 1 1 1 1 1 0

1 0 1 1 0 0 0

1 1 0 1 0 0 0

1 1 1 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0


.

To put this in a formal context, we first present notation for degree partitions. For any

graph, we can define a degree partition {Z1, . . . , ZD} of the nodes N , where all nodes in

block Zi have the same degree di and d1 > · · · > dD. Distinguishing between networks with

and without isolated nodes, we define the positive degree partition by {Z1, . . . , ZD+} with

D+ = D if dD ≥ 1 and D+ = D − 1 if dD = 0. Hence, we always have d1 > · · · > dD+ ≥ 1,

and the positive degree partition thus lacks the final block of the ordinary degree partition if

and only if its members have zero degrees. Note that the positive degree sequence is empty

if the graph itself is empty and the degree sequence only consists of a single block Z1 with

d1 = 0.

Definition 3. Both the empty and the complete graphs are Nested Split Graphs. A non-

empty and non-complete graph is called a Nested Split Graph if and only if all nodes in block

Zi are connected to all other nodes in blocks Z1, . . . , ZD++1−i for i = 1, . . . , D+.

A direct consequence of the definition is that, on a NSG, nodes i and j are either friends,

friends of friends (i.e. separated by one node) or there exists no path between them. More-

over, a NSG consists of at most one component and the degrees of linked nodes are always

non-positively correlated. These graphs have been studied extensively in the graph theory

literature. For further properties, see [27].

Considering the static game described above played on a NSG, we establish that equilib-

rium actions are non-decreasing in degree. Formally:
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Theorem 4. On a nested split graph, the ranking of efforts in the (symmetric) Nash equi-

librium equals the ranking of degrees.

Proof. Let di be the degree of node i. If di = dj, both nodes i and j have the same

neighborhood and thus the same strategy. Assume that di > dj. We want to show that

xi > xj in equilibrium. This will be done by showing that for any common effort level

xi = xj = x, i’s marginal utility of exerting effort is higher than j’s. There are two cases:

either gij = 0 or gij = 1. In the first case, the neighborhood of j is a proper subset of i’s

neighborhood. Due to the complementarity, i’s marginal utility is higher than j’s and hence

xi > xj in equilibrium. In the second case, Nj \ {i} ( Ni \ {j}. Let N−j = Nj \ {i}, and

N+
i = Ni \ (Nj ∪ {j}) so that j’s neighborhood is partitioned into Nj = N−j ∪ {i} and i’s

neighborhood is partitioned into Ni = N−j ∪ N+
i ∪ {j}. If both i and j exert effort x, then

due to the complementarity, i’s marginal effort is larger than j’s, and in equilibrium we must

have xi > xj.

4 Network formation games

We now extend the model above into a dynamic setting and study the properties of the

network formation process. Time is discrete and the formation process continues for an

infinite number of periods. The set of players, N , is constant over time.

Each period consists of three stages. In the first stage, all agents myopically play the

game outlined above. In the second stage, an exogenous and potentially stochastic process

chooses one player i from the network and decides whether this player gets the opportunity

to add a link or sever one of the existing ones.11 The chosen player then chooses which link

to create or destroy, although link formation requires mutual consent.12 After the link has

been formed, i.e. after the second stage, the agent that initiated a change in the network

may reoptimize her action given the new structure. The payoffs of each period are then

realized.

The utility function obeys Definition 2 and, in addition, we impose the following supple-

mental condition.

Definition 4. The utility function exhibits strict positive externalities if, for all i and j and

all xj > x′j, ui(x1, . . . , xj, . . . , xn;G) > ui(x1, . . . , x
′
j, . . . , xn;G) whenever i and j are friends.

Analyzing the dynamic features, we find the following.

11In case the process prescribes adding a link to an agent who is connected to everyone, or removing a
link from an agent who has no connections, payoffs are realized and the period ends.

12If remaining idle when getting the opportunity to form a link were part of the agents’ choice sets, our
results would not be affected, but endowing players with the possibility of not removing a link when removal is
imposed, would. The theorems would still hold under these assumptions, but the resulting network formation
process would be uninteresting since no agent would ever want to remove a link if given the opportunity to
remain idle. Due to strict positive externalities, the network would converge to the complete network if this
choice were endogenous, as a player’s utility is increasing in degree.
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Theorem 5. In the dynamic game described above, let g0, g1, . . . , gt be a sequence of graphs

such that gt+1 is obtained from gt by letting a node either add or delete an edge, and let g0 be

a nested split graph. All g0, g1, . . . , gt+1 are nested split graphs if the utility functions obeys

Definition 2 and exhibits strict positive externalities.

Proof. Define Mi as the set of nodes with the highest degree that are not neighbors of i, i.e.

Mi = arg max{dk : k /∈ Ni}, and, similarily, let mi be the neighbors of i of lowest degree, i.e.

mi = arg min{dk : k ∈ Ni}. The network remains in the class of NSGs if i targets j ∈ Mi

when i gets to add a link and l ∈ mi when i must sever a link. Recall the degree partitioning

that preceded Definition 3, in which D+ denotes the index of the lowest ranked nodes with

positive degree. Combining our knowledge of the degree partitioning and the sets Mi and

mi we have that on a nested split graph, if j ∈ Zk then Mj = ZD++2−k and mj = ZD++1−k.

By symmetry we have

j ∈Mi ⇐⇒ i ∈Mj,

j ∈ mi ⇐⇒ i ∈ mj.

Lemma 6. Let g0, g1, . . . be a sequence of graphs such that gt+1 is obtained from gt by adding

or deleting an edge, and g0 is a nested split graph. All g0, g1, . . . are nested split graphs if

and only if

(i) An edge ij is only added whenever j ∈ Mi (and thus i ∈ Mj).

(ii) An edge ij is only removed whenever j ∈ mi (and thus i ∈ mj).

Proof. By induction, it suffices to verify that g1 is a NSG if and only if (i) and (ii) hold. Let

Zk
1 , Z

k
2 , . . . be the degree partition of gk and Dk+ the number of distinct positive degrees in

gk for k = 0, 1. Consider two nodes: i in some block Z0
k and j in some block Z0

l of the degree

partition of g0.

Addition of a link ij increases both i’s and j’s degrees by one. If i’s degree in g1 equals

the degree of some nodes in g0, then i is “promoted” to their block in the degree partition:

i ∈ Z1
k−1, otherwise i will constitute a block of its own in the degree partition of g1: {i} = Z1

k .

The same argument applies to node j, either j ∈ Z1
l−1 or {j} = Z1

l . The rest of the blocks

in the degree partition are unchanged in the transition from g0 and g1. D1+ = D0+ + 0, 1

or 2 corresponding to whether both, one or none of i and j are in blocks of their own in the

new block partition.

If (i) holds, then l = D0+ + 2 − k and it is straightforward to check that g1 is a nested

split graph by Definition 3 in the three cases D1+ = 0, 1 or 2. If, on the other hand,

l 6= D0+ +2−k, i.e. (i) does not hold, the blocks in g1 are no longer connected in accordance

with the definition. For example, if i ∈ Z1
k−1, the nodes in that block are no longer connected

to the same nodes: j is connected to i but not to the other nodes of Z1
k−1.

The argument for the necessity and sufficiency of (ii) in the case of link removal is similar

to the proof for link addition.
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Now, in order to show that the network structure of the game outlined above remains

in the class of NSGs if played on a NSG, we need to show that i optimally targets j ∈
Mi when given the opportunity to add a link (and that i’s target is j ∈ mi if removing a

link). If nodes connected to all other nodes get to add a link or nodes not connected to any

nodes get to remove a link, nothing happens and the network continues to be a NSG. Due to

strict positive externalities, a new link always generates higher utility than abstaining from

forming a link. Node i will thus choose to send out a link and any receiver will accept. By

Theorem 4, the nodes in Mi are those outside i’s neighborhood who exert the most effort.

Again by strict positive externalities, choosing one of them as a neighbor increases utility

the most both before and after i changes (increases) effort. Correspondingly, the nodes in

mi are those agents who exert the least effort, and losing them as neighbors decreases utility

the least due to strict positive externalities.

The degree structure of NSGs connotes a well defined hierarchy, which means that con-

ditions on the formation process under which the degree structure - and hence the graph

structure - is kept intact, are easy to formulate. In principle, a link emanating from node i

may only be added as long as it is formed with a node j with the highest degree that i is not

yet linked to (denote this set Mi). Moreover, by the symmetry of NSGs, if j belongs to Mi,

i is an element of the set of nodes with highest degree that j does not have an edge with,

i.e. Mj. From Theorem 4, we know that the myopic game played on a NSG implies that the

set of nodes with the highest degree that i is not linked to is equivalent to the set of nodes

with highest effort that i does not possess an edge with. As utilities exhibit strict positive

externalities, and because utilities are homogenous in all players’ efforts (a permutation of

the arguments in the utility function does not affect utility), it is always optimal to target

the nodes with highest effort that are not a part of one’s own neighborhood.

Analogous arguments hold for link destruction. However, unlike link removal, the ad-

dition of links requires mutual consent. An interesting feature of this network formation

process is that a link offer from player i to player j ∈ Mi is not only acceptable for agent j,

but also optimal in the sense that j would have targeted i, or any other node of the same

degree as agent i, if j had given the opportunity to add a link.

Due to strict positive externalities agent i targets j ∈ Mi when endowed with the possi-

bility of adding a link. Now, suppose i has the opportunity of reoptimizing her effort after

creating the link. Strategic complementarities implies that a link with j ∈ Mi increases

marginal utility of own effort the most, and in combination with strict positive externalities

also i’s utility the most, both before and after i changes her effort.

Note that a simple hierarchy model in which agents strive to be connected to nodes with

the highest degree would fit in the framework above. Such a model would approximate

the preferential-attachment model that emerges in different forms in the social networks

literature.13 The main difference is that links cannot be generated randomly in our model.

13An important contribution to the network-formation literature is [3], who provide a framework in which
links are created randomly with the probability of creating a link proportional to the degree. Preferential
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Such link creation would eventually destroy the particular structure of NSGs.

Let us now turn to a convergence result of the dynamic game. Allowing for any initial

network structure, the graph converges to the class of NSGs with probability one. Moreover,

as shown above, this is an absorbing state.

Theorem 7. Consider the dynamic model above. Let g0, g1, . . . , gt be a sequence of graphs

such that gt+1 is obtained by letting a node either create or remove one link. The network

structure converges to the absorbing class of NSGs with probability one if the utility function

obeys Definition 2, strategic complementarities, strict positive externalities and there exists

some ε > 0, such that the probability of creating a link is p > ε.

Proof. Consider an arbitrary period in the process. If the current graph is a NSG, Theorem 5

implies that the process will continue to consist of NSGs and we are done. Assume otherwise,

in particular that the current graph is non-empty and non-complete, i.e. the number of links

in the graph is larger than zero and less than
(
n
2

)
. Let ε be the least probability of creating

(deleting) a link as the case may be. The probability that all next
(
n
2

)
link actions are

additions (removals) is at least ε(
n
2), and since this number is positive, though typically very

small, it will eventually happen that a stretch of
(
n
2

)
link actions are all additions (removals),

which would create a complete (empty) graph. From that moment on, all graphs will be

NSGs.

5 Concluding Remarks

There is ample empirical evidence suggesting that social networks affect individual behavior

with a number of studies finding support for complementarities in actions. By focusing

on such interaction effects, we establish sufficient conditions regarding the utility function

for existence and uniqueness of Nash equilibrium independent of the network structure. In

essence, we let utility depend on neighbors’ actions and put restrictions on the Hessian

matrix, which ensure that own concavity dominates interaction effects. This approach not

only keeps the formulation general, but at the same time resolves the inconvenience that

many games on networks exhibit: multiple equilibria. We thus understand the mechanisms

at play in static games on a deeper level and give a framework that can be applied to a

number of specific research questions.

By applying the game to a particular class of networks — Nested Split Graphs — we are

able to provide even more precise predictions regarding outcomes of the static game. Games

of the types outlined above played on NSGs have clear predictions regarding monotonicity

attachment models have the feature that as nodes obtain more links, their probability of obtaining a new
link increases, thereby generating a positive feedback loop. The virtue of these networks is that they exhibit
scale-free degree distributions - a feature common in empirically observed networks. See [17] and [14] for a
review of preferential-attachment models.
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of equilibrium actions. We are also able to provide stability and convergence results of a dy-

namic network process that features strategic interactions. With a general utility function,

we obtain absolute convergence to the absorbing state of NSGs. More importantly, these

networks have features in common with empirically observed networks. The regularities that

social networks display are, e.g. short average distance (where distance means the shortest

path between two nodes in a network), large clustering coefficient, the power law14 charac-

terizing the degree distribution and nestedness.15 Among these characteristics, by definition,

NSGs feature short average distance and nestedness. Properties of degree distributions and

clustering coefficients are context specific.

However, the tractability of Nested Split Graphs comes at a cost. The degree distributions

can be extreme in the sense that there must be at least one vertex which is connected to

every node with positive degree. The maximum distance on a NSG between any two nodes

cannot exceed two. Despite these complications in describing the real world, these networks

appear important from an economic perspective. Imposing general and empirically motivated

conditions on the utility function, we provide a microfounded framework in which we obtain

clear predictions regarding static games on NSGs as well as dynamic results. In order

to fully understand social networks, it is important to combine network formation models

with models of strategic interactions and this is an attempt in doing so while retaining

mathematical tractability.
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[5] Bramoullè, Y., R. Kranton and M. D’Amours. “Strategic interaction and network”.

American Economic Review. Forthcoming.

[6] Case, A. C., Katz, L. F., 1991. The Company You Keep: The Effects of Family and

Neighborhood on Disadvantaged Youths. NBER Working Paper No. 3705.

14A continuous random variable X satisfies the power law if its density is of the form f(x) = κx−γ for
positive scalars κ and γ.

15Empirical properties of networks - the ones above included - are recapitulated in [18, 23].

12
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