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The fourth homotopy group of the 3-sphere in HoTT

Guillaume Brunerie’s PhD thesis contains a synthetic proof in Book HoTT of:

Theorem (Brunerie, 2016)

The fourth homotopy group of the 3-sphere is Z/2Z, that is, 𝜋4(S3) ≃ Z/2Z

The proof is one of the most impressive pieces of synthetic homotopy theory to date and uses lots
of advanced classical machinery developed synthetically in HoTT: symmetric monoidal structure of
smash products, (integral) cohomology rings, the Mayer-Vietoris and Gysin sequences, Hopf invariant
homomorphism, Whitehead products, the iterated Hopf construction, Blakers-Massey, ...

Furthermore, the proof is fully constructive!
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The Brunerie number

The theorem can hence be phrased as: “there exists a number 𝛽 : Z such that 𝜋4(S3) ≃ Z/𝛽Z”

On p. 85 Brunerie says (for n := |𝛽 |):

This result is quite remarkable in that even though it is a constructive proof, it is not at all
obvious how to actually compute this n. At the time of writing, we still haven’t managed to
extract its value from its definition. A complete and concise definition of this number n is
presented in appendix B, for the benefit of someone wanting to implement it in a prospective
proof assistant. In the rest of this thesis, we give a mathematical proof in homotopy type
theory that n = 2.
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The Cubical paradigm in HoTT/UF

As we saw in Steve’s talk Thierry worked hard on giving constructive meaning to HoTT/UF during
the IAS special year (2012-2013)

Breakthrough: Bezem-Coquand-Huber (BCH, 2014) constructive model of univalence

Led to lots of developments:

Cohen-Coquand-Huber-M. (CCHM) model and cubical type theory

Huber: canonicity for CCHM cubical type theory

Cartesian cubical models and type theories (Awodey, Angiuli-Favonia-Harper,
Angiuli-Brunerie-Coquand-Harper-Favonia-Licata)

...
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Computing the Brunerie number

This enabled us to implement a variety of cubical proof assistants: cubical, cubicaltt, yacctt,
RedPRL, redtt, cooltt, Cubical Agda...

As these satisfy canonicity it should in principle be possible to use them to compute the Brunerie
number...

But this turned out to be a lot harder than expected!
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Computing the Brunerie number, a (probably incomplete) history

2013: Guillaume presents informal definition of the Brunerie number at an IAS seminar

December 2014: Guillaume visits Chalmers and tries to compute it with Thierry Coquand
and Simon Huber using cubical (based on BCH model)

Spring 2015: I join forces with them and spend a lot of time trying to benchmark and
optimize the Haskell implementation of cubical

2016: Guillaume finishes thesis with definition in Appendix B (based on cubical code)

Spring/summer 2017: I port the proof to cubicaltt (based on CCHM), but computation runs
out of memory (on Inria server with 64GB RAM)

June 2017: another attempt in cubicaltt with the MRC group in Snowbird (Vikraman
Choudhury, Paul Gustafson, Dan Licata, Ian Orton, and Jon Sterling). Optimizes the
definition of the number, without luck

Late 2017: I visit Guillaume repeatedly at the IAS and simplify the definition a lot,
computation goes slightly further but still runs out of memory
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Computing the Brunerie number, a (probably incomplete) history

2018: various attempts to run parts of the computation in various cartesian cubical systems
(yacctt and redtt) as well as in Cubical Agda, no luck

June 2018: Favonia tries running the cubicaltt computation on a super computer with 1TB
of ram, computation stopped after ∼ 90 hours(?)
Summer 2018: Dagstuhl meeting where the cubical group (Jon Sterling, Carlo Angiuli,
Favonia, Dan Licata, Simon Huber, Ian Orton, Guillaume Brunerie) found various new
optimizations to cubical evaluation (“Dagstuhl lemma”), did not help with computation

2019: Evan Cavallo ports the definition to Cubical Agda, still running out of memory despite
more optimizations (including Cubical Agda “ghcomp” trick of Andrea Vezzosi)

2020-2021: No progress. I was convinced that the only way to make progress was to improve
closed term evaluation for cubical type theories...

2022: Breakthrough with Axel Ljungström!
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2022 breakthroughs

In 2020 Axel wrote a master thesis on “Computing Cohomology with Cubical Agda” supervised by
me and Guillaume. He then started a PhD with the aim of formalizing Guillaume’s proof that
𝜋4(S3) ≃ Z/2Z in Cubical Agda...

Feb 8, 2022: we completed the Cubical Agda formalization; this had required us to fill in
some holes and simplify various parts of Guillaume’s original argument

Afterwards Axel found a very simple and elementary version of the second half of the proof.
This simplified proof allowed us to get a sequence of simplified Brunerie numbers...

April 7: with some tricks we get one of these numbers to normalize to −2 in just a few
seconds in Cubical Agda!

May 23: the formalization that this normalized number is really a Brunerie number is finished
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Outline

1 Formalizing Brunerie’s proof

2 Ljungström’s new proof and the simplified Brunerie number

3 Conclusions and future work
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Brunerie’s theorem: part 1 (chapters 1–3)

In the first half of the thesis (chapters 1–3) Guillaume constructs a map g : S3 → S2

g is defined as the composition of a sequence of (pointed) maps S3 → S1 ∗ S1 → S2 ∨ S2 → S2

Let e : 𝜋3(S2) ≃ Z and define 𝛽 := e( | g |), the first main theorem is then that:

Theorem (Brunerie, Corollary 3.4.5)

We have 𝜋4(S3) ≃ Z/𝛽Z
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Brunerie’s proof: part 1 (chapters 1–3)

The proof of this theorem uses:

Hopf fibration

LES of homotopy groups of a fibration

Freudenthal suspension theorem

James construction1

The Blakers-Massey theorem

Whitehead products

This is quite complicated synthetic HoTT, but all of it was formalizable and the proofs didn’t
contain any major surprises (except for a typo in the definition of Whitehead products)

1General form actually not needed, can do a direct encode-decode proof instead.
A. Mörtberg 𝜋4 (S3 ) and the Brunerie number Aug 26, 2022 12 / 25



82 CHAPTER 3. THE JAMES CONSTRUCTION

We first prove the following more general version which isn’t more complicated to
prove.

Proposition 3.3.2. Given two types A and B, there is a map WA,B : A∗B → ΣA∨ ΣB
such that

ΣA× ΣB � 1 �A∗B (ΣA ∨ ΣB)

and such that the induced map ΣA ∨ ΣB → ΣA× ΣB is i∨ΣA,ΣB.

Proof. We use the 3 × 3-lemma with the diagram

ΣA B 1

B A×B A

B B 1

north

αsouth

id
snd fst

snd

snd

id

where α : A×B → north =ΣA south is defined by α(x, y) := merid(x).
The pushout of the top row is equivalent to ΣA ∨ ΣB, the pushout of the middle row

is equivalent to the join A ∗ B and the pushout of the bottom row is contractible, so
the pushout of the pushouts of the rows is equivalent to 1 �A∗B (ΣA ∨ ΣB) for the map
A ∗ B → ΣA ∨ ΣB defined by

WA,B : A ∗ B → ΣA ∨ ΣB,

WA,B(inl(a)) := inr(north),
WA,B(inr(b)) := inl(north),

apWA,B
(push(a, b)) := apinr(ϕB(b)) · push(�1) · apinl(ϕA(a)).

The pushouts of the left and of the right columns are both equivalent to ΣA, and the
pushout of the middle column is equivalent to ΣA×B. Moreover, the horizontal map on
the left between ΣA×B and ΣA is equal to fst, as can be proved by induction using the
definition of α. The horizontal map on the right is also equal to fst. Hence the pushout
of the pushout of the columns is equivalent to ΣA× ΣB. Therefore we have

ΣA× ΣB � 1 �A∗B (ΣA ∨ ΣB)

and it can be checked that the induced map ΣA∨ΣB → ΣA×ΣB is equal to i∨ΣA,ΣB .

Proof of proposition 3.3.1. We apply proposition 3.3.2 to A := Sn−1 and B := Sm−1,
and we obtain

Sn × Sm � 1 �Sn−1∗Sm−1 (Sn ∨ Sm).

Moreover, we have Sn−1 ∗ Sm−1 � Sn+m−1 by proposition 1.8.8, which concludes.

This allows us to define the following operation on homotopy groups.
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WA,B(inl(a)) := inr(north),
WA,B(inr(b)) := inl(north),

apWA,B
(push(a, b)) := apinr(ϕB(b)) · push(�1) · apinl(ϕA(a)).

The pushouts of the left and of the right columns are both equivalent to ΣA, and the
pushout of the middle column is equivalent to ΣA × B. Moreover, the horizontal map on
the left between ΣA × B and ΣA is equal to fst, as can be proved by induction using the
definition of α. The horizontal map on the right is also equal to fst. Hence the pushout
of the pushout of the columns is equivalent to ΣA × ΣB. Therefore we have

ΣA × ΣB � 1 �A∗B (ΣA ∨ ΣB)

and it can be checked that the induced map ΣA∨ΣB → ΣA×ΣB is equal to i∨
ΣA,ΣB .

Proof of proposition 3.3.1. We apply proposition 3.3.2 to A := Sn−1 and B := Sm−1,
and we obtain

Sn × Sm � 1 �Sn−1∗Sm−1 (Sn ∨ Sm).

Moreover, we have Sn−1 ∗ Sm−1 � Sn+m−1 by proposition 1.8.8, which concludes.

This allows us to define the following operation on homotopy groups.
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Brunerie’s proof: part 2 (chapters 4–6)

The second half of the thesis is devoted to proving that |𝛽 | = 2 and this a lot more complicated
than the first half. It uses the following classical theory:

Symmetric monoidal structure of smash products

This gives graded ring structure of the cup product ⌣: H i (X ) × H j (X ) → H i+j (X )
The Mayer-Vietoris sequence:

The Gysin sequence:

The Hopf Invariant homomorphism:

The Iterated Hopf Construction:
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90 CHAPTER 4. SMASH PRODUCTS OF SPHERES

We call this a 1-coherent symmetric monoidal structure because we do not ask the
fillers of the diagrams to satisfy any further coherence condition. It’s an open question
to give a definition in homotopy type theory of the notion of fully coherent (or even
only n-coherent) symmetric monoidal structure, but here we only need the 1-coherent
structure of the smash product. The following result is the main result of this section
even though we essentially admit it.
Proposition 4.1.2. The smash product is a 1-coherent symmetric monoidal product on
pointed types.
Sketch of proof. Putting the unit aside for a moment, we have to define six functions of
the form

(x : A ∧ B) → P (x),
four of the form

(x : (A ∧ B) ∧ C) → P (x),
two of the form

(x : A ∧ (B ∧ C)) → P (x),
and one of the form

(x : ((A ∧ B) ∧ C) ∧ D) → P (x),
where each time P (x) is either a smash product like B ∧A or A∧ (B ∧C), or an equality
in a smash product between combinations of some of those functions.

The idea is that the smash product A∧B can be seen as the product A×B where all
elements of the form (a, �B) and (�A, b) have been identified together. Therefore, in order
to define a map out of A ∧ B it should be enough to define it on elements of the form
proj(a, b) in such a way that the image of elements of the form proj(a, �B) and proj(�A, b)
are identified to the basepoint in the codomain. But it is not enough to simply give paths
from the images of proj(a, �B) and proj(�A, b) to the basepoint of the codomain, because
we also need to check that the two induced paths from the image of proj(�A, �B) to the
basepoint are equal, and this is often the most technical part. Intuitively, however, the
idea (that we do not make precise here) is the following. In the type A∧B, the “subtype”
generated (using coherence operations) by �A∧B , all proj(a, �B), all proj(�A, b), all projr(a),
all projl(b), and projrl is “contractible” in the sense that there is a path between any two
points, a 2-dimensional path between any two parallel paths, and so on. Similarly, the
subtype of (A ∧ B) ∧ C generated by all the proj(proj(a, b), c) where either a, b, or c is
the basepoint and by all the combinations of projr, projl, and projrl that one can write is
contractible in the same sense. Therefore, in order to define (say) a map from (A∧B)∧C
to A ∧ (B ∧C), it is enough to define it on elements of the form proj(proj(a, b), c) in such
a way that when either a, b, or c is the basepoint, the image is in the contractible part of
A ∧ (B ∧ C). The contractibility takes care of all the other constructors.

For instance, given two pointed maps f : A → A� and g : B → B�, we define their
smash product by

f ∧ g : A ∧ B → A� ∧ B�,

(f ∧ g)(proj(x, y)) := proj(f(x), g(y)).
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Symmetric monoidal structure of smash products
Agda does not like this kind of holes... Can we fill it and make the proof formal?

Guillaume tried very hard to do it using Agda-metaprogramming in Agda:

But did not succeed with everything: pentagon missing, hexagon takes 7 minutes and 8GB of
RAM to typecheck...
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Workaround: alternative definition of the cup product
Recall that there is an adjunction:

(A ∧ B →∗ C) � (A →∗ B →∗ C)

It turns out that we can work on the RHS to define the cup product⇒ simpler proofs avoiding
symmetric monoidal structure of the smash product!

This way we completely formalize the construction of the (integral) cohomology ring H ∗(X ;Z), for
details see Synthetic Integral Cohomology in Cubical Agda (Brunerie-Ljungström-M., CSL 2022)

Graded commutativity is most difficult and takes ∼ 900LOC, however Tim Baumann’s HoTT Agda
proof is ∼ 5000LOC

Having filled the hole in Guillaume’s proof we managed to formalize the rest of the thesis! But,
still no progress on computing the Brunerie number...
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New proof

Having finished the formalization Axel realized that one can actually simplify the proof a lot and
completely avoid the second half of Brunerie’s thesis

The new proof is very elementary – doesn’t use any complicated theory!

Idea: trace the maps by hand using clever tricks and choices

Details: https://homotopytypetheory.org/2022/06/09/the-brunerie-number-is-2/
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Sketch of new proof

Recall that 𝛽 := e( |g |) for e : 𝜋3(S2) ≃ Z and g : S3 → S2. The goal is to show that |𝛽 | = 2

In fact, g is defined as the precomposition of a not very complicated map S1 ∗ S1 → S2 with the
somewhat complicated equivalence f : S3 ≃ S1 ∗ S1

One of Axel’s tricks in the proof is to define 𝜋∗
3 (A) := | |S1 ∗ S1 →∗ A| |0 and work with it instead

so that f can be avoided
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Sketch of new proof

We can now decompose e : 𝜋3(S2) ≃ Z as:

𝜋3(S2)
e1≃ 𝜋∗

3 (S2)
e2≃ 𝜋∗

3 (S1 ∗ S1)
e3≃ 𝜋∗

3 (S3)
e4≃ Z

We can also give explicit definitions of

g1 : S1 ∗ S1 → S2 g2 : S1 ∗ S1 → S1 ∗ S1 g3 : S1 ∗ S1 → S3

such that

e1( |g |) = |g1 | e2( |g1 |) = |g2 | e3( |g2 |) = |g3 | e4( |g3 |) = −2

The first 3 equalities are not definitional and requires some clever choices, but (surprisingly) a
variation of the last one holds by refl in Cubical Agda!

A. Mörtberg 𝜋4 (S3 ) and the Brunerie number Aug 26, 2022 20 / 25
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Conclusions

We have 3 new and fully formalized synthetic proofs that 𝜋4(S3) ≃ Z/2Z:

1 Streamlined and complete proof following Guillaume’s thesis
2 Axel’s new direct elementary proof which avoids part 2 of the thesis completely
3 The new computational proof which involves normalizing one of these Brunerie numbers

The first two proofs are expressable in Book HoTT, while the third crucially relies on normalization
of terms involving univalence and HITs (so expressable in cubical systems, and maybe H.O.T.T.)

A. Mörtberg 𝜋4 (S3 ) and the Brunerie number Aug 26, 2022 23 / 25



Future work

Why does only e4( |g3 |) terminate? What about the other numbers?

The computation is not very stable, composition with refl in certain places can make it run
seemingly forever... Why?!

Does the computation terminate in other cubical systems or is there something special about
Cubical Agda?

Which optimizations to Cubical Agda were actually necessary to get the computation to
terminate?

Can we compute other interesting numbers and invariants? Cohomology provides a rich
source of examples, as does proofs that various groups are finitely generated...

A. Mörtberg 𝜋4 (S3 ) and the Brunerie number Aug 26, 2022 24 / 25



Congratulations Thierry!

Questions?
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