Homological algebra and algebraic topology Problem set 11

due: Tuesday Dec 3 in class.

Problem 1 (3pt). For each permutation $\omega_0, \ldots, \omega_n$ of $0, 1, 2, \ldots, n$ consider the subspace

$$\Delta_{\omega}^{n} = \{(t_0, \dots, t_n) \in \Delta^n \mid t_{\omega_0} \le t_{\omega_1} \le \dots \le t_{\omega_n}\} \subset \Delta^n.$$

Write down a linear homeomorphism $f_{\omega} \colon \Delta^n \to \Delta^n_{\omega}$ such that the formula

$$S(\sigma) = \sum_{\omega} \sigma \circ f_{\omega}$$

defines a chain map $S \colon C_*(X) \to C_*(X)$.

Problem 2 (2pt). Consider a pair of chain complexes of abelian groups $D_* \subseteq C_*$. Suppose that $S: C_* \to C_*$ is a chain map that satisfies the following conditions:

- (1) $S(D_*) \subseteq D_*$, and both chain maps $S \colon C_* \to C_*$ and $S_*|_{D_*} \colon D_* \to D_*$ induce isomorphisms on all homology groups.
- (2) For every $x \in C_n$ there is an m such that $S^m(x) \in D_n$.

Prove that the map $H_n(D_*) \to H_n(C_*)$ induced by the inclusion is an isomorphism for all n.

Remark: For the inclusion $C_*^{\mathcal{U}}(X) \subseteq C_*(X)$, where \mathcal{U} is a family of subspaces of X, and the map S in Problem 1, one can show that the first condition is always satisfied, and that the second condition is satisfied if the interiors of the spaces in \mathcal{U} cover X.

Problem 3 (2pt). Show that the inclusion of pairs

$$f: (D^n, S^{n-1}) \to (D^n, D^n \setminus \{0\}),$$

induces an isomorphism on all relative homology groups. Show that, despite this, f is not a homotopy equivalence of pairs.

Problem 4 (3pt+2pt). Let *X* be a topological space. Suppose there is an open cover,

$$X = U_0 \cup \dots \cup U_n,$$

such that each intersection $U_{i_0} \cap \ldots \cap U_{i_k}$ is either empty or contractible.

- (1) Show that $H_k(X) = 0$ for $k \ge n$.
- (2) Suppose there is an integer r such that $U_{i_0} \cap \cdots \cap U_{i_k} \neq \emptyset$ for all $k \leq r$. Show that $\widetilde{H}_k(X) = 0$ for all k < r.
- (3) Give examples showing that the inequalities in (1) and (2) are sharp.

(Bonus + 2pt: Let u_k denote the number of subsets $\{i_0,\ldots,i_k\}\subseteq\{0,1,2,\ldots,n\}$ of size (k+1) such that $U_{i_0}\cap\cdots\cap U_{i_k}\neq\emptyset$. Prove that $\chi(X)=\sum_{k=0}^n(-1)^ku_k$.)