Homological algebra and algebraic topology Problem set 10

due: Tuesday Nov 26 in class.

Problem 1 (4pt). Let X be the space obtained from S^{2} by identifying antipodal points on the equator $S^{1} \subset S^{2}$.
(1) Show that X admits the structure of a cell complex.
(2) Calculate the homology groups of X.
(3) Do the same thing for S^{3} with antipodal points of the equator $S^{2} \subset S^{3}$ identified.

Problem 2 (3pt). Suppose we are given a cell complex homeomorphic to S^{2} that is built from a finite collection of polygons by identifying edges in pairs, for example as in the following picture:

Figure 1. Cell complex with 20 vertices, 30 edges and 12 faces.
Show that the 1 -skeleton of any such a cell complex cannot be either of the following two graphs.

Problem 3 (3pt). Show that the space $\{0\} \cup\{1 / n \mid n=1,2, \ldots\} \subset \mathbf{R}$ is not homotopy equivalent to a cell complex.

