Homological algebra and algebraic topology Problem set 1

due: Tuesday Sept 10 in class.

Problem $1(2 p)$. Verify that the following sequence is a chain complex and compute its homology groups:

$$
\cdots \xrightarrow{6} \mathbf{Z} / 12 \mathbf{Z} \xrightarrow{4} \mathbf{Z} / 12 \mathbf{Z} \xrightarrow{6} \mathbf{Z} / 12 \mathbf{Z} \xrightarrow{4} \mathbf{Z} / 12 \mathbf{Z} \xrightarrow{6} \cdots
$$

Problem 2 (3p). Let

$$
0 \rightarrow A^{\prime} \xrightarrow{i} A \xrightarrow{p} A^{\prime \prime} \rightarrow 0
$$

be an exact sequence of abelian groups. Show that the following are equivalent:
(1) There exists a homomorphism $q: A \rightarrow A^{\prime}$ such that $q \circ i=\mathrm{id}_{A^{\prime}}$.
(2) There exists a homomorphism $j: A^{\prime \prime} \rightarrow A$ such that $p \circ j=\operatorname{id}_{A^{\prime \prime}}$.
(3) There is an isomorphism $\phi: A \rightarrow A^{\prime} \oplus A^{\prime \prime}$ such that $\phi \circ i: A^{\prime} \rightarrow A^{\prime} \oplus A^{\prime \prime}$ is the inclusion into the first coordinate and $p \circ \phi^{-1}: A^{\prime} \oplus A^{\prime \prime} \rightarrow A^{\prime \prime}$ is the projection onto the second coordinate.
Problem 3 (3p). Given the following commutative diagram of abelian groups:

Assume that $0 \rightarrow A \rightarrow B_{i} \rightarrow C_{i} \rightarrow 0$ and $0 \rightarrow C_{1} \rightarrow C_{2} \rightarrow D \rightarrow 0$ are exact. Show, using a diagram chase, that $0 \rightarrow B_{1} \rightarrow B_{2} \rightarrow D$ is also exact.

Problem $4(2 \mathrm{p})$. Let $0 \rightarrow A^{\prime} \xrightarrow{i} A \xrightarrow{p} A^{\prime \prime} \rightarrow 0$ be an exact sequence of abelian groups, and let B be another abelian group. Then we obtain a sequence

$$
\begin{array}{rllllll}
0 \rightarrow \operatorname{Hom}\left(A^{\prime \prime}, B\right) & \rightarrow & \operatorname{Hom}(A, B) & \rightarrow & \operatorname{Hom}\left(A^{\prime}, B\right) & \rightarrow & 0 \\
f & \mapsto & f \circ p & & \\
& & g & \mapsto & g \circ i .
\end{array}
$$

Is this sequence a chain complex? Is it exact for any choice of $A, A^{\prime}, A^{\prime \prime}$, and B ?

